Rational Numbers

Rational Numbers are those Real numbers that can be written in $\frac{p}{q}$ form, where p and q are

integers and $q \neq 0$

y: law followed , n : law not followed

	Closure law				Commutative				Associative			
Number	Α	S	М	D	Α	S	М	D	Α	S	M	D
system												
Natural (N)	У	n	У	n	У	n	У	n	У	n	У	n
Whole (w)	у	n	у	n	у	n	У	n	У	n	У	n
Integer (Z)	У	У	У	n	У	n	У	n	У	n	У	n
Rational (Q)	У	У	У	n	У	n	У	n	У	n	У	n

For any 2 rational numbers a and b:

Closure law: a+ b (sum), a-b (difference) and a x b (product) is rational

 $\frac{a}{0}$ is not defined , however excluding zero, collection of other rational numbers is closed under

division

commutative law: a + b = b + a and $a \times b = b \times a$

associative law: a + (b + c) = (a + b) + c and $a \times (b \times c) = (a \times b) \times c$

0 is the additive identity for rational numbers

1 is multiplicative identity for rational numbers

If $\frac{a}{b}$ denotes a rational number :

additive inverse of $\frac{a}{b}$ is $-\frac{a}{b}$ and vice versa

$$\frac{a}{b} + (-\frac{a}{b}) = 0 = (-\frac{a}{b}) + \frac{a}{b}$$

reciprocal or multiplicative inverse of $\frac{a}{b}$ is $\frac{b}{a}$

$$\frac{a}{b} \times \frac{b}{a} = 1 = \frac{b}{a} \times \frac{a}{b}$$

All rational numbers except zero have a reciprocal

Distributive property of multiplication over addition and subtraction :

For any three rational numbers a, b and c

$$a(b+c)=ab+ac$$

$$a(b-c) = ab - ac$$

All rational numbers can be represented on the number line Between any two rational numbers there are infinite rational numbers

If a and b are two rational numbers,

$$c = \frac{a+b}{2}$$
 is also rational , where a< c < b ; c is the mean of a and b