Chapter Structure of Atom

Topic-1: Different Atomic Models that Leads to Bohr Model

1.	According to Bohr's model, the highest kinetic energy is associated with the electron in the [Adv, 2024]									
	(a) First orbit of H atom (b) First orbit of He ⁺									
	(c) Second orbit of He ⁺ (d) Second orbit of Li ²⁺									
2.	The kinetic energy of an electron in the second Bohr orbit of a hydrogen atom is $[a_0$ is Bohr radius]: [2012]									
	(a) $\frac{h^2}{4\pi^2 m a_0^2}$ (b) $\frac{h^2}{16\pi^2 m a_0^2}$									
	(c) $\frac{h^2}{32\pi^2 m a_0^2}$ (d) $\frac{h^2}{64\pi^2 m a_0^2}$									
3.	Given that the abundances of isotopes ⁵⁴ Fe, ⁵⁶ Fe and ⁵⁷ Fe are 5%, 90% and 5%, respectively, the atomic mass of Fe is [2009S]									
4.	(a) 55.85 (b) 55.95 (c) 55.75 (d) 56.05 The radius of which of the following orbit is same as that of the first Bohr's orbit of hydrogen atom? [200.45]									
	(a) $He^+(n=2)$ (b) $Li^{2+}(n=2)$ (c) $Li^{2+}(n=3)$ (d) $Be^{3+}(n=2)$									
5.	Rurtherford's experiment, which established the nuclear model of the atom, used a beam of [2002S]									
	(a) β -particles, which impinged on a metal foil and got absorbed									
	(b) γ -rays, which impinged on a metal foil and ejected electrons									
	(c) helium atoms, which impinged on a metal foil and got scattered									
	(d) helium nuclei, which impinged on a metal foil and got scattered									
6.	Which of the following does not characterise X-rays?									
	(a) The radiation can ionise gases [1992 - 1 Mark]									
	(b) It causes ZnS to fluorescence									
	(c) Deflected by electric and magnetic fields									
7.	(d) Have wavelengths shorter than ultraviolet rays The wavelength of a spectral line for an electronic transition									
	is inversely related to: [1988 - 1 Mark] (a) the number of electrons undergoing the transition									
	(a) the number of electrons undergoing the transition									

MCOs with One Correct An

The ratio of the energy of a photon of 2000 Å wavelength radiation to that of 4000 Å radiation is: [1986 - 1 Mark] (a) 1/4 (b) 4 (c) 1/2 (d) 2 10. Rutherford's alpha particle scattering experiment eventually led to the conclusion that: [1986 - 1 Mark] (a) mass and energy are related (b) electrons occupy space around the nucleus (c) neutrons are buried deep in the nucleus (d) the point of impact with matter can be precisely determined. 11. Electromagnetic radiation with maximum wavelength is: [1985 - 1 Mark] (a) ultraviolet (b) radiowave (c) X-ray (d) infrared The radius of an atomic nucleus is of the order of: [1985 - 1 Mark] (a) 10^{-10} cm (b) 10^{-13} cm(c) 10^{-15} cm (d) 10^{-8} cm 13. Bohr model can explain: [1985 - 1 Mark] (a) the spectrum of hydrogen atom only (b) spectrum of an atom or ion containing one electron only (c) the spectrum of hydrogen molecule (d) the solar spectrum 14. Which electronic level would allow the hydrogen atom to absorb a photon but not to emit a photon? [1984 - 1 Mark] (a) 3s (b) 2p (c) 2s (d) 1s The increasing order (lowest first) for the values of e/m(charge/mass) for electron (e), proton (p), neutron (n) and

alpha particle (α) is:

(a) e, p, n, α

(c) n, p, α, e

(b) the nuclear charge of the atom

involved in the transition

The triad of nuclei that is isotonic is

(c) the difference in the energy of the energy levels

(d) the velocity of the electron undergoing the transition.

 $^{14}_{6}$ C, $^{15}_{7}$ N, $^{17}_{9}$ F (b) $^{12}_{6}$ C, $^{14}_{7}$ N, $^{19}_{9}$ F

 ${}^{14}_{6}C, {}^{14}_{7}N, {}^{17}_{9}F$ (d) ${}^{14}_{6}C, {}^{14}_{7}N, {}^{19}_{9}F$

[1988 - 1 Mark]

[1984 - 1 Mark]

[1983 - 1 Mark]

(b) n, p, e, α (d) n, α, p, e

Rutherford's scattering experiment is related to the size of

(a) nucleus (b) atom (c) electron (d) neutron

Si	tructure of Atom	A
	(a) electrons (b) protons (c) nucleus (d) neutrons The number of neutrons in dipositive zinc ion with mass number 70 is [1979]	 5 True / False 30. In a given electric field, β-particles are deflected more that α-particles in spite of α-particles having larger charge. [1993 - 1 Mark] 31. Gamma rays are electromagnetic radiations of wavelength of 10⁻⁶ cm to 10⁻⁵ cm. [1983 - 1 Mark]
(ig	2 Integer Value Answer	6 MCQs with One or More than One Correct Answer
19.	$R_{\rm H} = 2.2 \times 10^{-18}$ J;Planck's constant, $h = 6.6 \times 10^{-34}$ J s;Speed of light, $c = 3 \times 10^{8}$ m s ⁻¹] The work function (ϕ) of some metals is listed below. The number of metals which will show photoelectric effect when light of 300 nm wavelength falls on the metal is [2011]	 32. The energy of an electron in the first Bohr orbit of H ator is -13.6 eV. The possible energy value(s) of the excite state(s) for electrons in Bohr orbits of hydrogen is (are) [1998-2 Marks (a) -3.4 eV (b) -4.2 eV (c) -6.8 eV (d) -1.5 eV 33. The sum of the number of neutrons and proton in the isotope of hydrogen is: [1986-1 Mark (a) 6 (b) 2 (c) 4 (d) 3 34. When alpha particles are sent through a thin metal foil most of them go straight through the foil because: [1984-1 Mark
21.	The state of the s	(a) alpha particles are much heavier than electrons
	Wavelength of high energy transition of H-atoms is 91.2nm. Calculate the corresponding wavelength of He atoms. [2003 - 2 Marks] Calculate the wave number for the shortest wavelength transition in the Balmer series of atomic hydrogen.	(b) alpha particles are positively charged (c) most part of the atom is empty space (d) alpha particle move with high velocity 35. Many elements have non-integral atomic masses because (a) they have isotopes [1984 - 1 Mark]
-fle	b to sunstaine add the saluratglanding and [1996 - 1 Mark]	(b) their isotopes have non-integral masses
	etal Li Na K Mg Cu Ag Fe Pt W (eV) 2.4 2.3 2.2 3.7 4.8 4.3 4.7 6.3 4.75	(c) their isotopes have different masses(d) the constitutents, neutrons, protons and electrons
	According to Bohr's theory, the electronic energy of hydrogen atom in the n th Bohr's orbit is given by	combine to give fractional masses 36. An isotone of $^{76}_{32}$ Ge is: [1984-1 Mark]
	$E_n = \frac{-21.76 \times 10^{-19}}{n^2}$ J. Calculate the longest wavelength	(a) $^{77}_{32}$ Ge (b) $^{77}_{33}$ As (c) $^{77}_{34}$ Se (d) $^{78}_{34}$ Se
24.	of light that will be needed to remove an electron from the third Bohr orbit of the He ⁺ ion. [1990 - 3 Marks] Calculate the wavelength in Angstrom of the photon that is emitted when an electron in the Bohr orbit, $n = 2$ returns to the orbit, $n = 1$ in the hydrogen atom. The ionization	7 Match the Following 37. Consider the Bohr's model of a one – electron atom where the electron moves around the nucleus. In the following List–I contains some quantities for the n th orbit of the atom and List–II contains options showing however, the nucleus of the normal contains options showing how the nucleus.
	potential of the ground state hydrogen atom is 2.17×10^{-11}	contains options showing how they depend on n [Adv. 2019] List-I List-II
25	erg per atom. [1982 - 4 Marks] The energy of the electron in the second and the third	(I) Radius of the n^{th} orbit (P) $\propto n^{-2}$
rks] d its	Bohr's orbits of the hydrogen atom is -5.42×10^{-12} erg and -2.41×10^{-12} erg respectively. Calculate the wavelength of the emitted radiation when the electron drops from the third to the second orbit. [1981 - 3 Marks]	electron in the n^{th} orbit $(Q) \propto n^{-1}$ (III) Kinetic energy of the electron in the n^{th} orbit $(R) \propto n^0$ (IV) Potential energy of the
(10°)	4 Fill in the Blanks	electron in the n^{th} orbit (S) $\propto n^1$
26.	The light radiations with discrete quantities of energy are	The saling plant is a supposed to the saling plant in the saling
27.	called [1993 - 1 Mark] Elements of the same mass number but of different atomic	Which of the following options has the correct Combination considering List–I and List–II?
28.	numbers are known as	(a) (II), (R) (b) (II), (Q) (c) (I), (P) (d) (I), (T)
29.	their nuclei. [1982 - 1 Mark] The mass of a hydrogen atom iskg.	38. Calculate the energy required to excite one litre of

29. The mass of a hydrogen atom iskg.

[1982 - 1 Mark]

								— А
(<u>'9</u>	5	True /	False	(2) (3) (i	1018-6	(Station	i natre s	William Street
30.	In : α-j	a given ele particles ir	ectric n spite	field, βe of α-pa	article	es havin	g larger	l more that charge. - 1 Mark vavelength
31	of	10 ⁻⁶ cm to	10 ⁻⁵ c	em.				-1 Mark
	6	MCQs	with (One or	More	than O	ne Corre	ct Answei
35.	is - stal (a) The isot (a) Wh mode (b) (c) (d) Man (a) (b) (c) (d)	-13.6 eV. te(s) for el -3.4 eV te sum of cope of hy 6 ten alpha pa alpha pa alpha pa alpha pa alpha pa their iso their iso the cons combine	The plectro (b) the n nddroge (b) particle go st article ts have iso topes titute e to gi	-4.2 e umber en is: 2 cles are mes are pohe aton e move ve non-intopes have n have dents, ne eve fract	cenerothrouse (c) of new (c) sent through the positive on-in iffered tutron	-6.8 eeutrons 4 through gh the fely chain mpty sphigh veletal atom tegral rent masses, protos	le(s) of the hydroge [1998] EV (d) and pro [1986] (d) in a thin foil because [1984] than electroged accelerate than electroged ac	metal foil use: -1 Mark] etrons s because: -1 Mark] electrons,
36.		isotone of			, ,	77 ~		1 Mark]
(200		77 32 Ge				34 Se	(d)	34 Se
	7		ATTRIBUTED SE	STATE OF THE PERSON NAMED IN	Marie I	TRUM III		
DE SE GEO TELL	electriconta conta (I) (II) (III) (IV) (Vhich Comb	on moves ins some q ins options List-I Radius o Angular electron in the nth Potential electron in of the formation communication	f the mome in the energy orbit energy in the bllowing on the b	nd the ries for the ving how the nth orbit entum of nth orbit of the nth orbit of the nth orbit of the nth orbit of the nth orbit orbit ering L	t of the it elect e it	is. In the orbit of the orbit o	e followi he atom a flon n [A List-I (P) ∞ (Q) ∞ (R) ∞ (S) ∞ (U) ∞ correct	n^{-2} n^{-1} n^{0} n^{1} n^{2}
COX.	(a)	(II), (R)	(b) (II), (Q)	(c)	(I), (P)	(d)	(I), (T)

hydrogen gas at 1 atm and 298 K to the first excited state of atomic hydrogen. The energy for the dissociation of H-

[2000 - 4 Marks]

H bond is 436 kJ mol⁻¹.

- 39. Consider the hydrogen atom to be a proton embedded in a cavity of radius a_0 (Bohr radius) whose charge is neutralised by the addition of an electron to the cavity in vacuum, infinitely slowly. Estimate the average total energy of an electron in its ground state in a hydrogen atom as the work done in the above neutralisation process. Also, if the magnitude of the average kinetic energy is half the magnitude of the average potential energy, find the average potential energy. [1996 2 Marks]
- 40. Iodine molecule dissociates into atoms after absorbing light of 4500Å. If one quantum of radiation is absorbed by each molecule, calculate the kinetic energy of iodine atoms. (Bond energy of I₂ = 240 kJ mol⁻¹) [1995 2 Marks]
- 41. Find out the number of waves made by a Bohr electron in one complete revolution in its 3rd orbit.[1994 3 Marks]
- 42. What transition in the hydrogen spectrum would have the same wavelength as the Balmer transition n = 4 to n = 2 of He⁺ spectrum? [1993 3 Marks]

- 43. Estimate the difference in energy between 1^{st} and 2^{nd} Bohr orbit for a hydrogen atom. At what minimum atomic number, a transition from n = 2 to n = 1 energy level would result in the emission of X-rays with $\lambda = 3.0 \times 10^{-8}$ m? Which hydrogen atom-like species does this atomic number correspond to? [1993 5 Marks]
- 44. The electron energy in hydrogen atom is given by $E = (-21.7 \times 10^{-12})/n^2$ ergs. Calculate the energy required to remove an electron completely from the n = 2 orbit. What is the longest wavelength (in cm) of light that can be used to cause this transition? [1984 3 Marks]
- 45. Naturally occurring boron consists of two isotopes whose atomic weights are 10.01 and 11.01. The atomic weight of natural boron is 10.81. Calculate the percentage of each isotope in natural boron. [1978]

Topic-2: Advancement Towards Quantum Mechanical Model of Atom

MCQs with One Correct Answer MC

- The wavelength associated with a golfball weighing 200 g and moving at a speed of 5 m/h is of the order [2001S]
 (a) 10⁻¹⁰ m
 (b) 10⁻²⁰ m
 (c) 10⁻³⁰ m
 (d) 10⁻⁴⁰ m
- 2. Which of the following relates to photons both as wave motion and as a stream of particles? [1992 1 Mark]
 - (a) Inference
- (b) $E = mc^2$
- (c) Diffraction
- (d) E = hv

2 Integer Value Answer

Consider a helium (He) atom that absorbs a photon of wavelength 330 nm. The change in the velocity (in cm s⁻¹) of He atom after the photon absorption is ____.
 (Assume: Momentum is conserved when photon is absorbed.
 Use: Planck constant = 6.6 × 10⁻³⁴ J s, Avogadro number = 6 × 10²³ mol⁻¹, Molar mass of He = 4 g mol⁻¹)

[Adv. 2021]

4. The atomic masses of 'He' and 'Ne' are 4 and 20 a.m.u., respectively. The value of the de Broglie wavelength of 'He' gas at —73 °C is "M" times that of the de Broglie wavelength of 'Ne' at 727 °C. 'M' is [Adv. 2013]

4 Fill in the Blanks

6 MCQs with One or More than One Correct Answer

- Among the following, the correct statement(s) for electrons in an atom is(are) [Adv. 2024]
 - (a) Uncertainty principle rules out the existence of definite paths for electrons.
 - (b) The energy of an electron in 2s orbital of an atom is lower than the energy of an electron that is infinitely far away from the nucleus.
 - (c) According to Bohr's model, the most negative energy value for an electron is given by n = 1, which corresponds to the most stable orbit.
 - (d) According to Bohr's model, the magnitude of velocity of electrons increases with increase in values of n.

3 10 Subjective Problems

- 8. Find the velocity (ms⁻¹) of electron in first Bohr's orbit of radius a_0 . Also find the de Broglie's wavelength (in m). Find the orbital angular momentum of 2p orbital of hydrogen atom in units of $h/2\pi$. [2005 2 Marks]
- A ball of mass 100 g is moving with 100 ms⁻¹. Find its wavelength. [2004 1 Mark]
- 10. The Schrödinger wave equation for hydrogen atom is [2004 2 Marks]

$$\Psi_{2s} = \frac{1}{4\sqrt{2\pi}} \left(\frac{1}{a_0}\right)^{3/2} \left(2 - \frac{r_0}{a_0}\right) e^{-r_0/a_0}$$

Where a_0 is Bohr's radius. If the radial node in 2s be at r_0 , then find r_0 in terms of a_0 .

8.

A 3p orbital has:

(a) two non spherical nodes

(b) two spherical nodes

chanical Model of Atom

2000	27. The outer electronic configuration of the ground
	1 MCQs with One Correct Answer
	The number of radial nodes of 3s and 2p orbitals are
	respectively [2005S] (a) 2,0 (b) 0,2 (c) 1,2 (d) 2,1
	(a) 2,0 (b) 0,2 (c) 1,2 (d) 2,1 If the nitrogen atom has electronic configuration $1s^7$, it
dig	would have energy lower than that of the normal ground
	state configuration $1s^22s^22p^3$, because the electrons
	would be closer to the nucleus. Yet $1s^7$ is not observed
	because it violates. [2002S]
	(a) Heisenberg uncertainty principle
	(b) Hund's rule
	(c) Pauli exclusion principle
	(d) Bohr postulate of stationary orbits
200	The quantum numbers $+1/2$ and $-1/2$ for the electron spin
	represent [2001S]
	(a) rotation of the electron in clockwise and anticlockwise
	direction respectively
	(b) rotation of the electron in anticlockwise and clockwise
	direction respectively
	(c) magnetic moment of the electron pointing up and
	down respectively (d) two quantum mechanical spin states which have no
	(d) two quantum mechanical spin states which have no classical analogue
H	The electronic configuration of an element is $1s^2$, $2s^2 2p^6$,
	$3s^2 3p^6 3d^5$, $4s^1$. This represents its [2000S]
	(a) excited state (b) ground state
	(c) cationic form (d) anionic form
	The number of nodal planes in a p_x orbital is [2000S]
no:	(a) one (b) two (c) three (d) zero
	The electrons, identified by quantum numbers n and l ,
	(i) $n=4$, $l=1$, (ii) $n=4$, $l=0$, (iii) $n=3$, $l=2$, and (iv) $n=3$,
	l=1 can be placed in order of increasing energy, from the
	lowest to highest, as [1999 - 2 Marks]
	(a) $(iv) < (ii) < (iii) < (i)$ (b) $(ii) < (iv) < (i) < (iii)$
	(c) (i)<(iii)<(ii)<(iv) (d) (iii)<(iv)<(ii)
	For a <i>d</i> -electron, the orbital angular momentum is
i	[1997 - 1 Mark]
	Dumika and branching the product of the collection of the market of
	(a) $\sqrt{6}(h/2\pi)$ (b) $\sqrt{2}(h/2\pi)$
	(c) $(h/2\pi)$ (d) $2(h/2\pi)$

The orbital angular momentum of an electron in 2s orbital

(a) $+\frac{1}{2} \cdot \frac{h}{2\pi}$ (b) Zero (c) $\frac{h}{2\pi}$ (d) $\sqrt{2} \cdot \frac{h}{2\pi}$

(c) one spherical and one non spherical node

(d) one spherical and two non spherical nodes

[1996 - 1 Mark]

[1995S]

		and the same	and t	100000	writin In	edtion	mhisno	shalf 81
0.	The	corre	ct set	of quar	ntum n	umbers	for the	unpaired
				ne atom				- 1 Mark]
		n	1	m				
	(a)	2	1	0				
	(b)		1	1				
	(c)		1	1				
	-	3	0	0		Diamer Co	manaza	aut ds
1.		mium	atom i	s:	ate ele		[1989	uration of - 1 Mark]
	(a)		$3d^5 4s^1$		(b)			
			$3d^6 4s^6$			[Ar] 4		
2.	elec	troneg	gative e	element	is		[1988	the most - 1 Mark]
								$ns^2 np^6$
3.								orinciple is
	viol	ated is	: 1111111	TOUTER			[1988	- 1 Mark]
		2s			2p			
	(a)	↑↓		$\uparrow\downarrow$ \uparrow				
	(b)	1		$\uparrow\downarrow$ \uparrow	1			
	(c)	$\uparrow\downarrow$	July 14	\uparrow	\uparrow			
	(d)	$\uparrow\downarrow$	e od	$\uparrow\downarrow$ \uparrow	1			
4.								m numbers
	rep	resent	s an im	possible	e arran	gemen	? [1986	-1 Mark
		n	l	m_l	m_s			
	(a)	3	2	-2	1/2			
	(b)	4	0	0	1/2			
	(c)	3	2	-3	1/2			
	(d)	5	3	0	-1/2			
5.		rect s	et of	four au	antum	numbe	ers for t	he valence
m				tron of r				
	H En		Mell			19893 -		- 1 Mark]
	(a)	5,0,	0, +1/2		(b)	5, 1, 0), +1/2	
	(c)	5, 1,	1,+1/2		(d)	6,0,0	,+1/2	
6.	An	v p-orl	oital ca	n accor	nmoda	te unto	[1983	3 - 1 Mark
	(a)		electro			p.0	moto Y	
	7.50		lectron					
				ns with	naralle	Isnine		
	(d)			ns with	70		18	
17.	100				The state of the s			elated to the
. / •		700			number	or an a		
	(a)			orbital	(0)		[1983	- 1 Mark]
	(b)	spin	angula	ir mome	entum			

(c) orbital angular momentum

(d) orientation of the orbital in space

2 Integer Value Answer

18. Not considering the electronic spin, the degeneracy of the second excited state (n = 3) of H atom is 9, while the degeneracy of the second excited state of H⁻ is

[Adv. 2015]

- 19. In an atom, the total number of electrons having quantum numbers n = 4, $|m_1| = 1$ and $m_s = -\frac{1}{2}$ is [Adv. 2014]
- **20.** The maximum number of electrons that can have principal quantum number, n = 3, and spin quantum $m_s = -\frac{1}{2}$, is

12011

3 Numeric / New Stem Based Questions

21. What is the maximum number of electrons that may be present in all the atomic orbitals with principal quantum number 3 and azimuthal quantum number 2?

[1985 - 2 Marks]

4 Fill in the Blanks

22. The outermost electronic configuration of Cr is

[1994 - 1 Mark]

- 23. The $2p_x$, $2p_y$ and $2p_z$ orbitals of atom have identical shapes but differ in their [1993 1 Mark]
- 24. When there are two electrons in the same orbital, they have spins. [1982 1 Mark]

3 5 True / False

25. The electron density in the XY plane in $3d_{x^2-y^2}$ orbital is zero. [1986 - 1 Mark]

7 Match the Following

- 26. The energy of the electron in the 3*d*-orbital is less than that in the 4*s*-orbital in the hydrogen atom. [1983 1 Mark]
- 27. The outer electronic configuration of the ground state chromium atom is $3d^44s^2$. [1982 1 Mark]

MCQs with One or More than One Correct Answer

- 28. The ground state energy of hydrogen atom is -13.6 eV. Consider an electronic state ψ of He⁺ whose energy, azimuthal quantum number and magnetic quantum number are -3.4 eV, 2 and 0, respectively. Which of the following statement(s) is (are) true from the state ψ? [Adv. 2019]
 - (a) It is a 4d state
 - (b) It has 3 radial nodes
 - (c) It has 2 angular nodes
 - (d) The nuclear charge experienced by the electron in this state is less than 2e, where e is the magnitude of the electronic charge
- 29. Ground state electronic configuration of nitrogen atom can be represented by [1999 3 Marks]
 - (a) **1**
- 30. Which of the following satement(s) is (are) correct?
 [1998 2 Marks]
 - (a) The electronic configuration of Cr is [Ar] $3d^54s^1$. (Atomic Number of Cr = 24)
 - (b) The magnetic quantum number may have a negative value.
 - (c) In silver atom, 23 electrons have a spin of one type and 24 of the opposite type. (Atomic Number of Ag = 47)
 - (d) The oxidation state of nitrogen in HN_3 is -3.

(Qs. 31-35) are based on the table, having 3 columns and 4 rows. Each question has four options (A), (B), (C) and (D). Only one of these four options is correct. By appropriately matching the information given in the three columns of the following table.

The wave function, Ψ_{n,l,m_l} is a mathematical function whose value depends upon spherical polar coordinates (r, θ, ϕ) of the electron and characterized by the quantum numbers n, l and m_l . Here r is distance from nucleus, θ is colatitude and ϕ is azimuth. In the mathematical functions given in the table, Z is atomic number and a_0 is Bohr radius. [Adv. 2017]

Column-1 Column-2 Column-3

- (I) 1s orbital
- (i) $\psi_{n,l,m_l} \propto \left(\frac{Z}{a_0}\right)^{\frac{3}{2}} e^{-\left(\frac{Zr}{a_0}\right)}$
- $(P) \xrightarrow{\widehat{\mathcal{L}}_{n,r}^{m} 0} 0$

- (II) 2s orbital
- (ii) One radial node
- (Q) Probability density at nucleus $\propto \frac{1}{a_0^3}$

(iii) $\psi_{n,l,m_l} \propto \left(\frac{Z}{a_0}\right)^{\frac{5}{2}} re^{-\left(\frac{Zr}{2a_0}\right)} \cos \theta$ (III) 2p_orbital (R) Probability density is maximum at nucleus (IV) $3d_{2}$ orbital (iv) xy-plane is a nodal plane (S) Energy needed to excite electron from n = 2 state to n = 4 state is $\frac{27}{32}$ times the energy needed to excite

electron from n = 2 state to n = 6 state 31. For the given orbital in Column 1, the only CORRECT combination for any hydrogen-like species is

- (a) (I)(ii)(S) (b) (IV)(iv)(R)
- 32. For hydrogen atom, the only CORRECT combination is
- (a) (I)(i)(S)(b) (II)(i)(Q) 33. For He⁺ ion, the only INCORRECT combination is
- (a) (I)(i)(R) (b) (II)(ii)(Q) Match the entries in Column I with the correctly related quantum number(s) in Column II. 34.
 - (c) (I)(iii)(R)

(c) (II)(ii)(P)

(I)(i)(P)

(I)(i)(S) [2008 - 6M] Column-II

(d) (III) (iii) (P)

(d) (I)(iv)(R)

- (A) Orbital angular momentum of the electron in a hydrogen-like atomic orbital
- (B) A hydrogen-like one-electron wave function obeying Pauli principle
- (C) Shape, size and orientation of hydrogen-like atomic orbitals
- (D) Probability density of electron at the nucleus in hydrogen-like atom
- (p) Principal quantum number
- (q) Azimuthal quantum number (r) Magnetic quantum number
- (s) Electron spin quantum number
- 35. $E_n = \text{Total energy}, K_n = \text{Kinetic energy}, V_n = \text{Potential energy}, r_n = \text{Radius of } n^{\text{th}} \text{ orbit Match the following :}$

Column-I

Column-I

- (A) $V_n / K_n = ?$ (B) If radius of n^{th} orbit $\propto E_n^x$, x = ?
- (C) Angular momentum in lowest orbital
- (D) $\frac{1}{r} \propto Z^y$, y = ?

- Column-II (p) 0
- (q) -1
- (r) -2
- (s) 1

8 Comprehension/Passage Based Questions

The hydrogen-like species Li²⁺ is in a spherically symmetric state S₁ with one radial node. Upon absorbing light the ion undergoes transition to a state S₂. The state S₂ has one radial node and its energy is equal to the ground state energy of the hydrogen atom. [2010]

- 36. The state S₁ is:

 - (b) 2s
- (c) 2p
- - (d) 3s
- 37. Energy of the state S₁ in units of the hydrogen atom ground state energy is:
 - (a) 0.75
- (b) 1.50
- (c) 2.25

- 38. The orbital angular momentum quantum number of the state S_2 is:
 - (a) 0
- (b) 1
- (c) 2 (d) 3

10 Subjective Problems

- Give reasons why the ground state outermost electronic configuration of silicon is: [1985 - 2 Marks]
 - 35
- 3p
- and not
- 35
- 3p

9

Answer Key

				Topi	c-1 : Dif	fere	nt Ato	mic	Mode	ls th	at Lec	ids t	o Boh	r Mo	del				
1.	(b)	2.	(c)	3.	(b)	4.	(d)	5.	(d)	6.	(c)	7.	(c)	8.	(a)	9.	(d)	10.	(b)
11.	(b)	12.	(b)	13.	(b)	14.	(d)	15.	(d)	16.	(a)	17.	(c)	18.	(d)	19.	(30)	20.	(4)
21.	(22.8)	22.	(27419)	23.	(2055)	24.	(1220)	25.	(660)	26.	(photo	ons)		27.	(isobara	s)			
28.	(neutr	ons)		29.	(1.66 ×	10 ⁻²⁷ k	(g)	30.	True	31.	False	32.	(a, d)	33.	(b, d)	34.	(a, c)	35.	(a, c)
36.	(b, d)	37.	(d)																
			Topic	-2:	Advanc	eme	nt Tow	ard	s Qua	ntur	n Mec	han	ical M	odel	of Ator	n			
1.	(a)	2.	(d)	3.	(30)	4.	(5)	5.	(orbit	als)		6.	(Heise	nberg	g, de-Bro	glie)	7.	(a, b, c
					Topic	c-3 :	Quant	lum	Mech	anic	al Mod	deld	of Ator	n					
1.	(a)	2.	(c)	3.	(d)	4.	(b)	5.	(a)	6.	(a)	7.	(a)	8.	(b)	9.	(c)	10.	(c)
1. 11.	(a) (a)	2. 12.		3. 13.			(b) (c)		See al				(a) (a)	8. 18.			(c) (6)	10. 20.	
11.		12.		13.		14.		15.	(a)	16.	(d)	17.	(a)	18.		19.	(6)		
	(a) (10)	12. 22.	(c) (4s ¹ , 3d	13.		14. 23.	(c) (orien	15. tation	(a) n in spa	16. ce)	(d)	17. 24.	(a) (antip	18. aralle	(3) el; or opp	19.	(6)		(9)
11. 21.	(a) (10) (False)	12. 22. 26.	(c) (4s ¹ , 3a (True)	13. (5) 27.	(b)	14. 23. 28.	(c) (orien (a, c)	15. tation 29.	(a) n in spa (a, d)	16. ce)	(d) (a, b, c	17. 24. c)	(a) (antip	18. aralle 31.	(3) el; or opp (c)	19. osite 32.	(6) e)	20.	(9) (c)

Hints & Solutions

Topic-1: Different Atomic Models that Leads to Bohr Model

1. (b) K.E. of electron in nth Bohr's orbit is given by:

K.E. =
$$13.6 \frac{Z^2}{n^2}$$
 eV/atom

$$n = 1 \text{ (H-atom)} \to K.E. \propto \frac{1^2}{1^2} = 1$$

$$n = 1 \text{ (He}^+ \text{ ion)} \rightarrow \text{K.E.} \propto \frac{2^2}{1^2} = 4$$

$$n = 2 \text{ (He}^+ \text{ ion)} \rightarrow \text{K.E.} \propto \frac{2^2}{2^2} = 1$$

$$n = 2 (Li^{2+} ion) \rightarrow K.E. \propto \frac{3^2}{2^2} = \frac{9}{4}$$

Thus, K.E. is highest for first orbit of He+.

2. (c) As per Bohr's postulate,

$$mvr = \frac{nh}{2\pi}$$
 So, $v = \frac{nh}{2\pi mr}$

$$KE = \frac{1}{2}mv^2$$
 So, $KE = \frac{1}{2}m\left(\frac{nh}{2\pi mr}\right)^2$

Since,
$$r = \frac{a_0 \times n^2}{z}$$

So, for 2nd Bohr orbit

$$r = \frac{a_0 \times 2^2}{1} = 4a_0$$

KE =
$$\frac{1}{2}m\left(\frac{2^2h^2}{4\pi^2m^2\times(4a_0)^2}\right) = \frac{h^2}{32\pi^2ma_0^2}$$

3. (b) Average atomic mass of Fe

$$=\frac{(54\times5)+(56\times90)+(57\times5)}{100}=55.95$$

4. (d)
$$r_n = 0.529 \frac{n^2}{Z} \text{Å}$$

For hydrogen, n = 1 and Z = 1; $\therefore r_H = 0.529$

For Be³⁺, n = 2 and Z = 4;

$$\therefore r_{\text{Be}^{3+}} = \frac{0.529 \times 2^2}{4} = 0.529$$

- (d) Rutherford's experiment was actually α-particle scattering experiment. α-Particle is doubly positively charged helium ion, i.e., He - nucleus.
- 6. (c) X-rays can ionise gases and cannot get deflected by electric and magnetic fields, wavelength of these rays is 150 to 0.1Å. Thus, the wavelength of X-rays is shorter than that of U.V. rays.
- (c) Difference in the energy of the energy levels involved in the transition.
- 8. (a) Isotones have same number of neutrons. All atoms in triad (a) have same number of neutrons (i.e., A-Z=8).

9. **(d)**
$$E = \frac{hc}{\lambda}$$
; $\lambda_1 = 2000 \text{ Å}$; $\lambda_2 = 4000 \text{ Å}$;

so
$$\frac{E_1}{E_2} = \frac{\lambda_2}{\lambda_1} = \frac{4000}{2000} = 2$$

- 10. (b) Electrons in an atom occupy the extra nuclear region.
- 11. (b) The following is the increasing order of wavelength or decreasing order of energy of electromagnetic radiations:

cosmic rays
γ-rays
X-rays
UV-rays
Visible
Infra-red radiation
Micro waves
Radio waves

Among given choices, radiowaves have maximum wavelength.

- 12. **(b)** The radius of nucleus is of the order of 1.5×10^{-13} to 6.5×10^{-13} cm or 1.5 to 6.5 Fermi (1 Fermi = 10^{-13} cm)
- (b) Bohr model can explain spectrum of atoms/ions containing one electron only.
- 14. (d) Energy is emitted when electron falls from higher energy level to lower energy level and energy is absorbed when electron moves from lower level to higher level.
 1s is the lowest energy level of electron in an atom.
 An electron in 1s level of hydrogen can absorb energy.

... An electron in 1s level of hydrogen can absorb energy but cannot emit energy.

15. (d)
$$\frac{e}{m}$$
 for neutron = $\frac{0}{1}$ = 0; α -particle = $\frac{2}{4}$ = 0.5;
proton = $\frac{1}{1}$ = 1; electron = $\frac{1}{1/1837}$ = 1837

- 16. (a) According to Rutherford's experiment. "The central part consisting of whole of the positive charge and most of the mass, called nucleus, is extremely small in size compared to the size of the atom."
- (c) Rutherford's scattering experiment led to the discovery of nucleus.
- 18. (d) No. of neutrons = Mass number Atomic number = 70 30 = 40.
- 19. (30) For single electron system, $r_n = 52.9 \times \frac{n^2}{Z} \text{ pm}$

$$105.8 = \frac{52.9 \times n_1^2}{2} \therefore n_1^2 = 4 \Rightarrow n_1 = 2$$

$$26.45 = \frac{52.9 \times n_2^2}{2} :: n_2 = 1$$

So, transition is from 2 to 1

Now
$$\frac{hc}{\lambda} = R_H Z^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

$$\lambda = 30 \times 10^{-9} \,\mathrm{m} = 30 \,\mathrm{nm}$$

20. (4) Energy associated with incident photon = $\frac{hc}{\lambda}$

$$E = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{300 \times 10^{-9}} \,\mathrm{J}$$

$$= \frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{300 \times 10^{-9} \times 1.6 \times 10^{-19}} \text{eV} = 4.16 \text{eV}$$

Photoelectric effect can take place only when $E_{\text{photon}} > \phi$ Thus, number of metals showing photoelectric effect will be 4 (i.e. Li, Na, K and Mg).

21. (22.8) For maximum energy, $n_1 = 1$ and $n_2 = \infty$

$$\frac{1}{\lambda} = R_{\rm H} Z^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

Since $R_{\rm H}$ is a constant and transition remains the same

$$\frac{1}{\lambda} \propto Z^2 \; ; \; \frac{\lambda_{\rm He}}{\lambda_{\rm H}} = \frac{Z_{\rm H}^2}{Z_{\rm He}^2} = \frac{1}{4}$$

Hence,
$$\lambda_{\text{He}} = \frac{1}{4} \times 91.2 = 22.8 \text{ nm}$$

22. (27419) The shortest wavelength transition in the Balmer series corresponds to the transition $n=2 \rightarrow n=\infty$. Hence, $n_1=2$, $n_2=\infty$

$$\overline{v} = R_{\text{H}} \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) = (109677 \text{cm}^{-1}) \left(\frac{1}{2^2} - \frac{1}{\infty^2} \right)$$

$$= 27419.25 \text{ cm}^{-1}$$

23. (2055) E_n of H = $\frac{-21.76 \times 10^{-19}}{n^2}$ J

:.
$$E_n$$
 of He⁺ = $\frac{-21.76 \times 10^{-19}}{n^2} \times Z^2 J$

$$\therefore E_3 \text{ of He}^+ = \frac{-21.76 \times 10^{-19} \times 4}{9} \text{ J}$$

Hence, energy equivalent to E_3 must be supplied to remove the electron from $3^{\rm rd}$ orbit of He⁺. Wavelength corresponding to this energy can be determined by applying the relation.

$$E = \frac{hc}{\lambda} \quad \text{or } \lambda = \frac{hc}{E} = \frac{6.625 \times 10^{-34} \times 3 \times 10^8 \times 9}{21.76 \times 10^{-19} \times 4}$$
$$= 2055 \times 10^{-10} \text{ m} = 2055 \text{ Å}$$

- **24.** (1220) (i) Energy of n^{th} orbit = $E_n = \frac{E_1}{n^2}$
 - (ii) Difference in energy = $E_1 E_2 = hv = \frac{hc}{\lambda}$

or
$$\lambda = \frac{hc}{E_1 - E_2}$$

Given $E_1 = 2.17 \times 10^{-11}$

$$\therefore$$
 Energy of second orbit = $E_2 = \frac{2.17 \times 10^{-11}}{2^2}$

$$= 0.5425 \times 10^{-11} \text{ erg}$$

$$\Delta E = E_1 - E_2 = 2.17 \times 10^{-11} - 0.5425 \times 10^{-11}$$

$$= 1.6275 \times 10^{-11} \text{ erg}$$

$$\lambda = \frac{6.62 \times 10^{-27} \times 3 \times 10^{10}}{1.6275 \times 10^{-11}} = 12.20 \times 10^{-6} \text{ cm} = 1220 \text{ Å}$$

25. (660) $\Delta E = E_3 - E_2 = hv = \frac{hc}{\lambda}$ or $\lambda = \frac{hc}{E_3 - E_2}$ Given $E_2 = -5.42 \times 10^{-12}$ erg, $E_3 = -2.41 \times 10^{-12}$ erg

$$\lambda = \frac{6.626 \times 10^{-27} \times 3 \times 10^{10}}{-2.41 \times 10^{-12} - (-5.42 \times 10^{-12})}$$

$$= \frac{19.878 \times 10^{-17}}{3.01 \times 10^{-12}} = 6.604 \times 10^{-5} \, \text{cm} = 660 \, \text{nm}$$

- 26. photons
- 27. isobars

- 28. neutrons
- 29. 1.66×10^{-27} kg

 Mass of hydrogen atom

$$= \frac{\text{Atomic mass of hydrogen}}{\text{Avogadro number}} = \frac{1.008}{6.02 \times 10^{23}}$$
$$= 0.166 \times 10^{-23} \text{ g} = 1.66 \times 10^{-27} \text{ kg}$$

- 30. True: β -particles are deflected more than α -particles because they have very-very large e/m value as compared to α -particles due to the fact that electrons are much lighter than He²⁺ species.
- 31. False: Gamma rays are electromagnetic radiations of wavelengths 10⁻⁹ cm to 10⁻¹⁰ cm.
- 32. (a, d) The energy of an electron on Bohr orbits of hydrogen atoms is given by the expression

$$E_n = -\frac{\text{Constant}}{n^2}$$

Where *n* takes only integral values. For the first Bohr orbit, n = 1 and it is given that $E_1 = -13.6$ eV

Hence
$$E_n = -\frac{13.6 \text{eV}}{n^2}$$
 of the given values of energy, only

- -3.4 eV and -1.5 eV can be obtained by substituting n=2 and 3 respectively in the above expression.
- 33. (b, d) In tritium (the isotope of hydrogen) nucleus there is one proton and 2 neutrons. $\therefore n + p = 3$. In deuterium nucleus there is one proton and one neutron $\therefore n + p = 2$.
- 34. (a, c) α -particles pass through because most part of the atom is empty.
- 35. (a, c) Because they have isotopes with different masses. The average atomic mass is the weighted mean of their presence in nature; e.g., Cl³⁵ and Cl³⁷ are present in ratio 3: 1 in nature.

So
$$A = \frac{35 \times 3 + 37 \times 1}{4} = 35.5$$

36. (b, d) $_{33}^{77}$ As and $_{34}^{78}$ Se have same number of neutrons (=A-Z) as $_{32}^{76}$ Ge.

37. **(d)**
$$r \propto \frac{n^2}{Z}$$
 or $r = 0.529 \times \frac{n^2}{Z}$; (I), (T)

$$|L| \propto n \text{ or } mvr = \frac{nh}{2\pi}$$
; (II), (S)

38. Determination of number of moles of hydrogen gas,

$$n = \frac{PV}{RT} = \frac{1 \times 1}{0.082 \times 298} = 0.0409$$

The concerned reaction is $H_2 \longrightarrow 2H$; $\Delta H = 436 \text{ kJ mol}^{-1}$ Energy required to bring 0.0409 moles of hydrogen gas to atomic state = $436 \times 0.0409 = 17.83 \text{ kJ}$ Calculation of total number of hydrogen atoms in 0.0409 mole of H₂ gas.

1 mole of H_2 gas has 6.02×10^{23} molecules

$$0.0409 \text{ mole of H}_2 \text{ gas} = \frac{6.02 \times 10^{23}}{1} \times 0.0409 \text{ molecules}$$

Since, 1 molecule of H_2 gas has 2 hydrogen atoms $6.02 \times 10^{23} \times 0.0409$ molecules of H_2 gas $= 2 \times 6.02 \times 10^{23} \times 0.0409 = 4.92 \times 10^{22}$ atoms of hydrogen Since, energy required to excite an electron from the ground state to the next excited state is given by

$$E = 13.6 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \text{eV}$$

=
$$13.6 \times \left(\frac{1}{1} - \frac{1}{4}\right) = 13.6 \times \frac{3}{4} = 10.2 \text{eV} = 1.632 \times 10^{-21} \text{ kJ}$$

Therefore, energy required to excite 4.92×10^{22} electrons = $1.632 \times 10^{-21} \times 4.92 \times 10^{22}$ kJ = $8.03 \times 10 = 80.3$ kJ Therefore, total energy required = 17.83 + 80.3 = 98.17 kJ

39. Work done while bringing an electron infinitely slowly from infinity to proton of radius a_0 is given as follows

$$W = -\frac{e^2}{4\pi\varepsilon_0.a_0}$$

This work done is equal to the total energy of an electron in its ground state in the hydrogen atom. At this stage, the electron is not moving and do not possess any K.E., so this total energy is equal to the potential energy.

T.E. = P. E + K. E. = P. E. =
$$-\frac{e^2}{4\pi\epsilon_0 a_0}$$
 ...(1)

In order the electron to be captured by proton to form a ground state hydrogen atom it should also attain

$$K.E. = \frac{e^2}{8\pi\epsilon_0 a_0}$$

(It is given that magnitude of K.E. is half the magnitude of P.E. Note that P.E. is -ve and K.E is +ve)

:. T.E = P. E. + K. E. =
$$-\frac{e^2}{4\pi\epsilon_0 a_0} + \frac{e^2}{8\pi\epsilon_0 a_0}$$

or T.E.=
$$-\frac{e^2}{8\pi\epsilon_0 a_0}$$

P.E. =
$$2 \times \text{T.E.} = 2 \times \frac{-e^2}{8\pi \in_0 a_0}$$
 or P.E. = $\frac{-e^2}{4\pi \in_0 a_0}$

40. Bond energy of $I_2 = 240 \text{ kJ mol}^{-1} = 240 \times 10^3 \text{ J mol}^{-1}$

$$= \frac{240 \times 10^3}{6.023 \times 10^{23}} \text{ J molecule}^{-1} = 3.984 \times 10^{-19} \text{ J molecule}^{-1}$$

Energy absorbed =
$$\frac{hc}{\lambda} = \frac{6.626 \times 10^{-34} \text{ Js} \times 3 \times 10^8 \text{ ms}^{-1}}{4500 \times 10^{-10} \text{ m}}$$

Kinetic energy = Absorbed energy - Bond energy \therefore Kinetic energy = 4.417 × 10⁻¹⁹ - 3.984 × 10⁻¹⁹ J = 4.33 × 10⁻²⁰ J

:. Kinetic energy of each atom of iodine

$$= \frac{4.33 \times 10^{-20}}{2} = 2.165 \times 10^{-20} \,\mathrm{J}$$

- 41. Number of waves = $\frac{n(n-1)}{2}$ where n = Principal quantum number or number of orbit Number of waves = $\frac{3(3-1)}{2} = \frac{3 \times 2}{2} = 3$
- 42. For He+ ion, we have

$$\frac{1}{\lambda} = Z^2 R_{\rm H} \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$

$$= (2)^2 R_{\rm H} \left[\frac{1}{(2)^2} - \frac{1}{(4)^2} \right] = R_{\rm H} \frac{3}{4} \qquad \dots (i)$$

Now for hydrogen atom $\frac{1}{\lambda} = R_{\rm H} \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$...(ii)

Equating equations (i) and (ii), we get

$$\frac{1}{{n_1}^2} - \frac{1}{{n_2}^2} = \frac{3}{4}$$

Obviously, $n_1 = 1$ and $n_2 = 2$

Hence, the transition n = 2 to n = 1 in hydrogen atom will have the same wavelength as the transition, n = 4 to n = 2 in He⁺ species.

43.
$$\Delta E = RhcZ^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

Here, $R = 1.0967 \times 10^7 \,\mathrm{m}^{-1}$ $h = 6.626 \times 10^{-34} \,\mathrm{J}\,\mathrm{sec},\, c = 3 \times 10^8 \,\mathrm{m/sec}$ $n_1 = 1,\, n_2 = 2$ and for H-atom, Z = 1

$$E_2 - E_1 = 1.0967 \times 10^7 \times 6.626 \times 10^{-34} \times 3 \times 10^8 \left(\frac{1}{1} - \frac{1}{4}\right)$$

$$\Delta E = 1.0967 \times 6.626 \times 3 \times \frac{3}{4} \times 10^{-19} \text{ J} = 16.3512 \times 10^{-19} \text{ J}$$

$$= \frac{16.3512 \times 10^{-19}}{1.6 \times 10^{-19}} \text{ eV} = 10.22 \text{ eV}$$

$$\Delta E = \frac{hc}{\lambda} = RhcZ^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

$$\frac{1}{\lambda} = RZ^2 \left(\frac{1}{1} - \frac{1}{4} \right) = RZ^2 \times \frac{3}{4}$$

Given, $\lambda = 3 \times 10^{-8} \,\mathrm{m}$

$$\therefore \frac{1}{3 \times 10^{-8}} = 1.0967 \times Z^2 \times \frac{3}{4} \times 10^7$$

$$\therefore Z^2 = \frac{10^8 \times 4}{3 \times 3 \times 1.0967 \times 10^7} = \frac{40}{9 \times 1.0967} \approx 4 \quad \therefore Z = 2$$

So, it corresponds to He⁺ which has 1 electron like hydrogen.

44. To calculate the energy required to remove electron from atom, $n = \infty$ is to be taken.

Energy of an electron in the n^{th} orbit of hydrogen is given by

$$E = -21.7 \times 10^{-12} \times \frac{1}{n^2}$$
 ergs

$$\therefore \Delta E = -21.7 \times 10^{-12} \left(\frac{1}{2^2} - \frac{1}{\infty^2} \right)$$

$$= -21.7 \times 10^{-12} \left(\frac{1}{4} - 0 \right) = -21.7 \times 10^{-12} \times \frac{1}{4}$$

$$= -5.42 \times 10^{-12} \text{ ergs}$$

Now we know that $\Delta E = hv$

$$\therefore \quad \Delta E = \frac{hc}{\lambda} \quad \left(\because v = \frac{c}{\lambda}\right) \quad \text{or} \quad \lambda = \frac{hc}{\Delta E}$$

Substituting the values, $\lambda = \frac{6.627 \times 10^{-27} \times 3 \times 10^{10}}{5.42 \times 10^{-12}}$

$$= 3.67 \times 10^{-5}$$
 cm

45. Let the % of isotope with At. wt. 10.01 = x \therefore % of isotope with At. wt. 11.01 = (100 - x)

At. wt. of boron =
$$\frac{x \times 10.01 + (100 - x) \times 11.01}{100}$$

$$\Rightarrow 10.81 = \frac{x \times 10.01 + (100 - x) \times 11.01}{100} : x = 20$$

Hence, % of isotope with At. wt. 10.01 = 20% \therefore % of isotope with At. wt. 11.01 = 100 - 20 = 80%.

Topic-2: Advancement Towards Quantum Mechanical Model of Atom

1. (a) According to de-Broglie's equation

$$\lambda = \frac{h}{p} = \frac{h}{mv}$$

Given,
$$h = 6.6 \times 10^{-34} \text{ Js}, m = 200 \times 10^{-3} \text{ kg}$$

$$v = \frac{5}{60 \times 60} \text{ m/s } \lambda = \frac{6.6 \times 10^{-34}}{200 \times 10^{-3} \times 5/(60 \times 60)}$$

$$= 2.38 \times 10^{-10} \text{ m}$$

- 2. (d) As packet of energy equal to hv; as wave having frequency v.
- 3. (30) $p = \frac{h}{\lambda} \Rightarrow \frac{6.6 \times 10^{-34} \text{ kgm}^2 / \text{s}^2}{330 \times 10^{-9} \text{ m}}$

$$= \frac{4 \times 10^{-3} \text{ kg mol}^{-1}}{6 \times 10^{23} \text{ mol}^{-1}} \times v \ (p = m \times v)$$

v = 0.3 m/s = 30 cm/s

4. (5) Since,

$$\lambda = \frac{h}{mV} = \frac{h}{\sqrt{2MK.E}} \text{ (since K.E.} \propto T) \implies \lambda \propto \frac{1}{\sqrt{MT}}$$

For two gases,

$$\frac{\lambda_{\text{He}}}{\lambda_{\text{Ne}}} = \sqrt{\frac{M_{\text{Ne}}T_{\text{Ne}}}{M_{\text{He}}T_{\text{He}}}} = \sqrt{\frac{20}{4} \times \frac{1000}{200}} = 5$$

- 5 orbitals
- 6. Heisenberg, de-Broglie
- 7. (a, b, c)
 - (a) Uncertainty principle rules out existence of definite paths or trajectories of electron and other similar particles.

So, option (a) is correct.

(b) Shell or orbit more near to nucleus has less energy than far away.

So, option (b) is also correct.

(c)
$$E = -13.6 \frac{Z^2}{n^2} \text{ eV/atom}$$

So, n = 1 has most negative energy. So, option (c) is also correct.

(d)
$$V_e = V_0 \times \frac{Z}{n}$$

When n increase velocity decreases. So, option (d) is incorrect.

8. For hydrogen atom, Z = 1, n = 1

$$v = 2.18 \times 10^6 \times \frac{Z}{n} \text{ms}^{-1} = 2.18 \times 10^6 \text{ms}^{-1}$$

de Broglie wavelength,

$$\lambda = \frac{h}{mv} = \frac{6.626 \times 10^{-34}}{9.1 \times 10^{-31} \times 2.18 \times 10^{6}}$$
$$= 3.34 \times 10^{-10} \text{ m} = 3.3 \text{ Å}$$
For $2p, l = 1$

$$\therefore \quad \text{Orbital angular momentum} = \sqrt{l(l+1)} \frac{h}{2\pi} = \sqrt{2} \frac{h}{2\pi}$$

9.
$$\lambda = \frac{h}{mu} = \frac{6.627 \times 10^{-34}}{0.1 \times 100}$$

or $\lambda = 6.627 \times 10^{-35} \text{ m} = 6.627 \times 10^{-25} \text{Å}$

10. $\psi_{2s}^2 = \text{probability of finding electron within } 2s \text{ sphere}$ $\psi_{2s}^2 = 0 \text{ (at node)}$

(: probability of finding an electron is zero at node)

$$\therefore 0 = \frac{1}{32\pi} \left(\frac{1}{a_0}\right)^3 \left(2 - \frac{r_0}{a_0}\right)^2 \cdot e^{-\frac{2r_0}{a_0}}$$

(Squaring the given value of ψ_{2s})

or
$$\left[2 - \frac{r_0}{a_0}\right] = 0$$
; $\therefore 2 = \frac{r_0}{a_0}$; $2a_0 = r_0$

Topic-3: Quantum Mechanical Model of Atom

- 1. (a) Number of radial nodes = (n-l-1)For 3s: n = 3, l = 0 (Number of radial node = 2) For 2p: n = 2, l = 1 (Number of radial node = 0)
- 2. (c) Only two e^- can exist in the same orbital.
- 3. (d) The quantum numbers +1/2 and -1/2 for the electron spin can represent any one among clockwise or anticlockwise spin direction. But if one value represents clockwise spin then the other value will represent anticlockwise spin.
- **4. (b)** $3d^{5}4s^{1}$ system is more stable than $3d^{4}4s^{2}$, hence former is the ground state configuration.
- 5. (a) p_x orbital being dumbell shaped, have number of nodal planes = 1, in yz plane. The electron density is only along x-axis (xy and zx planes), thus, in yz-plane, there will be zero electron density.

- 6. (a) The two guiding rules to arrange the various orbitals in the increasing energy are:
 - (i) Energy of an orbital increases with increase in the value of n + l.
 - (ii) Of orbitals having the same value of n + l, the orbital with lower value of n has lower energy.

Thus, for the given orbitals, we have

(i)
$$n+l=4+1=5$$

(ii)
$$n+l=4+0=4$$

(iii)
$$n+l=3+2=5$$
 (iv) $n+l=3+1=4$

(iv)
$$n+l=3+1=4$$

Hence, the order of increasing energy is (iv) < (ii) < (iii) < (i)

Angular momentum =
$$\sqrt{l(l+1)} \left(\frac{h}{2\pi}\right)$$

For d orbital, l=2.

Hence,
$$L = \sqrt{2(2+1)} \left(\frac{h}{2\pi} \right) = \sqrt{6} \left(\frac{h}{2\pi} \right)$$

8. **(b)** Orbital angular momentum
$$(mvr) = \frac{h}{2\pi} \sqrt{l(l+1)}$$

For 2s orbital, l (azimuthal quantum number) = 0 : Orbital angular momentum = 0.

9. (c) Total nodes =
$$n-1$$

No. of radial nodes =
$$n - l - 1$$

No. of angular nodes =
$$l$$

For
$$3p$$
 sub-shell, $n = 3$, $l = 1$

$$\therefore$$
 No. of radial nodes = $n - l - 1 = 3 - 1 - 1 = 1$

$$\therefore$$
 No. of angular nodes = $l = 1$

10. (c) Electronic configuration of chlorine is [Ne] $3s^2$, $3p^5$:. Unpaired electron is found in 3p sub-shell.

$$n = 3, l = 1, m = 1$$

11. (a) Exactly half filled orbitals are more stable than nearly half filled orbitals.

Cr (At. no. 24) has configuration [Ar]
$$3d^5$$
, $4s^1$.

- 12. (c) Configuration ns², np⁵ means it requires only one electron to attain nearest noble gas configuration. So, it will be most electronegative element among given choices.
- (b) According to Aufbau principle, the orbital of lower energy (2s) should be fully filled before the filling of orbital of higher energy starts.
- 14. (c) If $l=2, m \neq -3, m$ will vary from -2 to +2. i.e. possible values of m are -2, -1, 0, +1 and +2.
- **15.** (a) Rb has the configuration : $1s^2 2s^2p^6 3s^2p^6d^{10} 4s^2p^6$ $5s^1$; so n = 5, l = 0, m = 0 and $s = +\frac{1}{2}$ is correct set of quantum numbers for valence shell electron of Rb.
- (d) One p-orbital can accommodate up to two electrons with opposite spin while p-subshell can accommodate upto six electrons.
- (a) The principal quantum number (n) is related to the size of the orbital (n = 1, 2, 3....)
- (3) In one electron system, all orbitals of a shell are degenerate.

H 1
$$\rightarrow$$
 1 \rightarrow 1 \rightarrow 1 \rightarrow 3 degenerate orbitals

atom 1s G.S. \rightarrow 1 \rightarrow 3 \rightarrow 3 \rightarrow 3 \rightarrow 3 \rightarrow 3 \rightarrow 3 \rightarrow 6 \rightarrow 6 \rightarrow 6 \rightarrow 6 \rightarrow 6 \rightarrow 6 \rightarrow 7 \rightarrow 7 \rightarrow 8 \rightarrow 8 \rightarrow 9 degenerate orbitals

In case of many electron system, different orbitals of a shell are non-degenerate. Hence, in the second excited state, only three p-orbitals (2p) are degenerate.

19. (6) $|m_i| = 1$ means m_i can be +1 and -1.

For n = 4, the total number of possible orbitals are:

Thus, total number of orbitals having $|m_l| = 1$ is 6. The number of electrons with s = -1/2 is 6.

20.

Maximum number of orbitals when n = 3 is $n^2 = 3^2 = 9$

- :. Number of electrons with $m_s = -\frac{1}{2}$ will be 9.
- **21.** (10) For n = 3 and l = 2 (i.e., 3d orbital), the values of m varies from -2 to +2, i.e. -2, -1, 0, +1, +2 and for each 'm' there are 2 values of 's', i.e. $+\frac{1}{2}$ and $-\frac{1}{2}$.
 - :. Maximum no. of electrons in all the five d-orbitals is 10.
- 4s1, 3d5;

The electronic configuration of Cr is: $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$,

- :. Outermost electronic configuration is 3d5, 4s1.
- 23. orientation in space
- antiparallel; or opposite
- False: The orbital $3d_{x^2-y^2}$ lie along X and Y axis where electron density is maximum.
- True: In case of hydrogen (single electron system), energy of electron depends only on the principal quantum number. Thus, 4s is in higher energy level than 3d.
- False: The outer electronic configuration of the ground state chromium atom is $3d^54s^1$, as half filled orbitals are more stable than nearly half filled orbitals.
- 28. (a, c) Given, azimuthal quantum no. (l) = 2 (d-subshell) Magnetic quantum no.(m) = 0(zero), which is for d_{2} 2

$$E = -13.6 \frac{z^2}{n^2} = -13.6 \times \frac{2^2}{n^2} = -3.4$$

$$13.6 \times \frac{2^2}{n^2} = 3.4$$

$$n^2 = 4^2 \Rightarrow n = 4$$

Radial node =
$$n - l - 1 = 4 - 2 - 1 = 1$$

Angular node =
$$l = 2$$

Wave function corresponds to $\psi_{4,2,0}$. It represents 4d_{z2}-orbital which has only one radial node and two angular nodes. It experiences nuclear charge of 2e units.

- 29. (a, d) According to Hund's rule pairing of electrons starts only when each of the orbital in a sub shell has one electron each of parallel spin.
 - :. (a) and (d) are correct ground state electronic configurations of nitrogen atom in ground state.
- 30. (a, b, c)
 - (a) $_{24}\text{Cr} = 1s^2, 2s^22p^6, 3s^23p^63d^5, 4s^1 = [\text{Ar}] 3d^5, 4s^1$
 - (b) For magnetic quantum number (m), negative values are possible.

For s - subshell, l = 0, hence m = 0for p - subshell, l = 1, hence m = -1, 0, +1

- (c) $_{47}\text{Ag} = 1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^{10}, 4s^2 4p^6 4d^{10}, 5s^1$ Hence, 23 electrons have a spin of one type and 24 of the opposite type.
- (d) Oxidation state of N in HN_3 is -1/3.
- 31. (c) No. of radial nodes = n l 1, For 2s orbital, n = 2, l = 0. \therefore No. of radial nodes = 2 0 1 = 1. The plotted graph is correct for 2s-orbital, as wave function changes its sign at node.

32. (a) E.C. of H: $1s^1$; for 1s orbital

$$\psi_{n,l,m} \propto \left(\frac{Z}{a_0}\right)^{3/2} e^{-(Zr/a_0)}$$

For s-orbital, θ and ϕ cannot be a part of wave function expression. Hence, this is correct.

For 1s orbital of hydrogen like species: $E \propto -\frac{1}{n^2}$

Then,
$$E_4 - E_2 = \left(\frac{1}{2}\right)^2 - \left(\frac{1}{4}\right)^2 = \frac{3}{16}$$

$$E_6 - E_2 = \left(\frac{1}{2}\right)^2 - \left(\frac{1}{6}\right)^2 = \frac{8}{36}$$

$$(E_4 - E_2) = \frac{27}{32} \times (E_6 - E_2)$$

- 33. (c) In the wave function (ψ) expression for 1s-orbital of He⁺, there should be no angular part (θ) .
- 34. (A)-(q); (B)-(p,q,r,s); (C)-(p,q,r); (D)-(p,q,r)
 - (A) Orbital angular momentum $L = \sqrt{l(l+1)} \frac{h}{2\pi}$, i.e., L depends on azimuthal quantum number only.

- (B) To describe a hydrogen like one-electron wave function, three quantum numbers n, l and m are required. Further, to obey Pauli principle, fourth quantum number s is also required.
- (C) To define size, shape and orientation of atomic orbitals, n, l and m are required respectively.
- (D) Probability density (ψ^2) of an electron can be determined from the value of n, l and m.
- 35. (A) (r); (B) (q); (C) (p); (D) (s)

(A)
$$\frac{V_n}{K_n} = \frac{-Kze^2/r}{Kze^2/2r} = -2$$
; where $K = \frac{1}{4\pi\epsilon_0}$

(B)
$$r_n = \frac{n^2 h^2 \varepsilon_0}{\pi m Z e^2}, E_n = \frac{m e^4}{8 \varepsilon_0^2 h^2 n^2}$$

$$\Rightarrow E_n \propto \frac{1}{n^2} \propto \frac{1}{r_n} \Rightarrow r_n \propto \frac{1}{E_n}$$

$$\Rightarrow r_n \propto (E_n)^{-1} \Rightarrow x = -1$$

(C) Angular momentum of electron in lowest (1s) orbital

$$=\sqrt{l(l+1)}\frac{h}{2\pi}=\sqrt{0(0+1)}\frac{h}{2\pi}=0;$$

(D)
$$r_n = \frac{a_0 n^2}{Z} \Rightarrow \frac{1}{r_n} \propto Z^1 \Rightarrow y = 1$$

For 36-38 The spherically symmetric state S_1 of Li^{2+} with one radial node is 2s. Upon absorbing light, the ion gets excited to state S_2 , which also has one radial node. The energy of electron in S_2 is same as that of H-atom in its ground state.

$$\therefore E_n = \frac{Z^2}{n^2} E_1 \text{ where } E_1 \text{ is the energy of H-atom in the}$$

ground state =
$$\frac{(3)^2 E_1}{n^2}$$
 for Li²⁺

$$E_n = E_1 \implies n = 3$$

:. State S_2 of Li²⁺ having one radial node is 3p. Orbital angular momentum quantum number of 3p is 1.

Energy of state $S_1 = \frac{(3)^2}{(2)^2} E_1 = 2.25 E_1$

- 36. (b) 37. (c) 38. (b)
- 39. Ground state electronic configuration of Si

In a subshell, single e occupied orbitals must have parallel spins.