0166

SET -

Total No. of Questions - **37** Total No. of Printed Pages - **4**

Regd. No.

Part - III MATHEMATICS, Paper - IA

(English Version)

MODEL QUESTION PAPER

(For the Academic year 2021-22 only)

Time: 3 Hours Max. Marks: 75

Note: This question paper consists of three section A, B and C.

Section - A

Very short answer type questions.

- (i) Answer ANY TEN questions.
- (ii) Each question carries 2 marks.

 $10 \times 2 = 20$

- 1. If $A = \left\{0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}\right\}$ and $F : A \rightarrow B$ is a surjection defined by $f(x) = \cos x$, then find B.
- 2. Find the domain of the real valued function $f(x) = \frac{1}{\log(2-x)}$.
- 3. If $A = \begin{bmatrix} 2 & 3 & -1 \\ 7 & 8 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 & 1 \\ 2 & -4 & -1 \end{bmatrix}$ then find A+B.
- 4. If $A = \begin{bmatrix} i & 0 \\ 0 & i \end{bmatrix}$, find A^2 .
- 5. If $A = \begin{bmatrix} 2 & -4 \\ -5 & 3 \end{bmatrix}$, then find A+A' and AA'.

- 6. If $A = \begin{bmatrix} 2 & 4 \\ -1 & k \end{bmatrix}$ and $A^2 = 0$, then find the value of k.
- 7. if $\overline{a} = 2\overline{i} + 5\overline{j} + \overline{k}$ and $\overline{b} = 4\overline{i} + m\overline{j} + n\overline{k}$ are collinear, then find m and n.
- 8. Find the vector equation of the line passing through the point $2\bar{i} + 3\bar{j} + \bar{k}$ and parallel to the vector $4\bar{i} 2\bar{j} + 3\bar{k}$.
- 9. Let $\overline{a} = 2\overline{i} + 4\overline{j} 3\overline{k}$, $\overline{b} = \overline{i} + \overline{j} + \overline{k}$ and $\overline{c} = \overline{j} + 2\overline{k}$, find the unit vector in the opposite direction of a + b + c.
- 10. If $\overline{a} = \overline{i} + 2\overline{j} 3\overline{k}$ and $\overline{b} = 3\overline{i} \overline{j} + 2\overline{k}$ then show that $\overline{a} + \overline{b}$ and $\overline{a} \overline{b}$ are perpendicular to each other.
- 11. If |p| = 2, |q| = 3 and $(p,q) = \frac{\lambda}{6}$, then find $|p \times q|^2$.
- 12. Prove that $\frac{\cos 9^{\circ} + \sin 9^{\circ}}{\cos 9^{\circ} \sin 9^{\circ}} = \cot 36^{\circ}$.
- 13. Find the period of the function defined by $f(x) = \tan(x + 4x + 9x + \dots + n^2x)$.
- 14. If $\sinh x = \frac{3}{4}$, find $\cosh(2x)$ and $\sinh(2x)$.
- 15. If $\cosh x = \sec \theta$, then prove that $\tanh^2 \frac{x}{2} = \tan^2 \frac{\theta}{2}$.

Section - B

Short answer type questions.

 $5\times4=20$

- (i) Answer any FIVE questions.
- (ii) Each question carries four marks.
- 16. If $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $E = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, then show that $(aI + bE)^3 = a^3I + 3a^2bE$ where 'I' is unit matrix of order 2.
- 17. Show that $A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 2 & 3 \\ 1 & 1 & 2 \end{bmatrix}$ is non-singular and find A^{-1} .
- 18. If $A = \begin{bmatrix} 0 & 1 & 2 \\ 2 & 3 & 4 \\ 4 & 5 & 6 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$, find B A and 4A 5B.

- 19. Let ABCDEF be regular hexagone with centre O, show that $\overline{AB} + \overline{AC} + \overline{AD} + \overline{AE} + \overline{AF} = 3\overline{AD} = 6\overline{AO}$.
- 20. Find the vector equation of the plane passing through the points $\bar{i} 2\bar{j} + 3\bar{k}$, $-5\bar{j} \bar{k}$ and $-3\bar{i} + 5\bar{j}$.
- 21. If the vectors $2\overline{i} + \lambda \overline{j} \overline{k}$ and $4\overline{i} 2\overline{j} + 2\overline{k}$ are perpendicular to each other, find λ .
- 22. Find the unit vector perpendicular both $\bar{i} + \bar{j} + \bar{k}$ and $2\bar{i} + \bar{j} + 3\bar{k}$.
- 23. If A is not an integral multiple of $\frac{\pi}{2}$, then prove that
 - (i) tanA + cotA = 2 cosec2A
 - (ii) $\cot A \tan A = 2 \cot 2A$
- 24. Find the range of $7\cos x 24\sin x + 5$.
- 25. Prove that $\frac{\cosh x}{1-\tanh x} + \frac{\sinh x}{1-\coth x} = \sinh x + \coth x$ for $x \ne 0$.
- 26. Prove that $\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2} = \frac{s^2}{\Lambda}$.
- 27. If $\sin \theta = \frac{a}{b+c}$ then show that $\cos \theta = \frac{2\sqrt{bc}}{b+c} \cos \frac{A}{2}$.

Section - C

Long Answer type questions.

 $5 \times 7 = 35$

- (i) Answer any FIVE questions.
- (ii) Each question carries seven marks.
- 28. If $f = \{(1, 2), (2, -3), (3, -1)\}$ then find (i) 2f (ii) 2+f (iii) f^2 (iv) \sqrt{f}
- 29. If $A = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & -1 \\ 3 & -1 & 1 \end{bmatrix}$, then find $A^3 3A^2 A 3I$, where I is unit matrix of order 3.
- 30. Solve the following system of equations by Cramer's rule x + y + z = 1, 2x + 2y + 3z = 6, x + 4y + 9z = 3.
- 31. Solve the following system of equations by Matrix Inversion method 2x-y+3z=9, x+y+z=6, x-y+z=2.

- 32. Find the vector equation of the plane passing through points $4\bar{i} 3\bar{j} \bar{k}$, $3\bar{i} + 7\bar{j} 10\bar{k}$ and $2\bar{i} + 5\bar{j} 7\bar{k}$ and show that the point $\bar{i} + 2\bar{j} 3\bar{k}$ lies in the plane.
- 33. If $\overline{a} = 7\overline{i} 2\overline{j} + 3\overline{k}$, $\overline{b} = 2\overline{i} + 8\overline{k}$ and $\overline{c} = \overline{i} + \overline{j} + \overline{k}$, then compute $\overline{a} \times \overline{b}$, $\overline{a} \times \overline{c}$ and $\overline{a} \times (\overline{b} + \overline{c})$. Verify whether the cross product is distributive over vector addition.
- 34. If [b c d] + [cad] + [abd] = [abc]. Then show that the points with position vectors a, b, c and d are coplanar.
- 35. If A, B, C are angles in a triangle, then prove that $sinA + sinB sinC = 4 sin \frac{A}{2} sin \frac{B}{2} cos \frac{C}{2}.$
- 36. If $\cot \frac{A}{2} : \cot \frac{B}{2} : \cot \frac{C}{2} = 3 : 5 : 7$, then show that a:b:c = 6:5:4.
- 37. If a = 13, b = 14, c = 15, show that $R = \frac{65}{8}$, r = 4, $r_1 = \frac{21}{2}$, $r_2 = 12$ and $r_3 = 14$.
