

Continuity

Basic Level

If the function $f(x) = \begin{cases} 5x - 4 & \text{, if } 0 < x \le 1 \\ 4x^2 + 3bx, \text{ if } 1 < x < 2 \end{cases}$ is continuous at every point of its domain, then the value of *b* is 1. [Rajasthan PET 2000] (a) -1 (c) 1 (d) None of these If $f(x) = \begin{cases} \frac{\log(1+2ax) - \log(1-bx)}{x}, & x \neq 0\\ k & x = 0 \end{cases}$ is continuous at x = 0, then k equals 2. [Rajasthan PET 1998] (b) 2a - b(c) b - 2a(a) 2a + b(d) b+aIf $f(x) = \begin{cases} x & \text{, when } 0 \le x < 1 \\ k - 2x & \text{, when } 1 \le x \le 2 \end{cases}$ is continuous at x = 1, then value of *k* is 3. [Rajasthan PET 1993] (a) 1 (b) -1 (c) 3 (d) 2 If $f(x) = \begin{cases} x \ , \ x < 0 \\ 1 \ , \ x = 0 \\ x^2 \ , \ x > 0 \end{cases}$, then true statement is 4. [Rajasthan PET 1992; DCE 2001] (b) $\lim_{x \to 0} f(x) = 0$ (c) f(x) is continuous at x = 0 (d) $\lim_{x \to 0} f(x)$ does not exist (a) $\lim_{x \to 0} f(x) = 1$ If $f(x) = \frac{x-a}{\sqrt{x}-\sqrt{a}}$ is continuous at x = a, then f(a) equals 5٠ (a) \sqrt{a} (b) 2√*a* (c) a (d) 2a If f(x) = |x - b|, then function 6. [Roorkee 1984] (a) Is continuous $\forall x$ (b) Is continuous at $x = \infty$ (c) Is discontinuous at x = b (d) None of these If $f(x) = \begin{cases} \frac{x^4 - 16}{x - 2}, & \text{when } x \neq 2\\ 16, & \text{when } x = 2 \end{cases}$ then 7. (a) f(x) is continuous at x = 2(b) f(x) is discontinuous at x = 2(c) $\lim_{x \to 2} f(x) = 16$ (d) None of these In the following discontinuous function is 8. [Rajasthan PET 1984] (c) $\frac{1}{1-2r}$ (d) $\frac{1}{1+r^2}$ (b) x^2 (a) $\sin x$ If $f(x) = \begin{cases} x^2 & \text{, when } x \le 1 \\ x + 5 & \text{when } x > 1 \end{cases}$ then 9. [MP PET 1996]

(a) f(x) is continuous at x = 1(b) f(x) is discontinuous at x = 1(c) $\lim_{x \to 1} f(x) = 1$ (d) None of these If $f(x) = \begin{cases} 1+x, \text{ when } x \le 2\\ 5-x, \text{ when } x > 2 \end{cases}$ then 10. (a) f(x) is continuous at x=2 (b) f(x) is discontinuous at x=2(c) f(x) is discontinuous at (d) None of these x = 0The point of discontinuity of the function $f(x) = \frac{1 + \cos 5x}{1 - \cos 4x}$ is 11. (a) x = 0(b) $x = \pi$ (c) $x = \pi/2$ (d) All of these 12. Function $f(x) \neq x$ is [Rajasthan PET 1992] (c) Continuous (a) Discontinuous at x = 0(b) Discontinuous at x = 1at all points (d) Discontinuous at all points If $f(x) = \begin{cases} x^2 & \text{, when } x \neq 1 \\ 2 & \text{, when } x = 1 \end{cases}$ then (a) $\lim_{x \to 1} f(x) = 2$ (b) f(x) is continuous at x = 1 (c) 13. (a) $\lim_{x \to 1} f(x) = 2$ f(x) is discontinuous at x = 1 (d) None of these Let $f(x) = \begin{cases} \frac{\sin \pi x}{5x} , x \neq 0 \\ k , x = 0 \end{cases}$. If f(x) is continuous at x = 0, then k = 014. (a) $\frac{\pi}{5}$ (b) $\frac{5}{\pi}$ (c) 1 (d) 0 Function f(x) = x - |x| is 15. (a) Discontinuous at x = 0Discontinuous at x = 1(c) Continuous (b) at all points (d) Discontinuous at all points 16. Function f(x) = x + |x| is (a) Continuous at all points (b) Discontinuous at x = 0(c) Discontinuous at x = 1(d) Discontinuous at all points If f(x) is continuous function and g(x) is discontinuous function, then correct statement is 17. (a) f(x) + g(x) is continuous function (b) f(x) - g(x) is continuous function (c) f(x) + g(x) is discontinuous function (d) f(x).g(x) is discontinuous function Function $f(x) = \begin{cases} -1 & \text{, when } x < -1 \\ -x & \text{, when } -1 \le x \le 1 \end{cases}$ is continuous 18. [Rajasthan PET 1986] 1. when x > 1(a) Only at x = 1(b) Only at x = -1 (c) At both x = 1 and x = -1(d) Neither at x=1 nor at x = -1Advance Level

Functions, Limits, Continuity and

19. Let $f(x) = \frac{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}{x}$ the value which should be assigned to f at x = 0 so that it is continuous everywhere is [MP PET 1992]

(a)
$$\frac{1}{2}$$
 (b) -2 (c) 2 (d) 1

20. The value of f(0) so that the function $f(x) = \frac{\sqrt{1+x} - (1+x)^{1/3}}{x}$ becomes continuous is equal to

110 Functions, Limits, Continuity and

	(a) $\frac{1}{6}$	(b) $\frac{1}{4}$	(c) 2	(d) $\frac{1}{3}$	
21.	If $f(x) = \begin{cases} \frac{ x-a }{ x-a } & \text{wh} \\ 1 & \text{wh} \end{cases}$	en $x \neq a$ then en $x = a$			[AI CBSE 1983]
	(a) $f(x)$ is continu	ous at $x=a$ (b)	f(x) is discontinuo	bus at $x = a$ (c) $\lim_{x \to a} f(x) = 1$	(d) None of
these	2			$x \rightarrow a$	
22.	If $f(x) = \begin{cases} \frac{x}{e^{1/x} + 1}, \\ 0, \end{cases}$	when $x \neq 0$ then when $x = 0$			[BIT Rnchi 1999]
	(a) $\lim_{x \to 0^+} f(x) = 1$	(b) $\lim_{x \to 0^{-}} f(x) = 1$	(c) $f(x)$ is continu	x = 0 (d) None of $x = 0$	of these
23.	If the function $f(x)$	$=\begin{cases} \frac{k\cos x}{\pi - 2x}, \text{ when } x \neq \frac{\pi}{2}\\ 3, \text{ when } x = \frac{\pi}{2} \end{cases} \text{ be c}$	continuous at $x = \frac{\pi}{2}$, then $k=$	=	
	(a) 3	(b) 6	(c) 12	(d) None c	of these
24.	A function $f(x)$ is a	defined in [0,1] as follows	$f(x) = \begin{cases} x, \text{ if } x \text{ is rational} \\ 1 - x, \text{ if } x \text{ is irrational} \end{cases}, \ 1$	then correct statement i	S
	(a) $f(x)$ is continu	ous at $x = 0$	(b)	f(x) is cont	tinuous at $x = 1$
	(c) $f(x)$ is continu	ous at $x = \frac{1}{2}$	(d)	f(x) is	everywhere
disco	ontinuous	2			
25.	If $f(x) = \begin{cases} \frac{e^{1/x} - 1}{e^{1/x} + 1}, \\ 1, \\ x \end{cases}$	$x \neq 0$, then at $x = 0, f(x)$ is $x = 0$		[B	ITS (Mesra) 1998]
	(a) Continuous	(b) Left continuou	s (c) Right continuo	ous (d) None c	of these
26.	The function $f(x) =$	$= \begin{cases} x+2 , & 1 \le x \le 2 \\ 4 , & x = 2 \end{cases}$ is cont	inuous		[DCE 1999]
		3x-2, x>2			
	(a) $x = 2$ only	(b) $x \le 2$	(c) $1 \le x$	(d) None o	of these
27.	If $f(x) = \begin{cases} 1, x \\ 2\sin\frac{2x}{9}, \end{cases}$	when $0 < x \le \frac{3\pi}{4}$ then when $\frac{3\pi}{4} < x < \pi$			[IIT 1991]
	(a) $f(x)$ is continu	ous at $x = 0$	(b)	f(x) is cont	tinuous at $x = \pi$
	(c) $f(x)$ is continu	ous at $x = \frac{3\pi}{4}$	(d)	f(x) is d	liscontinuous at
$x = \frac{3}{2}$	$\frac{\pi}{4}$				
28.	If $f(x) = \begin{cases} 1/2 - x , & 0 \\ 0 & , \\ 1/2 & , \\ 3/2 - x , & 1 \\ 1 & , \end{cases}$	0 < x < 1/2 x = 0 x = 1/2, then false states 1/2 < x < 1 x = 1	ement is [Raj	asthan PET 1984 (Similar	to MP PET 1996)]
	(a) $f(x)$ is discont	inuous at x = 0	(b)	f(x) is cont	tinuous at $x = \frac{1}{2}$
	(c) $f(x)$ is discont	inuous at $x = 1$	(d)	f(x) is cont	tinuous at $x = \frac{1}{4}$

29.
$$f(x) = \frac{\sqrt{1+px}}{x}, -1 \le x \le 0 = \frac{2x+1}{x-2}, 0 \le x \le 1$$
 is continuous in the interval [-1,1] then *p* equals
(a) -1 (b) $-\frac{1}{2}$ (c) $\frac{1}{2}$ (d) 1
30. The function $f(x) - \int_{a}^{a} (1 \le x \le \sqrt{2})$ is continuous for $0 \le x < \infty$, then the most suitable values of a and b

$$\int_{a}^{b} (2b^{2} - 4b)/x^{2}, \sqrt{2} \le x < \infty$$
are
$$[BTT Ranchi 1984]$$
(a) $a - 1.b = -1$ (b) $a - 1.b = 1 + \sqrt{2}$ (c) $a - 1.b = -1$ (d) None of these
31. Let $f(x) = \left\{\frac{x^{2} + x^{2} - 16x - 20}{(x-2)^{2}}, \frac{11}{x} \le 2 \\ k \\ (1 \le 2)^{2} \\ (x-2)^{2} \\ (x-2$

112 Functions, Limits, Continuity and

41.	Function $f(x) = \left(1 + \frac{x}{a}\right)$	$\left(\frac{1}{x}\right)^{1/x}$ is continuous at x	= 0, if $f(0)$ equals							
	(a) e^{a}	(b) e^{-a}	(c) 0	(d) $e^{1/a}$						
42.	Let [.] denote the gr	eatest integer function	and $f(x) = [\tan^2 x]$. Then	[IIT 1993]						
	(a) $\lim_{x \to 0} f(x)$ does not	t exist	(b)	f(x) is continuous at $x = 0$						
	(c) $f(x)$ is not differ	rentiable at $x = 0$	(d) $f'(0) = 1$							
43.	The function $f(x) = \begin{cases} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	a, b are								
	(a) $\frac{\pi}{6}, \frac{\pi}{12}$	(b) $\frac{\pi}{3}, \frac{\pi}{6}$	(c) $\frac{\pi}{6}, -\frac{\pi}{12}$	(d) None of these						
44.	Let $f: R \to R$ be any function. Define $g: R \to R$ by $g(x) \neq f(x)$ for all x, Then g is [IIT 2000]									
	(a) Onto if <i>f</i> is onto		(b) One-one if <i>f</i> is one-one							
diffe	(c) Continuous if <i>f</i> i erentiable	s continuous	(d)	Differentiable if <i>f</i> is						
			++ +							

Assignment (Basic & Advance Level)																			
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
a	a	с	b	b	a,b	b	с	b	a	d	с	с	a	с	a	с	d	d	a
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
b	С	b	С	с	С	с	b	b	с	a	b	d	b	b	b	d	с	с	b
41	42	43	44																
d	b	с	с																