Chapter-2
Programming in 'C' Language
2.1 Array

When we have to make a list of 10 students then we have to declare 10 variables.
If the number of students increases then variables will be increased and the program will
be complex. In the 'C' language, the Array is used to solve this problem.

Array is a variable which can collect similar types of data. We have studied that
a variable can store only one value at a time. But some time, it is required where we use
similar and related data. It is typical to store all values in the different variables. So, a
variable can store all values. In this group, every value indicate by its index value. The
type of data can be char, int, float, double etc. If there are 50 students in the class then we
have to use an array named marks which can store all marks and it is known as marks[50].
The number 50 is written in the square bracket([]),that it shows, it is a group of 50
elements. Every element recognized by their index value. For example marks[8] means
the number is stored at position eight.

Example :
The ten elements of an array P[10] is as follows :
P[O], P[1], P[2], ... P[8], P[9]

2.1.1 Array Declaration

An array must be declared before it used in the program as same as the other
variables, three thing are declared in an array declaration :

1) Type of an Array
(i) Name of an array
(ii1) Capacity of an array (Number of Elements)

When we declare an array then the memory will be allotted according to the size
of the array. An array declares as follows :

< Type of array > < Name of array > < size >

(52

Example :
int marks[50] ;

Here, int marks[50] tells us that the size of marks is 50 and it can store integer
only.

2.1.2 Processing On Array

The processing on an array, is done on doing processing on each element. It is
required a loop for processing on an array. When a loop executes it processed all element.

Example :
for (1=0;i<10; i++)
scanf("%d",&A[i]) ;

In the above statements, it takes 10 inputs for an array. It will be clear from the
following example :

Program 1 : Write a 'C' language program to arrange 10 numbers.
#include<stdio.h>
#include<conio.h>

/*1t is C program to sort 10 numbers using selection sort. */

int main()

{
int A[10];
inti,j,temp;

printf("\nEnter Ten Values :\n");

for(i=0;i<10;i++)
scanf("%d",&Al[i]));

/* Sorting Algoritham */

for(i=0;1<9;i++)

for(j=i+1;j<10;j++)
(53)

if(A[i]) > A[jD

{
temp = Al[il;
Alil = Afjl;
Alj] = temp;
}

printf("\nThe Sorted Data are :\n");
for(i=0;i<10;i++)

printf("%d ", A[i]);

getch();
return O;
}
Result:

Enter Ten Values :
5194563747812 89 56

The Sorted Data are :

457 12 19 45 56 63 78 89
2.1.3 Type of Array :

Array are two types :

1. One Dimensional Array
2. Multi Dimensional Array
1. One Dimensional Array

The one dimensional array has one row or one column. For example , there are 50
students in the class and uses one dimensional array to store their marks. If the array
name is Marks then the values will be :

54)

Marks [0] = 77
Marks[1] = 55
Marks[2] = 67
Marks[3] = 65

Marks [4] = &9

Marks [47]= 78
Marks [48] = 48
Marks [49] = 52

2. Multi Dimensional Array

It is required most of the time when the data can not be stored in the single
dimensional array. For example, if there are 20 students in a class and store marks of five
subject of each student then we require a table having 20 row and 5 column.The multi
dimensional array is a kind of array which have two or more dimension. It is written as
follows :

<Type of array><Name of array>[Max size 1] [Max size 2]........... [Max size n]
If it is two dimensional array then two square bracket ([][])will be attached.
Example :

In the array A[5][5], its first element A[O][0], second element is A[0][1] and
similarly last element is A[4][4]. It has 5 row and 5 column. It is shown in figure 3.1.
0 1 2 3 4
9 6 16 24 61
16 72 95 97 55
49 57 40 45 25
29 64 5 18 2
10 12 98 59 26

Figure 3.1 : Array A[5][5]
(55)

B~ W o = O

2.1.4 Initialization of Multi Dimensional Array

The initialization of multi dimensional array is similar to one dimensional array.
Example :

int MAT([3][3]={0,1,2,3,4,5,6,7.,8,};

In The above initialization, the row and column are not shown separately. The
above array can also be initialized in row and column format.

int MAT[3][3]={ {0,1,2,} {3,4,5,} {6,7.8,} };

The values of first row will be enclosed in first bracket. The value of second and
third row will be enclosed in second and third bracket respectively. If the total values in
the bracket is less than the size of an array then remaining values will be automatically
initialized by zero.

Example :
int MAT[3][3] ={ {1,2,3,} {4,5,6,} };

The capacity of the array is 9 and there are 6 values in the bracket. So, remaining three
value will be zero.

The values of an array will be as following :
MATI[O0][0]=1 MAT[O][1]=2 MATI[0][2]=3
MATI[1][0]=4 MAT[1][1]=5 MAT[1][2]=6
MAT[2][0]=0 MAT[2][0]=0 MATI[2][2]=0
Program 2 : Write a 'C' language program to multiply two 3 x 3 matrices.
#include<stdio.h>
#include<conio.h>
main()
{
/*1t is C program to Multiply two 3 x 3 Matrix*/

/*Array C is initialized by Zero*/

(56)

inti,j,k,A[3](3],B[31[3],.C[3][3]={0};
/* Read Matrix A & B*/
printf("\nEnter Matrix A :\n");
for(i=0; i<3; i++)
for(j=0; j<3; j++)
scanf("%d",&A[i][j]);
printf("Enter Matrix B :\n");
for(i=0; i<3; i++)
for(j=0; j<3; j++)
scanf("%d",&Bl[i][j]);
/* Multiply Two Matrix A And B*/
for(i=0; i<3; i++)
for(j=0; j<3; j++)
for(k=0; k<3; k++)
Clill[j] += Alil[k] * BK][j];
printf("\nMultiply Matrix C :\n");
for(i=0; i<3; i++)
{
for(j=0; j<3; j++)
printf("%d ",C[i][j]);
printf("\n");
}

getch();

(67

Result :

Enter Matrix A :

123

321

684

Enter Matrix A :

145

621

538

Multiply Matrix C :

28 17 31

20 19 25

74 52 70

Program 3 : Write a 'C' language program to arrange 10 numbers.

#include<stdio.h>

#include<conio.h>

/*1t is C++ program to sort 10 numbers using Bubble sort.*/

int main()

{
/*Array A declare with initialization.*/
inta[10]={5,4,89,12,78,6,19,45,63,7};
inti,j,temp;
/* Sorting Algorithm™*/

for(i=0;i<9;i++)

(58)

for(j=0;j<9-i;j++)

if(alj] > alj+11)
{
temp = alj];
alj] = afj+11;
alj+1] = temp;
}

printf("\nThe Sorted Data are :\n");
for(i=0;i<10;i++)
printf("%d ",a[i]);
getch();
}
Result:
The Sorted Data are :
45671219 45 63 78 89
2.2 String

String is a group of characters. A string is defined as an array of character in the
'C' language. The group of character enclosed within double quotation then it is called
string constant.

Example :
" C is better than other language." /* It is string constant™®/
2.2.1 Declaration and Initialization of String Variable
A string is defined as an Array of char. String is defined as follows :
char <string name> [size]

The size is show the number of character in the string.

(59

Example :
char name[20];
char address[30];

In the above example, the array can store 20 and 30 characters. But it can store
19 and 29 characters because last character of the string should be a NULL character
(\0"). NULL char is the indication of end of string.

Here. it is remembered that if we are processed whole string at a time then the
NULL character automatically attached at the end of string. If we are processed a string
char by char then programmer must be remembered to store NULL char at the end of
string. Because in this case the compiler donot store NULL char. A string can be initialized
as follows :

name[20]="RAMSHANKAER";
name[zo]z{ ‘R','A','M','S|,'H','A','N','K‘,'E‘,'R', 4\01}’

In the above initialization, we have remembered that if a string is used to initialize
as a string constant then there is no need to assign NULL char otherwise a NULL char-
acter must be stored at the end of string. When we initialize a string then there is no need
to write size in the square bracket.

Example :
name[]="RAM SHANKER";

In the above example, we omit the size of array. The size of array will be fixed
according to the size of string constant. In the above example, the size of array will be 12.

2.2.2 Input a String

There are many methods to read or input a string. A string can be read through scanf()
function.

Example :
char name[20];
scanf("%s", name);

The ampersand (&) operator is not used with string variables because the name
of string itself denotes the address of the string. In the above method, it can read a string
upto the blank space. In the above scanf() function, gives an input "Ram Shanker" then it
stores "Ram" in the string variable. If we want to solve the above problem then we have

(60)

to change the control string for the string.
Example :
scanf("%[™Mn]", Name);

It read the string before the new line character (\n'). If we give an input and
press Enter key then "Ram Shanker" will be stored in the string. We can also read a string
char by char.

Example :
inti=-1;
char name[20], ch;
while(ch!="n")
{
ch=getchr();
name[i]=ch;
}
name[i]="\0" /*store NULL Char at end.*/
The above code can be written as follows with the help of for loop.
for(i=0; (name[i] = getchar())!="n"; i+ +);
name[i]=N\0";

In the above method, we can input a string upto the new line character. A library
function (gets()) is also available for inputting a string. It is also read a string upto the new
line character.

Example :
gets(name);
2.2.3 Print a string
A string can be printed with the help of function printf() and puts().

Example :

(61)

printf("%s", name);
OR
gets(name);
In the above both methods, the string will be print upto NULL character.
2.2.4 Library Function for string

'C' language includes library function for strings. Some of the important functions are
shown in the table 3.1.

Table 3.1 : String Functions(string.h)

Function Purpose

strcat() Concatenates two strings

stremp() Compare two strings

strepy() Copy one string over another string
strlen() Find the length of a string

strcat() Function :
The syntax of strcat() function is :
strcat(string1, string2);

The string] and string2 are character array. When the function strcat() will ex-
ecute then string2 will append at the end of string1. The string2 remain unchanged.

Example :
char st1[10]="Computer";
char st2[10]=" System";
strcat (stl, st2);
After execution, the string will be :
st1="Computer System";
st2="System";

(62)

The string st2 append at the end of string st1. It is remembered that first argument
must be a variable.

stremp() Function
The syntax of strcmp() function is :
n = stremp(string1, string2);
It compares two strings 'string1’ and 'string2' and gives the following result :
stringl == string2 The value of n will be zero.
stringl < string2 The value of n will be negative.
string2 > string2 The value of n will be positive.
Example :
strcmp("this","that");

In the above example, the string "this" is bigger because its first two characters
are same and third character 1' is bigger than character 'a' (ASCII value of i is 105 and a
is 97). A string called a bigger string if it ASCII value is higher then other string. And it
return the difference of the ASCII values. In the above example, it returns value 8(105- 97
= 8).

Example :
stremp ("Kapil"," Anish"); return —7
strcmp ("Mohan","Mohan"); return zero
stremp ("Anish","Anil"); return +7

The strempi() function is also used for comparing two strings which ignore the
case (upper and lower) of the string means both strings are same. The strcmp() function
make difference in both cases.

strepy() Function
The syntax of strcpy() function is :
strepy(string1, string2);

The string] must be a variable and string2 will be variable or constant. The
characters of the string2 will be copied into the stringl.

(63)

Example :
strcpy (State, "Rajasthan");
It will copy the string constant "Rajasthan" into the variable state.
strlen() Function
The syntax of strcpy() function is :

n = strlen(String);

It stores the string length (total character) in the variable 'n'. String may be vari-
able or constant.

Example :
n = strlen ("Rajasthan");
The value of n will be 10. It also count the NULL character.
2.2.5 Two Demensional String Array

If we want to store more than one string in an array then we have to use two
dimensional array. It is declared as follows :

char name [10][20];
In the above array, it can store 10 string and their length may be 20.
This string can be read as follows :
for (i= 0;i<10;i++)
scanf ("%s", nameli]);
/* or gets (nameli]);*/
And print as follows :
for (i= 0;i<10;i++)
printf ("%s", namel[i]);

/* puts (namel[i]);*/

(64)

Program 4 : Write a program to find whether a given string is Palindrome or not.
#include<stdio.h>
#include<conio.h>
#include<string.h>
main()
{

int m,n,flag=1;

char str[80];

clrscr();

printf("\nEnter a String :");

gets(str);

m=0;

n= strlen(str) - 1;

while(m <=n)

{

if(str[m] != str[n])

{
flag = 0;
break;
}
m++;
n--;
}
if(flag==1)

(65)

printf("\nString is Palindrome");
else
printf("\nString is not Palindrome");
getch();
return O;
}
2.3 Function
It is typical to write a large (complex) program. So, a 'C' language program is
divided into small parts. These small parts are completed a process. These all parts are

combined in a sequence that it solves a complex problem.

All high level languages have this provision that the name is given to the block and
written separately, when we require to call the block we can call it number of times. This
independent block is called subprogram or function.

Different program blocks are made for every problem.These blocks are called
function. Definition of the function can be written as follows :

'"" A function is a self contained program segment that is used for some specific
well defined task ."

Function has important roll in the 'C' language. We have already used scanf(),
printf() functions through main() function. In the 'C' language, functions are divided into
two parts.

2.3.1 main() function :

All 'C' program start their execution from the main() function. The main() func-
tion define as follows:

main()
{

statements;
}

This function is perfectly valid in 'C' language because main() does not return
any value but new compiler return int type value. If we donot want to return a value then

(66)

we have to use void key-word before the main() function.

Example :

void main()

{

statements;
}
Therefore, explicitly defines main() as matching one of the following prototypes.
int main()
void main()
int main (int argc, char * argv[])
void main (int argc, char * argv[])

If we are not used int or void keyword then it will return integer value. Similarly,

if the function does not specify return type value then it also return integer type value.

2.3.2 Advantages of Function

1.

2.

The function is divided into small parts so, the large program can be written easily.
A program can read and understand easily using function.

We can add a new function in the program, which can easily change the program.
The complex problem can easily be solved by the function.

The error can be found out easily by the function.

All statements, which are repeated in the program, are written in the form of function
s0, that it is not required to write repeatedly in main function. It reduces the size of the
program.

The complex program can easily be understood by using functions.

In the 'C' language, function is a subprogram which is use for special purpose.

In the 'C' language, a program has one or more functions. In the every program,

the main() function must write once and once only. The function will not return any value

(67)

to the user. There are many function which are already available in 'C' language. For
example, scanf(), pow() etc. Every function returns a value at a time. A user define
function is called using in the main() function. When a function calls in a main function
the control flow leave the current instruction and transfer to the function where it is
written. After execution of the function again it return to the instruction where control
flow leave the instruction. We can call a function several times in the main() function.

2.3.3 Types of Functions
Functions are divided into two parts :
1. Library Functions

2. User Defined Functions

1. Library Functions :

The function have defined in the language, are called library function. They can
use directly in the program. This facility is available in all high level language. It is very
useful to collect general function in the library. This is helpful to make large program.The
library function are shown in table 2.2. Library function - printf, scanf, sqrt, calloc, malloc,
starcat & many more.

Table 2.2 Library Function

S. No. Name of Purpose of Function Header file
Function name
1. getchar() returns the next character typed on the keyboard. stdio.h
2. putchar() outputs a single character to the screen. stdio.h
3. printf() outputs a single character to the screen. stdio.h
4. scanf() returns the next character typed on the keyboard. stdio.h
5. isdigit() returns non-0 if arg is digit O to 9 ctype.h
6. isalpha() returns non-0 if arg is a letter of the alphabet ctype.h
7. isalnum() returns non-0 if arg is a letter or digit ctype.h
8. islower() returns non-0 if arg is lowercase letter ctype.h
9. isupper() returns non-0 if arg is uppercase letter ctype.h
10. acos() returns arc cosine of arg math.h
11. sqrt() returns square root of num math.h
12. fabs() returns absolute value of num math.h

(68)

13. asin() returns arc sine of arg math.h

14. atan() returns arc tangent of arg math.h
15. cos() returns cosine of arg math.h
16. exp() returns natural logarithim e math.h

2. User Defined Functions

All type of library functions is not presented in the language which fulfil the re-
quirement of the user. Many times it is required that we have to execute group of state-
ment number of times and this type of function is not available in the library. Then we are
required User Define Functions. The functions, which are written according to the re-
quirement of the user, are called Use Defined Function (UDF). In a program, one or more
user define function can be made. The User define function can be written before or after
the main() function.

2.3.4 Declaration of Function and Definition a function
In the 'C' language, a user define function can be define as follows :

Return type Function Name (List of arguments)

{
Local Variabals
function body
Expressions

}

Function name is similar to an identifier. When a function calls, it executes ac-
cording to the statements are written in the function and it returns a value. This value
must have a data type. So, at the time of declaration, we define the return value type
which tell us the type of value to be return by the return expression. if we are not defined
the return type value then it return integer type value. A function can use more than one
return statement and it is not necessary to write the return statement at the end of the
function, it can be written anywhere in the function according to the requirement.

Program 5 : Write a 'C' program to find out smaller number out of two numbers using
function.

#include<stdio.h>

#include<conio.h>

(69)

/* It is C program to illustrate Function*/
/* It is use to find biggest number between two numbers*/
main() /* Main function */
{
int A,B,big; /*Local variable for main function*/
printf("\n Enter two number :");
scanf("%d %d",&A,&B);
big = fun_big(A,B); /*Function Call By Value*/
printf("The biggest number : %d",big);
getch();
}
/* Function return an integer value */

int fun_big(int C,int D)

{
if(C>D)
return(C);
else
return(D);
}
Result :

Enter two number : 45 85
The biggest number : 85
Enter two number : 105 85

The biggest number : 105

(70)

First, it executes main() function. When the control flow executes call statement
(fun_big()) in the main() function then it will execute the statements which are written in
it. When the control transfers from main() function to user define function then the values
written with the name of the function in the bracket also copied in the variables of the user
define function.

For example, when it complete the execution of the function then the control
return back to the main() function and executes the remaining statements in the main()
function.

The function where we call the user define function are called "Calling Function"
and the user define function which calls are called "Called Function".

2.3.5 Actual Parameters and Formal/Dummy Parameters

When we call user define function in the main() function then the values are
written with the name of function in the bracket are called actual parameter. The actual
parameter can be variables, constants, and addresses.

At the time of function definition the arguments are written in bracket, are called
Formal/Dummy Parameter.

When a user define function call then the actual parameters will be copied in the
formal parameters. It is remembered at the time of calling a function that the number of
actual parameters must be equal to the formal parameters.

Example :

inta;

main ()

{
intx,y;
int z;
printf("Enter the first number\n");
scanf("%d",&x);
printf("Enter the second number\n");
scanf("%d",&y);

z = mul (x,y); /*Actual parameters (x, y)*/

(71)

printf("%d\n",z);

}

int mul(int a, int b)/* Formal parameter*/

{
int c;
c=a*b;
return(c) ;
}

The values at that time are a=x and b = y.
2.3.6 Calling a Function

We call a function in the main() function by its name. It should be remembered
that the function name would be written right side of the expression. There are two
methods to call a function.

1. Call by Value
2. Call by Address

1. Call by Value

When we pass the variable or constants as arguments at the time of calling to the
function then this type of calling is called 'call by value'.

Example :
main ()
{
int mark1,mark2,mark3;
float d;
printf("Enter the first marks\n");

scanf("%d",&mark1);

(72)

printf(Enter the second marks\n");
scanf("%d",&mark?2);

printf("Enter the third marks\n");

scanf("%d" ,&marks3);

d=average(mark1, mark2, mark3); /*function call*/
printf("Average of three marks is %f\n",d);

}

float average(int X, int y, int z)

{
float f;
f=x+y+2)/3
return (f);

}

In this example, it is sending variables at the time of function calling.
2. Call by Reference

At the time of function calling, we pass the addresses of the variable in place of
variables or constants then it is called 'Call by Reference'. Here, we have to remember
that the formal argument must be a pointer type variable to store the address of the actual
parameters. A simple variable cannot store the address of a variable.

Example :
main ()
{
int a,b;
float d;
printf("Enter the first number\n");

scanf("%d",&a);
(73)

printf("Enter the second number\n");
scanf("%d",&Db);

d=average(&a,&b);

printf(" Average of two number is %f\n",d);

}

float average(int*x, int *y)

{
float f;
f=(*x + *y)2
return (f)

}

Here, the address of a and b will pass to the function through avg(&a,&b).

Let 1000 and 1050 are addresses, where the address of x and y will be 1000 and
1050 respectively. If we write int X, int y in place of int *x, int *y then it will be wrong
because simple variables x and y can not store the addresses.

2.3.7 Categories of Functions

Functions are divided into three different categories according to their way of
passing arguments to the function.

1. Function with No Arguments and No Return Values
2. Function with Arguments but No Return Values
3. Function with Arguments and Return Value

1. Function with No Arguments and No Return Values :

In this types of functions, we do not pass any argument and the function does not
return any value. In this type of category, the control go and come from main() function
to user define function and user define function to main() function. They have no data
with them. This type of category is used to transfer the control from one place to the other
place.

(74)

Example :
main ()
{
printf("You are in Main program\n");
average();
}
void average()
{
float f;
printf("Enter the first marks\n");
scanf("%d",&x);
printf(Enter the second marks\n");
scanf("%d",&y);
printf("Enter the third marks\n");
scanf("%d",&z);
f=x+y+2)/3;
printf("Average of three marks is %f\n",d);
}
2. Function with Argument But No Return Values
In this category, we send the arguments at the time of calling from the main()
function but function does not return any value. We read the data in the main() function

and send them to the user define function later.

In this category, we have to remember that when the arguments pass from the
main() function then the data type of the actual arguments should be same to the formal
arguments. All actual arguments will be copied into the formal parameters one by one.

Example :

(75)

main ()

int mark1,mark2,mark3;
float d;
printf("Enter the first marks\n");
scanf("%d",&mark1);
printf(Enter the second marks\n");
scanf("%d",&mark?2);
printf("Enter the third marks\n");
scanf("%d",&marks3);
average(a,b,c);

}

void average(int X, int y, int z)

{

float f;

f=x+y+2)/3;

printf("Average of three marks is %f\n",f);
}

Whenever, the function average() are called then control transfer to the user
define function and the values of a and b will be copied into the variable x and y (x = a and
y = b) respectively. When the user define function is completed then control will return to
the main() function without return a value after completing its execution.

3. Function with Arguments and Return Value

In this category, the actual arguments are passed and stored in the formal arguments
at the time of the calling of user define function. When the execution of the user define
function completed then control return to the main() function with a return value. When
all values of user define function will be used later in the main() function then this cat-

(76)

egory will be used. Here, the return statement is used to get a value from user define
function. The return statement returns a value at a time. So, we can say that whenever
we call a function then it returns a single value on each call. The return statement must
write here and it return a float value automatically.

Example :

main ()

{
int mark1,mark2,mark3;
float d;
printf("Enter the first marks\n");
scanf("%d",&mark1);
printf("Enter the second marks\n");
scanf("%d",&mark?2);
printf("Enter the third marks\n");
scanf("%d" ,&marks3);
d=average(marks1, marks2, marks3);
printf("Average of three marks is %f\n",d);

}

float average(int X, int y, int z)

{
float f;
f=x+y+2)/3;
return (f);

}

2.4 Scope rules

We are using the variable in the function, where are these variables can be used

(77

in the program? It is decided by the scope of rules. The variables used in the program are
two types.

1. Local variable
2. Global variable
1. Local variable

These variables are declared in the function. The variables declared in the header of
the function also called local variables. The boundary of the local variable is the boundary
of function. So, the local variable works within the function only.

Example :
#include<stdio.h>
main()
{
int a=5, b=20; /*Local variables*/

printf("%d", b);

fun();
}
fun()
{

int b=10;* Local variable*/

printf("%d", b);

F*printf("%d", a); uncommented cause and error*/
}

output:

2010

Here, three variables are declared. Variable a and b are declared in main()
function and variable b is declared in fun() function. Both b are different from each other.

(78)

The function can be used within the boundary of the function where it is declared. For
example, variable a cannot be used within the function fun().

2. Global Variable

These variables are declared at fixed place of the program and they are visible in
whole program. The global variables are declared after the header files.

Example :
#include<stdio.h>
int a, b, c:/* Global declaration of vaiable*/
main()
{
a=10; b=20; c=30;
fun1();

printf("a=%d b=%d c=%d", a , b, ¢);

}
funl()
{
printf("\na=%d b=%d c=%d", a, b, c);
a+=2>5;
c+=10;
return;
}
output:

a=10 b=20 ¢=30
a=15 b=20 c=40

The value of a, b and c can be changed in any function in the program. Here, it is
remembered that if a variable declares as a global and local variable with a same name

(79)

then the local variable will be used in the function and global variable will not use in the
function. The global variable will be used where local variable is not declared with the
same name.

Example :
#include<stdio.h>
int a=10, b=20;
main()
{
a=20; c=30;
printf("a=%d b=%d c=%d",a, b,c);
}
output:
a=20, b=20, c=30

Here, it prints the value of local variable 'a’ because the precedence of local variable
is higher than global variable.

2.5 Storage classes type
There is two ways to characterize variables.
1. Data Type
2. Storage class

Data type refer to the type of data stores in the variable and storage class refer
to the scope and life time of the variable with in the program.

There are four different type of storage class :
(i) automatic
(ii) external

(iil) static and

(80)

(iv) register
They are declared by keyword auto, extern, static and register respectively.
Example :
auto int x, y, z;
extern float rl, r2;
register char chl;
static int c, d;

The storage class keyword is specified a particular storage class must be
placed at the beginning of the variable declaration. We have already read about local and
global in the paragraph 3.4 of this chapter.

2.5.1 Automatic variables

Automatic variables are declared within the function and these are local variable to
the function. Their scope is within the function only and its lifetime starts with the function
calling and ends with the termination of the function. A variable can be declared in the
different function with the same name. They are independent to each other. The automatic
variables are required a keyword auto for declaration of the variables.

Example :
auto int A;

If the storage class is not written in the declaration statement then it makes the
variable of automatic type (Default storage class is Automatic).

Example :
#include<stdio.h>
#include<conio.h>
main()
{
/*Function main() scope start here*/

auto int total 1=10;

@81)

auto int total2=30;
printf("\ntotal1 = %d" total1);
fun();
printf("\ntotal1 = %d" total1);
}*Function main() scope End here*/
fun()
{
/*Function fun() scope start here*/
auto int total 1=30;
printf("\ntotal1 = %d" total1);
Fprintf("total2 = %d" total2);
uncommented to get an error*/

}/*Function fun() scope End here*/

Result :
totall =10
totall =30
totall =10

In the above program, the variable totall is declared in both function main() and
fun(). Both totall are independent to each other and the value of total1of main() function
will not be changed before or after the calling of function fun() and the variable total2 can
not be used within the function fun(). It can be used within the main() function only.

2.5.2 External variable

External variables are not related to a single function as automatic variables. The
external variable is declared in a function, all function can be accessed the variable which
are written after the declared function. Their scope extends from point of declaration
through the remainder of the program. They are using as the global variables. When we
call a function, where it declares then its lifetime starts and end with the termination of the
program. All function can be used the variable after declaration it. The decalaration of

(82)

variable uses extern keyword.
Example :

extern int A, B, C;

extern char D, E;
2.5.3 Static variables

The Static variables are also declared in the functions and therefore have the
same scope as automatic variables. The Static variables are local to the function but they
retain their value through out the life of the program. The first call of the function (where
the static variable declares) declares the static variables and it initailize by zero if it is not
initailized. It is lifetime start with the first execution of the function and died with the
termination of the program. The static variables retain their last value and will use when it
calls again. The declaration of variable uses static keyword.

Example :
#include<stdio.h>
main()
{

int I;

for I=1;1<=10;1++);

fun();

}

void fun();

{
static int K;
printf("%d", K);
K++;

}

The function fun() is called ten times in main() function by a loop. When we call

(83)

the function first time the initial value of K will be zero (i.e. K = 0). And it print the value
of K is zero and value of K will be increased by one. When the function is called second
time then the last value of K will print (in first call) 1 and the value of K will be increased
by one. When the function is called third time then the last value of K will print (in second
call) 2 and the value of K will be increased by one. And it will prints ten values of the
variable K. The output will be as follows :

0123456789
2.5.4 Register variable

In the above three types of variables are stored at the memory address. But the
register storage class variables store the value in the CPU registers. Mostly, those vari-
ables are declared which are used extensively in the program. This is helpful to reduce the
execution time of the program.

Example :
register int A, B, C;
register cahr x, y, z;

These variables are local to the function and work as the automatic variables.
Moreover declaring certain variables to be register variables does not guarantee that they
will actually be treated as register variables. The declaration will be valid only if the
requested register space is available if it is not so, then the variable will be treated as
automatic variable. The summary of storage classes as shown in Table 2.3.

Table 2.3

Class Storage Default Scope Life Time
Type Space initial Value

AutomaticMemory Garbage Local to the Till the control
Value functionin remains within
which the the function in
Variable is which the variable
defined. is defined.

External Memory Zero At the decla- After declaration

(84)

Static

Register CPU

register

Memory Zero

Garbage

Value

ration point
to entire
program.
Local to the
function in
which the
Variable is
defined.
Local to the
function in
which the
Variable is

defined.

to termination of

the program.

Value of the
variable persist
between different

function call.

Till the control
remains within
the function in
which the variable

is defined.

2.6 Arrays and Functions

If we want to pass an array from main() function to user define function then we
have to take name of the array as an argument. And also take another argument as refer
to the size of the array.

Example :

average (a,n);

Here, average is the name of user define function. a and n are name and size of

an array. The function will de declared as follows :

float average (float arr[], int nl);

When, average(a,n) statement executes in the main() function then the control
will transfer from main() function to user define function with its arguments. This will be

float arr [= a and nl =n.

(85)

The bracket ([]) with the name of an array arr show that arr is an array and nl
is the size of the array. Here, it is not required to write the size of an array in the bracket
because it would decide by the actual parameters.

Example :
float average (float arr [],int nl);
main()
{
float a[40],r ;
intn;
printf("Enter the size of the array\n");
scanf("%d",&n);
printf("Enter the element of the array\n");
for(i=0;i<n;i++)
{
scanf("%d",&ali));
}
r=average(a,n);
printf("The average of the element is%f",r);

}

float average(float arr[], int nl);

{
inti,sum=1;
float ave;
for(i=0;i<n1;i++)

{

(86)

sum = sum + arrf[i];

}

ave = sum/nl;

return(ave);

In the above example, we suppose that the maximum size of the array is 40. But
we store 10 (n = 10) values in the array. When average(a,n) executes in main() function
and its mean average(a,10) then control will transfer with both values to executes the
function. Whenever, control goes to the function then it stores all values of array a[| into
the array arr[] and value of nl equal to n. Then the function will execute according to the
values and result will return to the main() function

2.7 Recursion

When a function calls itself until some specified condition has been satisfied, this
processing called recursion. To write a function recursively then we have to remember

two things :

1. The function must be call itself.

2. The function must have a condition which stop the recursion on satisfaction
(Termination condition).

Generally, functions are called in the another function. The main() function is
exception, it cannot be called anywhere in the program. The facilities available in many
programming languages that a function calls itself, this is called recursive function and
process is called recursion. A function calls a other function than the program control
return back to the calling function. But function calls it self then it will come to the same
function. It is dangerous that it may not be terminated from the function. In these condi-
tions, program will run and if there is no resources available for computer it terminates
abnormally and control will out from the program. It should be remembered that any
function must have a termination condition. Otherwise it will cause an error message.

Program 6 : Write a function to findout the factorial of a given number using recursion
function.

#include<stdio.h>

#include<conio.h>

87)

/* It is C program to calculate the factorial of N*/

main() /* Main function */

{
int N,f1; /*Local variable for main function*/
int fact(int N);/* Function Prototype*/
printf("\n Enter a number :");
scanf("%d",&N);
f1 = fact(N); /* Function Call By Value*/
printf("The Factorial of %d is = %d",N,f1);
getch();

}

/* Function return an integer value */

int fact(int K) /* Function Defination */

{
int 1,f2=1; /*Local variable for fact function*/
for(i=1;i<=K;i++)
2 =12 *1;
return(f2);
}
Result :

Enter a number : 5
The Factorial of 5 is = 120
Enter a number : 7

The Factorial of 7 is = 5040

(88)

Let number = 5
In the first term it return(5 * fact(4))
In the second term it return (5 * 4 * fact(3))
In the third term it return (5 * 4 * 3 * fact(2))
In the fourth term it return (5 * 4 * 3 * 2 * fact(1))
In the fifth and last term it return (5 * 4 * 3 * 2 * 1)
Program 7 : Similarly, we also understand the recursion using another recursive function.
Let findout the value of x” using successive multiplication.
int power(int a, int b);
main()
{
ntx,y,z;
printf("Enter the Number\n");
scanf("%d\n",&Xx);
printf("Enter the power\n");
scanf("%d\n",&y);
Z = power(x,y);
printf("The resultis\n");
printf("%d\n",z);
}
int power(int a, int b)
{
if (b==1)

return a;

(89)

else
return(a*power(a,b-1));
}
Program 8 : Write a program to findout the n® fibbonacci number. #include<stdio.h>
#include<conio.h>
/* It is C program to calculate Nth Fibonacci Number*/
/* Fibonacci Number Start with 1,1,2,3,5,8,13,21,34,55%*/
main()
{
int N,f1;
int fib(int N);/* Function Prototype*/
printf("\nEnter a number :");
scanf("%d",&N);
f1 = fib(N); /* Function Call By Value*/
printf("The Nth Fibonacci Number is = %d" f1);
getch();
}
/* Function return an integer value */
int fib(int K) /* Function Definition */
{
int 1,f1=1,f2=1,f3; /*Local variable for fact function*/
for(i=1;i<=K-2;i++)
{
f3 =11 +12;

(90)

f1 =12;

2 = {3;
}
return(f3);
}
Result:

Enter a number : 5
The Nth Fibonacci Number is = 5
Enter a number : 10
The Nth Fibonacci Number is = 55
Program 9 : Write a function to solve the quardatic equation ax*+bx+c=0.
#include<stdio.h>
#include<conio.h>
#include<math.h>
main()
{
void Q_EQ(int p,int q,int r);
int a,b,c;
printf("Enter the value of a,b and c :");
scanf("%d %d %d",&a,&b,&c);
Q_EQ(a,b,c);
getch();
}

void Q_EQ(int p,int g,int r)

€2y

floatrl,r2,D;
D=q*q-40*p*r;
if(D < 0)

printf("Roots are imaginary");

else
{
if(D ==0)
{
printf("Roots are Equals\n");
rl=r2=-q/.0*p);
}
else
{
rl = (- q - sqrt(D)) / (2.0 * p);
12 = (- q + sqrt(D)) / (2.0 * p);
}

printf("\nRoots are : %f %f", r1,12);

}

Program 10 : Write a function 'prime' which return 1 if the argument is prime otherwise it
return 0.

#include<stdio.h>
#include<conio.h>

#include<math.h>

92)

main()

int prime(int p);
int flag,N;
printf("\nEnter the value of N :");
scanf("%d",&N);
flag = prime(N);
if(flag==1)
printf("\nNumber is prime");
else
printf("\nNumber is not prime");
getch();
}
int prime(int p)
{
intirl;
rl = (int)sqrt(p);
for(i=2; i<=rl;i++)
if(p % 1==0)
return(0);
return(1);
}
2.8 Pointer

Pointer is a powerful tool. Every variable stores in the primary memory that is
called the address of the variable. Every variable has a memory address.

93)

A pointer is a variable that stores the address of the data item (Address of the
data in memory). The pointers are used to make the good and complex program in the 'C’
language.

Every variable allocates the memory according to the type of the data. The char
type data stores in 1 Byte, int type data store in 2 Bytes and float type data store in 4
Bytes. There is one memory address for a group of Bytes and that is stored in the pointer
variable associate with the group. For example : int type data stores in 2 Bytes and there
addresses are FAB and FAC respectively the address of the variable will be FAB. This is
the address of first memory cell.

Let d is a variable, which represent integer data type. The compiler allocates the
memory according to the type of data where it stores its value. It can easily accessible.
Let we store value 10 in the variable d.

K is a pointer type variable, it can store address only. So that , K stores the
address of the memory 4500 (Address of variable d).

There are two operators perform the above work in the 'C' language. The *
operator is used to declare a pointer variable and it is also used to retrieve the value from
the address stored in the pointer variable. This is also called value operator and the &
operator is used to retrieve the memory address of any variable. For example we want to
know the address of the variable d then we have to write &d. So, we write the following
statement to store the address of d in pointer variable.

K = &d;

According to the above description *K and d shows the same value.
Program 1 : Write a program to add five integer number using pointers.
#indclude<stdio.h>
#include<conio.h>
#include<alloc.h>
main()

{
int I, *A,sum=0, B;

A = &B;

94)

for(I=1; I <+ =5, [++)
{
printf("Enter a number:");
scanf("%d", A),
/*don't use ampersand sign with pointer variable.*/
sum=sum + *A;
}
printf(“\nSum of Five Numbers = %d', sum);
getch();
}
2.8.1 Pointer Expression

The pointer expression is the expressions, which uses pointer variables. If P1 and
P2 are two pointer variables. They are declared and initialized.

1. Assignment Expressions :

These expressions are used to assigned values, are called assignment expressions.

Example :
P2++;
--P1;
PI =Pl +1;
*P2=*p2 + 1

First three expressions are used to increase or decrease the memory address
stored in pointer variables. And fourth expression increases the value stored at memory
location stored in variable P2.

2. Arithmetic Expressions :

P2=P2+1;

95)

P2=PI1 +1;

In the pointer variable, a memory location can be increase or decrease. The

following arithmetic operations are not valid on pointers :

P1 /P2 Two pointer can be subtract if they are indicate same type

P1/50 of elements. Generally, two pointers can subtract when

P1 + P2 only they are indicated the elements of an array.

P1 * P2

P1 * 17

3. Relational Expression

The relational operators are used on pointer variables.

Example :

P2 > Pl

Pl ==P2

P2 >=P1

P1 !1=P2

2.8.2 Advantage of pointers

1.

2.

3.

4.

5.

The pointers efficiently control an array.

The pointer can pass the information to the function, it automatically change the
value of variables which are passed by the calling statement.

They speedup the execution of the program.
Pointer also provides an alternative way to access individual array elements.

The variable outside the function can be accessed with the help of pointers.

2.9 Dynamic Memory Allocation

Here, the memory can be assigned two types :

Q) Static memory assignment

(96)

2) Dynamic memory assignment

1. Static memory is assigned before the execution of the program. It is used in array
and it cannot be changed at the time of execution.

2. Dynamic memory can be assigned the memory after the execution of the program.
It is assigned according to requirement of the programmer. The function available in 'C'
are used to assign dynamic memory are shown in the table 4.1

Table 2.4
Function Return value Purpose
malloc (size) Pointer void Allocate required size of block.
calloc (size) Pointer void Allocate required size of block which

divided into equal size of parts and
each part is initialized by zero.

free(pointer) No value Free previous allocate memory.
realloc (size) Pointer void Modity the size of memory.
molloc() Function

The block of memory may be allocated using the function malloc(). The malloc()
function is allocated a block of specified size and its type will be void pointer, we can
change the void type memory in another data type.

The malloc function can be return as follows :
Str = malloc (size in byte)

If we change the memory type which is allotted by malloc function (if str stores
the address of int type data) then malloc will be written as follows :

Str=(int*)malloc(size in byte)
Example :
int *integer;
integer=(int *) malloc (sizeof(int) * 10);

The above statement allocates 20 Bytes memory block. A integer number stores
in 2 Bytes and return a integer type pointer.

o7

Example :
char *cptr;
cptr=(char *) malloc(20);
It is also allocate 20 Bytes and return char type pointer.
calloc() Fuction

The memory can be allocated by the calloc() function. It divided the memory in
the same size of blocks. It is written as follows :

Str = (type cast*) calloc(n, sizeof(element));

The above statement allocate configures space for same size of n blocks with
same size and each block store zero value.

Example :
int *cptr,
cptr = (int *) calloc(10, size of (int));
It allocate 10 blocks of 2 Bytes and each block stores value zero.
Releasing Memory

When we does not use the memory block or no longer need the memory in the
program then we may release that block of memory for future use to allocate memory of
any other data. It uses free() function for the above purpose. It is written as follows :

free(Str);

Str is a pointer which had assigned the memory by the function calloc() or
malloc().

Altering the size of memory block

The realloc() function can increase or decrease the memory block.
Example :

Allocate memory by function malloc()

Str = malloc(size)

(98)

Then its size can be increased or decreased by the function realloc().
Str=realloc(ptr, new_size)
The memory will be allocated of new size.

Note : if there is not enough memory to allocate then malloc() or calloc() function return
the NULL value.

2.10 Pointer and Array

We have read that the space for array is reserved at the time of declaration of the
array. In this space we can store the elements of the array. The base address of the array
is the address of the first element of the array.

Let an array declares as follows :
intA[5]=1{7,9, 15, 12, 14};

It is also assumed that the base address of the array is 2000. Because integer
data, stores in 2 Bytes. So, the five elements of the array will store as follows :

We have known that the name of an array also shows the base address of the
array. So, A and &A[0] shows the base address of an array and elements of an array
stores in the continuous memory location.

Similarly, pointer variable also stores the base address of the memory block. So,
an array and a pointer variable can be interchanged.

Example :
int*ptr;
intA[5]=1{7,9, 15,12, 14};
ptr=A /* ptr = &A[O]*/

In the above example, ptr and A both are worked as an array. Both can be used as
pointer notation or traditional way.

For example the value of ptr[1] is 9 and the value of *(A + 1) will also be 9. It can
be understood by the following example.

Program 12

#include<stdio.h

99)

#include<conio.h>

main()

{
int *ptr,[;
intA[5]=1{7,9,1,2,4};
ptr=A;
clrscr();
for(I=0;I<+5;1++)
{

printf("\nl = %d ptr[I] = %d",Lptr[1]);

printf(" *(A+I) = %d &ptr{I] = %x",*(A+]),&ptr[1]);

printf(" (A+D) = %x",ptr[1]);

}

getch();

}

The output will be following :

1=0 pte[T] = 7 #(A+D) =7
I=1 ptr[I] = 9 #(A+l) =9
1=2 ptr[T] = 1 #(A+) = 1
1=3 ptr[T] = 2 #(A+D) =2
1=4 ptr[T] = 4 “(A+D) =4

&ptr[l] = ffca
&ptr[l] = ffcc
&ptr[l] = ffce
&ptr[I] = {fdO

&ptr[I] = ffd2

(A+]) =7
(A+D) =9
(A+D) = 1
(A+D) =2
(A+]) = 4

In the above program, the pointer variable is written in form of a traditional array
and an array variable is written in form of pointer type. Which is shown that a one
dimensional array can be interchange with pointer variable. Here, it is necessary to
remember that if we add 1 in the pointer variable then it increases 2 Bytes. It is depended
upon the data stored in the variable. If it is long int then we add 1 in the pointer variable

(100)

then it increases four Bytes.
Program 13 : Write a 'C' program to arrange 10 integer numbers using selection sort.
#include<stdio.h>
#include<conio.h>
#include<alloc.h>
#include<string.h>
/*¥It is C program to sort 10 Numbers. */
int main()
{
int *A;
/* Array A declared as pointer type.*/
inti,j,temp;
A = (int *)malloc(20);
printf("\nEnter Ten Numbers :\n");
for(i=0;i<+10;i++)
scanf("%d",(A+i));
/* Sorting Algoritham */
for(i=0;i<+9;i++)
for(G=i+1;j<+10;j++)
if(*(A+) > *(A+)))
{
temp = *(A+i);
#(AH) = *(A);

*(A+j) = temp;

(101)

}

printf("\nThe Sorted Numers are :\n");
for(i=0;i<+10;i++)

printf("%d\n", *(A+i));

getch();
return O;
}
Result:

Enter Ten Numbers :
201040 60 50 30807090 75
The Sorted Numbers are :
1020 30 40 50 60 70 75 80 90
Program 14 : Write a program to add two strings using pointers.
#include<stdio.h>
#include<conio.h>
#include<alloc.h>
#include<string.h>
main()
{
char *s1,*s2,*s3;
intnl,ij;
/*Memory Allocation */
printf("\nEnter the length of first string : ");

scanf("%d",&n1);

(102)

sl = (char *)malloc(nl+1);
printf("\nEnter the length of second string : ");
scanf("%d",&n1);
s2 = (char *)malloc(nl+1);
s3 = (char *)malloc(strlen(s1) + strlen(s2) -1);
printf("\nEnter Two strings :\n");
scanf("%s %s",s1,s2);
/* Algorithm */
strepy(s3,s1);
i=strlen(s3);
i=0;
while(s2[j] !="0"
S3[i++] = s2[j++];
s3[i] ="0";
printf("Strings are : \n %s %s %s",s1,52,53);
getch();
}
2.11 Structures

We have ready read about an array which have similar types of elements. But the
different type of data can be written in the structure. So, a structure can use different
types of data int, float, double, char and array according to a user. Every element in the
structure are called member. If we have to store Name, Basic, Address and HRA of 40
employees then we have read that array is the best method. But Name, Basic, Address
and HRA are stored in different array. It can make easy to use structures. It declares a
structure named Employe and their members will be Name, Basic, address and HRA.We
can store the information of 40 employees to make an array of the structure.

2.11.1 Declaration of Structure :

(103)

The structure declaration is more difficult than an array declaration. Because
every element have to be declared in the structure. The general term, the composition of
structure may be define as follows:

struct tag
{
<data type> memberl;

<data type> member2, member3;

<data type> membern;

}

In the above declaration, struct is a keyword, tag is a name that identifies structures
of this type. And memberl, member2, member3member n are an individual member
declaration. The individual members can be ordinary variables, pointers, array or other
structures. The same type of members can be specified in a single statement. It is declared
in the above example.

<datatype> member2, member3;
Example :
Define an employee structure and the members are as following:
name, basic, address, HRA

struct employee

char name[20];
int basic;
char address[25];

int HRA;

(104)

|5

The above structure employee is called the user define structure. Now we can
declare multiple copies of employee structure.

Example :
struct employee empl, emp2;

The empland emp2 are similar to the structure employee. The above two
statements can be combined in a single statement.

Example :
struct tag
{
<data type> member 1

<data type> member2

data type member n;
}vaiablel, variable2;

In this case, it is not necessary to write tag in the declaration. The above statement
is written as follows.

struct employee

{
char name[20];
int basic;
char address[25];
int HRA;
templ, emp2;

(105)

In the above example, we are used simple variables and array variables.
Example :

struct employee

{
char name[20];
int basic;
char address[25];
int HRA;
}empl, emp2;

We can declare a structure member with in a structure.
Example :

struct date

{
int day;
int month;
int year;
};

struct employee
{
char name[20];
int basic;
char address[25];
int HRA;

struct date DOB;

(106)

templ;

In the above example DOB member is a date type structure. This is written with
in the employee structure.

We can initialize a structure when it declares.
Example :

struct employee empl = {"Sangeeta Gupta", 8000, "153, Arya Nagar",
1200, 25,01, 1976};

First value will be stored in the first member of structure, second value will be
stored in the second member of the structure and so on.

2.11.2 Memory Map

The different memory block will be allocated for different members continuously
in the memory. The size of the structure is equal to the sum of the each member size. The
memory map of the employee structure is as follows :

The memory will use in the structure :
204+ 2 +25+2+2+2+2=>55bytes
The size of structrue can be calculated by a sizeof operator.
Example :
sizeof(employee);
output : 55
2.11.3 Processing a Structure

The member of structure is process individually. The structure member can be
accessed by writting following statement :

<Name of structure> 1 <Member of structure>
It uses the . (dot) operator. Please see the following example :
struct employee

{

char name[20];

(107)

nt basic;
char address[25];
int HRA;
struct date DOB;
templ;
The member of empl will be accessed as follows.
empl.basic = 8000
empl.HRA = 1200

strcpy(empl.name, "Yashika");

Similarly, we can read and write all members of the structure.

reading of the member of the structure :
scanf("%d", &empl.basic);
scanf("%d", &empl.HRA);
scanf("%s", empl.name);
For writing of the member of the structure :
printf("%d", emp1.basic);
printf("%d", emp1.HRA);

printf("%s", emp1.name);

If a structure is declared with in a structure then the . (dot) operator is used to

access the sub member of the structure. It is written as follows :

<Name of struct> 1 <Member of struct> 1 <Sub-member of struct>

In the above example, DOB member declares as date type structure which is

declared as follows.

struct date

{

(108)

int day;
int month;
int year;
};
The member of DOB access as follows :
empl.DOB.day= 25
empl.DOB.Month = 01

empl.DOB.Year = 1976,

If we declare two variables of a structure then we can store the value of a
variable into the another variable using a assignment operator.

Example :

struct student emp1={"Sunil Methi", 12000, "Alwar", 1200, 24, 11, 1968},
emp2;

If we use the assignment operator then the statement will be written as follows :
emp2 = empl;

The value of member of emp1 will be copied into the member of emp?2.
There is no need to copy from member to member for the same structure.

2.12 Structure and Array

We can declare the array as the member of the structure. Which is done in the
above examples.

We can also declare structure of array. If we want to store the data of 100
employee then we declare a structure of array. It is declared as follows :

struct employee

{

char name[20];

nt basic;

(109)

char address[25];
int HRA;
struct date DOB;
};
struct employee emp1[100];

In the above example, empl1 is declared as an array of structure. It is accessed as
follows :

Name of structure[subscript Value]IMember of structure
Example :
emp1[0].basic = 12000;
emp1[1].basic = 8000;
2.13 Structure and Function
We can pass the member of structure as the simple variable.
Example :
Calculate(empl.basic,empl.HRA);

Basic and HRA are the member of empl. We can pass the whole structure at a
time. For example emp] is declared as employee structrue then

Calculate(empl); /* calling */
Example :
void Calculate (struct employee Temp)

{

Statements;

}

All member of emp1 will be copied into members of temp.

Program 15 : Declare a employee structure and it members are as follows

(110)

name, address, basic pay, HRA and DA and store their values and calculate Gross Pay.
#include<stdio.h>

#include<conio.h>

main()

{

struct employee

{
char name[20];
char address[25];
int basic_pay;
float da,hra;
float gross_pay;
};

struct employee el;

/* Read structure®/
printf("\nEnter Employee Data :");
printf("\nName :");
gets(el.name);

printf("Address :");
gets(el.address);

printf("Basic Pay : ");
scanf("%d",&el.basic_pay);
printf("DA(%) :");

scanf("%f",&el.da);

(111)

Results:

printf("HRA(%) :");

scanf("%f",&el .hra);

/* Gross Pay Calculation™*/

el.gross_pay = el.basic_pay + el.basic_pay * el.da/100 +
el.basic_pay * el.hra/100;

/* Printing */

printf("\nEmployee Data :");

printf("\nName : %s",el.name);

printf("\nAddress : %s",el.address);

printf("\nBasic Pay : %d",el.basic_pay);

printf("\nDA 1 %5.2f%" e1.da);

printf("\nHRA 1 %5.2f%" el .hra);

printf("\nGross Pay : %8.2f" e1.gross_pay);

getch();

Enter Employee Data :
Name : Sunil Methi
Address : 153, Arya Nagar, Alwar.

Basic Pay : 9375

DA(%) :43
HRA(%) :15
Employee Data :

(112)

Name : Sunil Methi

Address : 153, Arya Nagar, Alwar.
Basic Pay : 9375

DA : 43.00%

HRA : 15.00%

Gross Pay : 14812.50

Program 16 : Write a program to store student name, roll_no, and marks obtained in four
subjects of a class in a structure and print name, roll_no, total marks obtained by every
students.

#include<stdio.h>

#include<conio.h>

main()

{
inti,j,tot;
struct
{

char name[20];

int roll_no;

int subl,sub2,sub3,sub4;
}student[5]; /* In this case tag not required*/
/* Read structure*/
for(i=0; i<+=4; i++)
{

printf("\nEnter Student %d Data :",i+1);

printf("\nName ")

(113)

scanf(" %[™Mn]",student[i].name);
printf("Roll Number :");
scanf("%d" ,&student[i].roll_no);
printf("Marks Subject 1 : ");
scanf("%d",&student[i].subl);
printf("Marks Subject 2 : ");
scanf("%d",&student[i].sub2);
printf("Marks Subject 3 : ");
scanf("%d",&student[i].sub3);
printf("Marks Subject 4 : ");
scanf("%d",&student[i].sub4);

}

/* Printing */

for(i=0; i<+=4; i++)

{
printf("\nName : %s" student[i].name);
printf("\nRoll Number : %d",student[i].roll_no);

tot=student[i].sub1+student[i].sub2

+student[i].sub3+student[i].sub4;

printf("\nTotal Marks : %d",tot);

getch();

(114)

Important Points

1.

2.

10.

11.

12.

13.

14.

15.

Arrays are two types. One dimensional array and two dimensional array.

The part of the program, which is group of statements, and known by the separate
name, called function.

The main () function is also a user define function and it is must be presented in the
program.

The arguments define at the time of function declaration are called formal /dummy
parameter.

When a function calls, the arguments written with the calling statement is called
actual parameters.

The function can call two types :
(i) call by value

(ii) call by reference

When a function calls itself, this process is called recursion.

The function must have a condition, which stop the recursion on satisfaction (Ter-

mination condition).

Pointer stores the address of a simple variable.

Dynamic memory can be assigned by the pointer variables.

The calloc, malloc are used to allocate the memory.

The free function is used to release the memory.

We can collect the different types of data using the structure.
The member of the structure are accessed by the . (dot) operator.

We can make a link list using structure.

(115)

EXERCISE
Objective Type Questions :
1. The group of similar types data are called
(a) Array (b) Function
(c) String (d) None of these
2. How many elements are in the array float arr[3][2] :
(@) 2 b 3
(c) 6 d 9
3. Which is false statement :
(a) Global variable can be used anywhere in the program.
(b) Auto variables are declared in the main() function.
(¢) Local variables are not work within the function or block.

(d) Local variable can be declared in the different function with
the same name.

4. Which is the correct statement to call a function int add(int x) :
(a) add(); (b) add(x);
(c) add(int x); (d) int add (int x);
5. How many types a function can call :
(a) 2 (b) 1
©3 (d) 4
6. How many types of function are :
(@1 (b) 2
(c)4 (d) 3
7. The value stores in the pointer variable

(a) Integer Value (b) Any Value
(116)

10.

11.

12.

13.

(c) Address of the another variable (e) None of these

int B =10;

int A =&B;

printf("%d", B) will print.

(a) 10 (b) Address of variable A

(c) Address of variable B (d) Print according to program
int*A;

A= (int *)malloc(sizeof(int)*10);

printf("%d",A); will print.

(a) Address of variable A (b) Address of first element of an Array
(c) First value of an array (d) Not print any value

The member of a structure can be

(a) Pointer variable (b) Integer Variable

(c) Floating variable (d) All of these

Which symbol is used to access the member of structures.
(a) . (dot) (b) *

0 ® d &

a=1011

b=1111 and

x = a & b then value of x -

@10 ()11 (¢ 12 (d) 13

If nay Union have int float and double data type then how much momory for this

Union.

(a) 2 bytes (b) 4 bytes (c) 10 bytes (d) 8 bytes

117)

Very Short Answer Type Questions :

1.

2.

10.

11.

12.

13.

14.

15.

Where is a return statement written?
How many types are arguments?
What are the local variables?
Which header file includes the "\O' character?
How can you declare a one dimensional array?
How is declared a pointer variables?
intA;
How is print the address of a variable A?
How is release the memory by the function free()?
How is declared a structure the member?
How is written the statement to initialize the member of the structure?
which file contains the malloc() function?
How we decleare member of Function?
How we initialize the member of Function?
How we allocate bits for a variable?

Which keyword is use to create new data type?

Short Answer Type Questions :

1.

2.

Which is the local variable?

Write a example to declare a two dimensional array.
How is a function declares?

How many types are functions in the 'C' language?

How is a array declared?

(118)

6. Write two condition of the recursion.
7. What is pointer variable?
8. int*A={10,20,30};
If the base address of A is 2000 the write all addresses.
9. How are an array declared by a pointer type variable.
10. What is structure? Explain.
11. Write student structure whose member are name, address and roll_No.
12. How we declare bit field to store 0 or 1 for male or female?

13. Write an example ofc........ data.

Eassy Type Questions :
1. Write advantages of prointers.
2. How with declare Arry by pointer? explain with example.

3. Store 10 name, address and phone number using structure. agange these names
according to Alphabat. Write a programe to print the this order.

4. write a programe to read one string and count the frequency of Alphbet.
5. How with declare pointers to the function. explain with example.
6. Write structure for following members showing bit field.

i. be male or female

ii. have one of the eight different hobbies.

iii. be single, married, divorcded or widowed.

7. What is drived data type? how can be written drived data type of 12 months?

Answer Key
l.a 2.c 3.b 4.c 52 6.b 7.b 8a 9.b
10.d 1l.a 12.b 13.d

(119)

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242
	Page 243
	Page 244
	Page 245
	Page 246
	Page 247
	Page 248
	Page 249
	Page 250
	Page 251
	Page 252
	Page 253
	Page 254
	Page 255
	Page 256
	Page 257
	Page 258
	Page 259
	Page 260
	Page 261
	Page 262
	Page 263
	Page 264
	Page 265
	Page 266
	Page 267
	Page 268
	Page 269
	Page 270
	Page 271
	Page 272
	Page 273
	Page 274
	Page 275
	Page 276
	Page 277
	Page 278
	Page 279
	Page 280
	Page 281
	Page 282
	Page 283

