Chapter - 1 Number Systems

Exercise No. 1.1

Multiple Choice Questions:

Question:

Write the correct answer in each of the following:

- **1.** Every rational number is
- (A) a natural number
- (B) an integer
- (C) a real number
- (D) a whole number

Solution:

We know that every real number is either an irrational number or rational number. Therefore, every rational number is a real number.

Hence, the correct option is (C).

2. Between two rational numbers

- (A) there is no rational number
- (B) there is exactly one rational number
- (C) there are infinitely many rational numbers
- (D) there are only rational numbers and no irrational numbers

Solution:

We know that between two rational number there are infinitely many rational number for exam:

Rational number between 5 and 6. 5.1, 5.2, 5.22....

Hence, the correct option is (C).

3. Decimal representation of a rational number cannot be

- (A) terminating
- (B) non-terminating
- (C) non-terminating repeating
- **(D)** non-terminating non-repeating

Solution:

We know that, the decimal representation of a rational number cannot be non-terminating and non-repeating.

Hence, the correct option is (D).

4. The product of any two irrational numbers is

- (A) always an irrational number
- (B) always a rational number
- (C) always an integer
- (D) sometimes rational, sometimes irrational

Solution:

We know that, the product of any two irrational numbers is sometimes rational and sometimes irrational.

Hence, the correct option is (D).

5. The decimal expansion of the number $\sqrt{2}$ is (A) a finite decimal (B) 1.41421 (C) non-terminating recurring (D) non-terminating non-recurring

Solution:

The decimal expansion of the number $\sqrt{2}$ is 1.41421..., which is non-terminating and nonrecurring.

Hence, the correct option is (B).

6. Which of the following is irrational?

(A) $\sqrt{\frac{1}{9}}$ **(B)** $\frac{\sqrt{12}}{\sqrt{3}}$ **(C)** √7 **(D)** $\sqrt{81}$

Solution:

- (A) $\sqrt{\frac{4}{9}} = \frac{2}{3}$, Which is rational number. (B) $\frac{\sqrt{12}}{\sqrt{3}} = \frac{\sqrt{4 \times 3}}{\sqrt{3}} = \frac{2\sqrt{3}}{\sqrt{3}} = 2$, Which is rational number.
- (C) $\sqrt{7}$ is a irrational number.

(D) $\sqrt{81} = \sqrt{9^2} = 9$, which is a rational number.

Hence, the correct option is (C).

7. Which of the following is irrational?

(A) 0.14

(B) $0.14\overline{16}$

(C) 0.1416

(D) 0.4014001400014...

Solution:

(A) 0.14 is a terminating decimal. Hence, it can't be an irrational number.

(B) $0.14\overline{16}$ is a non-terminating and recurring decimal. Hence, it can't be an irrational number.

(C) $0.\overline{1416}$ is a non-terminating and recurring decimal. Hence, it can't be an irrational number.

(D) 0.4014001400014... is a non-terminating and non-recurring decimal. Hence, it is an irrational number.

Hence, the correct option is (D).

8. A rational number between 2 and 3 is

(A)
$$\frac{\frac{\sqrt{2} + \sqrt{3}}{2}}{\frac{\sqrt{2} \cdot \sqrt{3}}{2}}$$

(B)
$$\frac{\frac{\sqrt{2} \cdot \sqrt{3}}{2}}{(C)}$$

(C) 1.5
(D) 1.8

Solution:

We know that,

 $\sqrt{2} = 1.4142135$ and $\sqrt{3} = 1.732050807$

1.5 is a rational number which lies between $\sqrt{2} = 1.4142135$ and $\sqrt{3} = 1.732050807$.

Hence, the correct option is (C).

<u>p</u>

9. The value of 1.999... in the form , \overline{q} where p and q are integers and $q \neq 0$, is 19

(A) $\overline{10}$

(B) $\frac{1999}{1000}$ (C) 2 (D) $\frac{1}{9}$

Solution:

Let $x = 1.999... = 1.\overline{9}$... (I) Then, $10x = 19.999... = 19.\overline{9}$... (II)

Subtracting (I) and (II), get: 9x = 18x = 2

Therefore, the value of 1.999... in the form $\frac{p}{q}$ is 2 or $\frac{2}{1}$.

Hence, the correct option is (C).

10. $2\sqrt{3} + \sqrt{3}$ is equal to (A) $2\sqrt{6}$ (B) 6 (C) $3\sqrt{3}$ (D) $4\sqrt{6}$

Solution:

 $2\sqrt{3} + \sqrt{3} = 3\sqrt{3}$ Hence, the correct option is (C).

11. $\sqrt{10} \times \sqrt{15}$ is equal to (A) $6\sqrt{5}$ (B) $5\sqrt{6}$ (C) $\sqrt{25}$ (D) $10\sqrt{5}$

Solution: $\sqrt{10} \times \sqrt{15} = \sqrt{5 \times 2 \times 5 \times 3} = 5\sqrt{6}$

Hence, the correct option is (B).

12. The number obtained on rationalising the denominator of $\frac{1}{\sqrt{7}-2}$ is

(A)
$$\frac{\sqrt{7}+2}{3}$$

(B)
$$\frac{\sqrt{7}-2}{3}$$

(C) $\frac{\sqrt{7}+2}{5}$
(D) $\frac{\sqrt{7}+2}{45}$

Solution:

Rationalizing the denominator as follows: $\sqrt{2}$

$$\frac{1}{\sqrt{7}-2} = \frac{1}{\sqrt{7}-2} \times \frac{\sqrt{7}+2}{\sqrt{7}+2} = \frac{\sqrt{7}+2}{\left(\sqrt{7}\right)^2 - 2^2} = \frac{\sqrt{7}+2}{7-4} = \frac{\sqrt{7}+2}{3}$$

Hence, the correct option is (A).

13.
$$\frac{1}{\sqrt{9}-\sqrt{8}}$$
 is equal to
(A) $\frac{1}{2}(3-2\sqrt{2})$
(B) $\frac{1}{3+2\sqrt{2}}$
(C) $3-2\sqrt{2}$
(D) $3+2\sqrt{2}$

Solution:

$$\frac{1}{\sqrt{9} - \sqrt{8}} = \frac{1}{\sqrt{9} - \sqrt{8}} \times \frac{\sqrt{9} + \sqrt{8}}{\sqrt{9} + \sqrt{8}}$$
$$= \frac{\sqrt{9} + \sqrt{8}}{\left(\sqrt{9}\right)^2 - \left(\sqrt{8}\right)^2}$$
$$= \frac{\sqrt{3^2} + \sqrt{2^3}}{9 - 8}$$
$$= 3 + 2\sqrt{2}$$

Hence, the correct option is (D).

14. After rationalizing the denominator of $\frac{7}{3\sqrt{3}-2\sqrt{2}}$, we get the

denominator as

(A) 13 **(B) 19** (C) 5 **(D) 35**

Solution:

$$\frac{7}{3\sqrt{3}-2\sqrt{2}} = \frac{7}{3\sqrt{3}-2\sqrt{2}} \times \frac{3\sqrt{3}+2\sqrt{2}}{3\sqrt{3}+2\sqrt{2}}$$
$$= \frac{7(3\sqrt{3}+2\sqrt{2})}{(3\sqrt{3})^2 - (2\sqrt{2})^2}$$
$$= \frac{7(3\sqrt{3}+2\sqrt{2})}{27-8}$$
$$= \frac{7(3\sqrt{3}+2\sqrt{2})}{19}$$

Hence, the correct option is (B).

15. The value of $\frac{\sqrt{32} + \sqrt{48}}{\sqrt{8} + \sqrt{12}}$ is equal to **(A)** √2 **(B)** 2 (C) 4 **(D) 8**

Solution:

Solution:

$$\frac{\sqrt{32} + \sqrt{48}}{\sqrt{8} + \sqrt{12}} = \frac{\sqrt{16 \times 2} + \sqrt{16 \times 3}}{\sqrt{4 \times 2} + \sqrt{4 \times 3}}$$

$$= \frac{4\sqrt{2} + 4\sqrt{3}}{2\sqrt{2} + 2\sqrt{3}}$$

$$= \frac{4(\sqrt{2} + \sqrt{3})}{2(\sqrt{2} + \sqrt{3})}$$

$$= 2$$

Hence, the correct option is (B).

16. If
$$\sqrt{2} = 1.4142$$
, then $\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}$ is equal to
(A) 2.4142
(B) 5.8282
(C) 0.4142
(D) 0.1718

Solution:

$$\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}} = \sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1} \times \frac{\sqrt{2}-1}{\sqrt{2}-1}}$$

$$= \sqrt{\frac{(\sqrt{2}-1)^{2}}{(\sqrt{2})^{2}-1^{2}}}$$

$$= \sqrt{\frac{(\sqrt{2}-1)^{2}}{2-1}}$$

$$= \sqrt{\frac{(\sqrt{2}-1)^{2}}{1}}$$

$$= 1.4142 - 1$$

$$= 0.4142$$

Hence, the correct option is (C).

17.
$$\sqrt[4]{\sqrt[3]{2^2}}$$
 equals
(A) $2^{-\frac{1}{6}}$
(B) 2^{-6}
(C) $2^{\frac{1}{6}}$
(D) 2^{6}

Solution:

$$\sqrt[4]{\sqrt[3]{2^2}} = \sqrt[4]{(2^2)^{\frac{1}{3}}}$$
$$= \left(2^{\frac{2}{3}}\right)^{\frac{1}{4}}$$
$$= 2^{\frac{2}{3} \times \frac{1}{4}}$$
$$= 2^{\frac{1}{6}}$$

Hence, the correct option is (C).

18. The product $\sqrt[3]{2} \cdot \sqrt[4]{2} \cdot \sqrt[1]{32}$ equals (A) $\sqrt{2}$ (B) 2 (C) $\sqrt[1]{2}$ (D) $\sqrt[1]{32}$

Solution:

$$\sqrt[3]{2} \cdot \sqrt[4]{2} \cdot \sqrt[12]{32} = 2^{\frac{1}{2}} \times 2^{\frac{1}{4}} \times (2^5)^{\frac{1}{12}}$$

$$= 2^{\frac{1}{3}} \times 2^{\frac{1}{4}} \times 2^{\frac{5}{12}}$$

$$= 2^{\frac{1}{3} + \frac{1}{4} + \frac{5}{12}}$$

$$= 2^{\frac{1}{3} + \frac{1}{4} + \frac{5}{12}}$$

$$= 2^{\frac{1}{12}}$$

$$= 2^{\frac{12}{12}}$$

$$= 2$$
Hence, the correct option is (B).
19. Value of $\sqrt[4]{(81)^{-2}}$ **is**
(A) $\frac{1}{9}$
(B) $\frac{1}{3}$
(C) 9
(D) $\frac{1}{81}$

Solution:

$$\sqrt[4]{(81)^{-2}} = \sqrt[4]{\left(\frac{1}{81}\right)^2} = \left(\frac{1}{81}\right)^{2\times\frac{1}{4}} = \left(\frac{1}{81}\right)^{2\times\frac{1}{4}} = \left(\frac{1}{81}\right)^{\frac{1}{2}} = \frac{1}{9}$$

Hence, the correct option is (A).

20. Value of (256)^{0.16}×(256)^{0.09} is
(A) 4
(B) 16
(C) 64

(D) 256.25

Solution:

$$(256)^{0.16} \times (256)^{0.09} = (256)^{0.16+0.09}$$
$$= 256^{0.25}1$$
$$= 256^{\frac{1}{4}}$$
$$= 4^{4\times\frac{1}{4}}$$
$$= 4$$

Hence, the correct option is (A).

21. Which of the following is equal to x?

(A)
$$x^{\frac{12}{7}} - x^{\frac{5}{7}}$$

(B) $\sqrt[12]{(x^4)^{\frac{1}{3}}}$
(C) $(\sqrt{x^3})^{\frac{2}{3}}$
(D) $x^{\frac{12}{7}} \times x^{\frac{7}{12}}$

Solution:

(A) $x^{\frac{12}{7}} - x^{\frac{5}{7}} \neq x$

(B)

$$\sqrt[12]{(x^4)^{\frac{1}{3}}} = \sqrt[12]{x^{\frac{4}{3}}}$$

 $= \left(x^{\frac{4}{3}}\right)^{\frac{1}{12}}$
 $= x^{\frac{4}{3} \times \frac{1}{12}}$
 $= x^{\frac{1}{9}} \neq x$
(C) $\left(\sqrt{x^3}\right)^{\frac{2}{3}} = x^{\frac{3}{2} \times \frac{2}{3}} =$

x

(D) $x^{\frac{12}{7}} \times x^{\frac{7}{12}} = x^{\frac{12}{7} + \frac{7}{12}} = x^{\frac{193}{84}} \neq x$ Hence, the correct option is (C).

Short Answer Questions with Reasoning:

Question:

1.

Let x and y be rational and irrational numbers, respectively. Is x + y necessarily an irrational number? Give an example in support of your answer.

Solution:

True, x + y is necessary an irrational number. Let x = 6 and $\sqrt{3}$. Now, $x + y = 6 + \sqrt{3} = 6 + 1.732...$ which is non-terminating and non-repeating. Therefore, x + y is an irrational number.

2.

Let x be rational and y be irrational. Is xy necessarily irrational? Justify your answer by an example.

Solution:

Let x = 0 is a rational number and $y = \sqrt{3}$ is a irrational number. $xy = 0 \times \sqrt{3} = 0$ Which is an irrational number. Therefore, xy is not necessarily an irrational number.

3.

State whether the following statements are true or false? Justify your answer.

- (i) $\frac{\sqrt{2}}{3}$ is a rational number.
- (ii) There are infinitely many integers between any two integers.
- (iii) Number of rational numbers between 15 and 18 is finite.
- (iv) There are numbers which cannot be written in the form $\frac{p}{q}, q \neq 0, p, q$

both are integers.

- (v) The square of an irrational number is always rational.
- (vi) $\frac{\sqrt{12}}{\sqrt{3}}$ is not a rational number as $\sqrt{12}$ and $\sqrt{3}$ are not integers.

(vii)
$$\frac{\sqrt{15}}{\sqrt{3}}$$
 is written in the form $\frac{p}{q}$, $q \neq 0$ and so it is a rational number.

Solution:

- $\frac{\sqrt{2}}{3}$ is a rational number. (i)
- We know that, in between two integer there are infinitely many integer. (ii)
- Rational number between 15 and 18 is finite. (iii)
- There are number which can be written in the form $\frac{p}{q}$, $q \neq 0$, p, q both are not (iv) integers.
- The square of an irrational number is always rational. (v) 112

(vi)
$$\frac{\sqrt{12}}{\sqrt{3}}$$
 cab not be a rational number as $\sqrt{12}$ and $\sqrt{3}$ are not integers.
(vii) $\frac{\sqrt{15}}{\sqrt{3}}$ can be written in the form $\frac{p}{q}$, where $q \neq 0$ so it a rational number.

Classify the following numbers as rational or irrational with 4. justification:

- $\sqrt{196}$ **(i)**
- $3\sqrt{18}$ (ii)
- $\sqrt{\frac{9}{27}}$ (iii)
- $\frac{\sqrt{28}}{\sqrt{343}}$ (iv)
- $-\sqrt{0.4}$ **(v)**
- $\frac{\sqrt{12}}{\sqrt{75}}$ (vi)
- 0.5918 (vii)
- $\left(1+\sqrt{5}\right)-\left(4+\sqrt{5}\right)$ (viii)
- (ix) 10.124124
- (X) 1.010010001...

Solution:

- $\sqrt{196} = \sqrt{14^2} = 14$, which is a rational number. $3\sqrt{18} = 9\sqrt{2}$, which is an irrational number. (i)
- (ii)
- $\sqrt{\frac{9}{27}} = \frac{1}{\sqrt{3}}$, which is an irrational number. (iii)

(iv)
$$\frac{\sqrt{28}}{\sqrt{343}} = \frac{\sqrt{4}}{\sqrt{49}} = \frac{2}{7}$$
, which is a rational number.

(v)
$$-\sqrt{0.4} = -\frac{2}{\sqrt{10}}$$
, which is an irrational number.

(vi)
$$\frac{\sqrt{12}}{\sqrt{75}} = \sqrt{\frac{4}{25}} = \frac{2}{5}$$
, which is a rational number.

(vii)
$$0.5918$$
 is terminating decimal, Therefore, it is a rational number.

(viii)
$$(1+\sqrt{5})-(4+\sqrt{5})=-3$$
, which is a rational number.

- (ix) 10.124124... is a decimal expansion which is non-terminating but recurring. Hence, it is a rational number.
- (x) 1.010010001... is a decimal expansion which is non-terminating but recurring. Hence, it is a rational number.

Short Answer Questions:

Question:

1.

Find which of the variables x, y, z and u represent rational numbers and which irrational numbers:

(i) $x^2 = 5$ (ii) $y^2 = 9$ (iii) $z^2 = 0.04$ (iv) $u^2 = \frac{17}{4}$

Solution:

(i)

 $x^2 = 5$

 $x = \pm \sqrt{5}$ Which is an irrational number.

(ii)

 $y^{2} = 9$ $y = \sqrt{9}$ $y = \pm 3$

Which is a rational number.

(iii)

 $z^{2} = 0.04$ $z = \pm \sqrt{0.04}$ $z = \pm 0.2$ Which is a rational number.

(iv)

$$u^{2} = \frac{17}{4}$$
$$u = \pm \sqrt{\frac{17}{4}}$$
$$u = \pm \frac{\sqrt{17}}{2}$$

Where, $\sqrt{17}$ is not an integer. Which is an irrational number.

2. Find three rational numbers between (i) -1 and -2 (ii) 0.1 and 0.11 (iii) $\frac{5}{7}$ and $\frac{6}{7}$ (iv) $\frac{1}{4}$ and $\frac{1}{5}$

Solution:

(i) -1.1, -1,2 and -1,3 are three rational numbers, which are lying between -1 and -2.

(iii) $\frac{5}{7} = \frac{5}{7} \times \frac{10}{10} = \frac{50}{70} \text{ and } \frac{6}{7} = \frac{6}{7} \times \frac{10}{10} = \frac{60}{70}$ $\frac{51}{70}, \frac{52}{70}, \frac{53}{70}$ are three rational numbers lying between $\frac{50}{70}$ and $\frac{60}{70}$. It mean that lying between $\frac{5}{7}$ and $\frac{6}{7}$. (iv) $\frac{1}{4} = \frac{1}{4} \times \frac{20}{20} = \frac{20}{80} = \frac{1}{80} = \frac{1}{5} \times \frac{16}{16} = \frac{16}{80}$ Now, $\sqrt{2} \times \sqrt{3} \times \frac{18}{80} \left(=\frac{9}{10}\right), \frac{19}{80}$ are three rational numbers lying between $\frac{1}{4}$ and $\frac{1}{5}$.

3.

Insert a rational number and an irrational number between the following: (i) 2 and 3 (ii) 0 and 0.1 (iii) $\frac{1}{3}$ and $\frac{1}{2}$ (iv) $\frac{-2}{5}$ and $\frac{1}{2}$ (v) 0.15 and 0.16 (vi) $\sqrt{2}$ and $\sqrt{3}$ (vii) 2.357 and 3.121

- (viii) .0001 and .001
- (ix) 3.623623 and 0.484848

(x) 6.375289 and 6.375738

Solution:

is:
$$\frac{2+3}{2} = \frac{5}{2} = 2.5$$

- A rational number between 2 and 3 is: (i) 0.04 is rational number which lies between 0 and 0.1. (ii)
- (iii)

 $\frac{1}{3} = \frac{1}{3} \times \frac{4}{4} = \frac{4}{12}$ and $\frac{1}{2} = \frac{1}{2} \times \frac{6}{6} = \frac{6}{12}$ $\frac{5}{12}$ is a rational number between $\frac{4}{12}$ and $\frac{6}{12}$. Which is also lying between $\frac{1}{3}$ and $\frac{1}{2}$. Now, $\frac{1}{3} = 0.33333$ and $\frac{1}{2} = 0.5$. Now, 0.414114111.... is a non-terminating and non-recurring decimal.

Hence, 0.414114111... is an irrational number lying between $\overline{3}$ and $\overline{2}$.

(iv)
$$\frac{-2}{5} = -0.4$$
 and $\frac{1}{2} = 0.5$

0 is rational number between -0.4 and 0.5 i.e., 0 is a rational number between 5 and $\frac{1}{2}$

Again, 0.131131113... is a non-terminating and non-recurring decimal which lies between -0.4 and 0.5.

Hence, 0.131131113... is an irrational number lying between $\frac{-2}{5}$ and $\frac{1}{2}$.

- 0.151 is a rational number between 0.15 and 0.16. Similarly, 0.153, 0.157, etc, are **(v)** rational number lying between 0.15 and 0.16. 0.151151115 is an irrational number between 0.15 and 0.16.
- $\sqrt{2} = 1.4142135 \dots$ and $\sqrt{3} = 1.732050807$ (vi) Now, 1.5 which lies between 1.4142135.... and 1.732050807... Since, 1.5 is a rational number between $\sqrt{2}$ and $\sqrt{3}$. Now, 1.5755755557... is an irrational number lying between $\sqrt{2}$ and $\sqrt{3}$.
- (vii) 3 is a rational number between 2.357 and 3.121. Again, 3.101101110 is an irrational number between 2.357 and 3.121.
- 0.00011 is a rational number between 0.0001 and 0.001 (viii) Again, 0.0001131331333 is an irrational number between 0.0001 and 0.001.

- (ix) 1 is a rational number between 0.484848 and 3.623623. Again, 1.909009000... is an irrational number lying between 0.484848 and 3.623623.
- (x) 6.3753 is an rational number between 6.375289 and 6.375738.
 Again, 6.37541411411... is an irrational number lying between 6.375289 and 6.375738.
- 4. Represent geometrically the following numbers on the number line: $7, 7.2, \frac{-3}{2}, \frac{-12}{5}$

Solution:

5. Locate $\sqrt{5}, \sqrt{10}$ and $\sqrt{17}$ on the number line.

Solution:

Presentation of $\sqrt{5}$ on number line: We can write 5 as the sum of the square of two natural numbers: 5 = 1 + 4 $= 1^2 + 2^2$

On the number line, take OA = 2 units. Draw BA = 1 unit, perpendicular to OA join OB. By Pythagoras theorem, $OB = \sqrt{5}$

Using a compass with center O and radius OB, draw an arc which intersects the number line at a point C. Then, C corresponds to $\sqrt{5}$.

Presentation of $\sqrt{10}$ on number line: We can write 10 as the sum of the square of two natural numbers: 10 = 1+9

 $=1^{2}+3^{2}$

On the number line, take OA = 3 units. Draw BA = 1 unit, perpendicular to OA join OB.

By Pythagoras theorem, $OB = \sqrt{10}$

Using a compass with center O and radius OB, draw an arc which intersects the number line at a point C. Then, C corresponds to $\sqrt{10}$.

Presentation of $\sqrt{17}$ on number line: We can write 17 as the sum of the square of two natural numbers: 10 = 1 + 16

$$=1^{2}+4^{2}$$

On the number line, take OA = 4 units.

Draw BA = 1 unit, perpendicular to OA join OB.

By Pythagoras theorem, $OB = \sqrt{17}$

Using a compass with center O and radius OB, draw an arc which intersects the number line at a point C. Then, C corresponds to $\sqrt{17}$.

6. Represent geometrically the following numbers on the number line: (i) $\sqrt{4.5}$

- **(ii)** $\sqrt{5.6}$
- (iii) $\sqrt{8.1}$
- (iv) $\sqrt{2.3}$

Solution:

(i) Presentation of $\sqrt{4.5}$ on number line:

Mark the distance 4.5 units from a fixed point A on a given line to obtain a point B such that AB = 4.5 units. From B, mark a distance of 1 units and mark the new points as C.

Find the mid-point of AC and mark that points as O. Draw a semicircle with center O and radius OC.

Draw a line perpendicular to AC passing through B and intersecting the semicircle at D. Then, $BD = \sqrt{4.5}$.

Now, draw an arc with center B and B radius BD, which intersects the number line in E. Thus, E represent $\sqrt{4.5}$.

(ii) Presentation of $\sqrt{5.6}$ on number line:

Mark the distance 5.6 units from a fixed point A on a given line to obtain a point B such that AB = 5.6 units. From B, mark a distance of 1 units and mark the new points as C.

Find the mid-point of AC and mark that points as O. Draw a semicircle with center O and radius OC.

Draw a line perpendicular to AC passing through B and intersecting the semicircle at D. Then, $BD = \sqrt{5.6}$.

Now, draw an arc with center B and B radius BD, which intersects the number line in E. Thus, E represent $\sqrt{5.6}$.

(iii) Presentation of $\sqrt{8.1}$ on number line:

Mark the distance 8.1 units from a fixed point A on a given line to obtain a point B such that AB = 8.1 units. From B, mark a distance of 1 units and mark the new points as C.

Find the mid-point of AC and mark that points as O. Draw a semicircle with center O and radius OC.

Draw a line perpendicular to AC passing through B and intersecting the semicircle at D. Then, $BD = \sqrt{8.1}$.

Now, draw an arc with center B and B radius BD, which intersects the number line in E. Thus, E represent $\sqrt{8.1}$.

(iv) Presentation of $\sqrt{2.3}$ on number line:

Mark the distance 2.3 units from a fixed point A on a given line to obtain a point B such that AB = 2.3 units. From B, mark a distance of 1 units and mark the new points as C.

Find the mid-point of AC and mark that points as O. Draw a semicircle with center O and radius OC.

Draw a line perpendicular to AC passing through B and intersecting the semicircle at D. Then, $BD = \sqrt{2.3}$.

Now, draw an arc with center B and B radius BD, which intersects the number line in E. Thus, E represent $\sqrt{2.3}$.

7. Express the following in the form $\frac{p}{q}$, where p and q are integers and

 $q \neq 0$: (i) 0.2 (ii) 0.888... (iii) $5.\overline{2}$ (iv) 0.001 (v) 0.2555... (vi) 0.134 (vii) 0.00323232... (viii) 0.404040...

Solution:

(i)

$$0.2 = \frac{2}{10} = \frac{1}{5}$$
(ii) Let x = 0.888...=0. $\overline{8}$...(I)
 $10x = 8.\overline{8}$...(II)

NCERT Exemplar Solutions for Class 9 Math's Chapter 1

Subtracting (I) from (II), get: 9x = 8Therefore, $x = \frac{8}{9}$. Let $x = 5.\overline{2} = 5.2222...$ (iii) ...(I) Multiplying both sides by 10, get: $10x = 52.222... = 52.\overline{2}$... (II) Subtracting (I) from (II), get: 10x - x = 479x = 47 $x = \frac{47}{9}$ Hence, $5.\overline{2} = \frac{47}{9}$. Let $x = 0.\overline{001} = 0.001001$...(I) (iv) 1000x = 1.001001...... (II) Subtracting (I) from (II), get: 999x = 1Hence, $x = \frac{1}{999}$. Let $x = 0.2555... = 0.2\overline{5}$. So, **(v)** $10x = 2.\overline{5}$... (I) And: $100x = 25.\overline{5}$... (II) Subtracting (II) from (III), get: 90x = 23 $x = \frac{23}{90}$ Let $x = 0.1\overline{34} = 0.1343434$ (vi) ...(I) Multiplying both sides by 100, get: $100x = 13.43434 = 13.4\overline{34}$... (II) Subtracting (I) from (II), get:

Long Answer Questions: Question:

1. Express $0.6+0.\overline{7}+0.4\overline{7}$ in the form $\frac{p}{q}$, where p and q are integers

and $q \neq 0$.

Solution:

Consider the expression: $0.6 + 0.\overline{7} + 0.4\overline{7}$ We have: $0.6 = \frac{6}{10}$ Let $x = 0.\overline{7} = 0.777...$... (I) And: 10x = 7.77... ... (II)

Subtract equation (I) from equation (II), get: 9x = 7 $x = \frac{7}{9}$

Similarly: Let $y = 0.4\overline{7} = 0.4777...$ Now, $10y = 4.\overline{7}$... (III) $100y = 47.\overline{7}$... (IV)

Subtract equation (III) from equation (IV), get: 90y = 43 $y = \frac{43}{90}$

$$0.4\overline{7} = \frac{43}{90}$$

Now,

$$0.6 + 0.\overline{7} + 0.4\overline{7} = \frac{6}{10} + \frac{7}{9} + \frac{43}{90}$$
$$= \frac{54 + 70 + 43}{90}$$
$$= \frac{167}{90}$$

Therefore, $\frac{167}{90}$ in the form $\frac{p}{q}$ and $q \neq 0$.

2. Simplify:

$$\frac{7\sqrt{3}}{\sqrt{10}+\sqrt{3}} - \frac{2\sqrt{5}}{\sqrt{6}+\sqrt{5}} - \frac{3\sqrt{2}}{\sqrt{15}+3\sqrt{2}}$$

Solution:

Consider the expression:

 $\frac{7\sqrt{3}}{\sqrt{10}+\sqrt{3}} - \frac{2\sqrt{5}}{\sqrt{6}+\sqrt{5}} - \frac{3\sqrt{2}}{\sqrt{15}+3\sqrt{2}}$

Simplify the above expression as follows:

$$\frac{7\sqrt{3}}{\sqrt{10}+\sqrt{3}} - \frac{2\sqrt{5}}{\sqrt{6}+\sqrt{5}} - \frac{3\sqrt{2}}{\sqrt{15}+3\sqrt{2}} = \frac{7\sqrt{3}}{\sqrt{10}+\sqrt{3}} \times \frac{\sqrt{10}-\sqrt{3}}{\sqrt{10}-\sqrt{3}} - \frac{2\sqrt{5}}{\sqrt{6}+\sqrt{5}} \times \frac{\sqrt{6}-\sqrt{5}}{\sqrt{6}-\sqrt{5}} - \frac{3\sqrt{2}}{\sqrt{15}+3\sqrt{2}} \times \frac{\sqrt{15}-3\sqrt{2}}{\sqrt{15}-3\sqrt{2}}$$
$$= \frac{7\sqrt{3}\left(\sqrt{10}-\sqrt{3}\right)}{\left(\sqrt{10}\right)^2 - \left(\sqrt{3}\right)^2} - \frac{2\sqrt{5}\left(\sqrt{6}-\sqrt{5}\right)}{\left(\sqrt{6}\right)^2 - \left(\sqrt{5}\right)^2} - \frac{3\sqrt{2}\left(\sqrt{15}-3\sqrt{2}\right)}{\left(\sqrt{15}\right)^2 - \left(3\sqrt{2}\right)^2}$$
$$= \frac{7\sqrt{3}\left(\sqrt{10}-\sqrt{3}\right)}{10-3} - \frac{2\sqrt{5}\left(\sqrt{6}-\sqrt{5}\right)}{6-5} - \frac{3\sqrt{2}\left(\sqrt{15}-3\sqrt{2}\right)}{15-18}$$
$$= \frac{7\sqrt{3}\left(\sqrt{10}-\sqrt{3}\right)}{7} - \frac{2\sqrt{5}\left(\sqrt{6}-\sqrt{5}\right)}{1} - \frac{3\sqrt{2}\left(\sqrt{15}-3\sqrt{2}\right)}{-3}$$
$$= \sqrt{3}\left(\sqrt{10}-\sqrt{3}\right) - 2\sqrt{5}\left(\sqrt{6}-\sqrt{5}\right) + \sqrt{2}\left(\sqrt{15}-3\sqrt{2}\right)$$
$$= \sqrt{30} - 3 - 2\sqrt{30} + 10 + \sqrt{30} - 6$$
$$= -9 + 10$$
$$= 1$$

3. If $\sqrt{2} = 1.414$, $\sqrt{3} = 1.732$, then find the value of $\frac{4}{3\sqrt{3} - 2\sqrt{2}} + \frac{3}{3\sqrt{3} + 2\sqrt{2}}$.

Solution:

Consider the expression: $\frac{4}{3\sqrt{3}-2\sqrt{2}} + \frac{3}{3\sqrt{3}+2\sqrt{2}}$

Rationalization the above expression as follows:

$$\frac{4}{3\sqrt{3}-2\sqrt{2}} + \frac{3}{3\sqrt{3}+2\sqrt{2}} = \frac{4}{3\sqrt{3}-2\sqrt{2}} \times \frac{3\sqrt{3}+2\sqrt{2}}{3\sqrt{3}+2\sqrt{2}} + \frac{3}{3\sqrt{3}+2\sqrt{2}} \times \frac{3\sqrt{3}-2\sqrt{2}}{3\sqrt{3}-2\sqrt{2}}$$
$$= \frac{4(3\sqrt{3}+2\sqrt{2})}{(3\sqrt{3})^2 - (2\sqrt{2})^2} + \frac{3(3\sqrt{3}-2\sqrt{2})}{(3\sqrt{3})^2 - (2\sqrt{2})^2}$$
$$= \frac{4(3\sqrt{3}+2\sqrt{2})}{27-8} + \frac{3(3\sqrt{3}-2\sqrt{2})}{27-8}$$
$$= \frac{12\sqrt{3}+8\sqrt{2}+9\sqrt{3}-6\sqrt{2}}{27-8}$$
$$= \frac{12\sqrt{3}+8\sqrt{2}+9\sqrt{3}-6\sqrt{2}}{19}$$
$$= \frac{21\sqrt{3}+2\sqrt{2}}{19}$$

Substitute 1.414 for $\sqrt{2}$ and 1.732 for $\sqrt{3}$ in the above expression.

$$\frac{21 \times 1.732 + 2 \times 1.414}{19} = 2.063$$

4. If
$$a = \frac{3+\sqrt{5}}{2}$$
, then find the value of $a^2 + \frac{1}{a^2}$.

Solution:

Given:

$$a = \frac{3 + \sqrt{5}}{2}$$

The value of a^2 will be:

$$a^{2} = \left(\frac{3+\sqrt{5}}{2}\right)^{2}$$
$$= \frac{9+5+6\sqrt{5}}{4}$$
$$= \frac{14+6\sqrt{5}}{4}$$
$$= \frac{7+3\sqrt{5}}{2}$$

Now,

$$\frac{1}{a^2} = \frac{2}{7+3\sqrt{5}}$$
$$= \frac{2}{7+3\sqrt{5}} \times \frac{7-3\sqrt{5}}{7-3\sqrt{5}}$$
$$= \frac{2(7-3\sqrt{5})}{7^2 - (3\sqrt{5})^2}$$
$$= \frac{2(7-3\sqrt{5})}{49-45}$$
$$= \frac{2(7-3\sqrt{5})}{4}$$
$$= \frac{2(7-3\sqrt{5})}{4}$$

The value of
$$a^2 + \frac{1}{a^2}$$
 is:
 $a^2 + \frac{1}{a^2} = \frac{7 + 3\sqrt{5}}{2} + \frac{7 - 3\sqrt{5}}{2}$
 $= \frac{7 + 3\sqrt{5} + 7 - 3\sqrt{5}}{2}$
 $= \frac{14}{2}$
 $= 7$

5. If
$$x = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}$$
 and $y = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$, then find the value of $x^2 + y^2$.

Solution: Given:

Given:

$$x = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}$$
 and $y = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$

Rationalization the *x* as follows:

$$x = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} \times \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} + \sqrt{2}}$$
$$= \frac{\left(\sqrt{3} + \sqrt{2}\right)^{2}}{\left(\sqrt{3}\right)^{2} - \left(\sqrt{2}\right)^{2}}$$

$$=\frac{\left(\sqrt{3}\right)^2 + \left(\sqrt{2}\right)^2 + 2 \times \sqrt{3} \times \sqrt{2}}{3-2}$$
$$=\frac{3+2+2 \times \sqrt{6}}{1}$$
$$= 5+2\sqrt{6}$$

Similarly:
$$y = 5 - 2\sqrt{6}$$

Now,
 $x + y = 5 + 2\sqrt{6} + 5 - 2\sqrt{6}$
 $= 10$
And,
 $xy = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} \times \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$
 $= 1$

Therefore, $x + y = (10)^2 - (1)^2$ =100 - 1= 99

Simplify: $(256)^{-(\frac{-3}{4^2})}$ 6.

Solution: Consider the expression:

 $(256)^{-(\frac{-3}{4^2})}$

Now, simplify the above expression as follows:

$$(256)^{-\left(\frac{-3}{4^{2}}\right)} = 2^{8-\left(\frac{3}{4^{2}}\right)}$$
$$= 2^{8-\left(2^{2^{2^{-3}}}\right)}$$
$$= \left(2^{8}\right)^{-\left(2^{-3}\right)}$$
$$= \left(2^{8}\right)^{-\frac{1}{8}}$$
$$= 2^{8^{-\frac{1}{8}}}$$
$$= 2^{-1}$$
$$= \frac{1}{2}$$

7. Find the value of
$$\frac{4}{(216)^{-\frac{2}{3}}} + \frac{1}{(256)^{-\frac{3}{4}}} + \frac{2}{(243)^{-\frac{1}{5}}}$$

Solution:

Consider the expression:

$$\frac{4}{(216)^{-\frac{2}{3}}} + \frac{1}{(256)^{-\frac{3}{4}}} + \frac{2}{(243)^{-\frac{1}{5}}}$$

Simplify the above expression as follows:

$$\frac{4}{(216)^{-\frac{2}{3}}} + \frac{1}{(256)^{-\frac{3}{4}}} + \frac{2}{(243)^{-\frac{1}{5}}} = 4 \times (216)^{\frac{2}{3}} + (256)^{\frac{3}{4}} + 2 \times (243)^{\frac{1}{5}}$$
$$= 4 \times (216)^{\frac{2}{3}} + (256)^{\frac{3}{4}} + 2 \times (243)^{\frac{1}{5}}$$
$$= 4 \times 6^{3\times\frac{2}{3}} + 4^{4\times\frac{3}{4}} + 2 \times 3^{5\times\frac{1}{5}}$$
$$= 4 \times 6^{2} + 4^{3} + 2 \times 3$$
$$= 144 + 64 + 6$$
$$= 214$$