Arithmetic Progression II

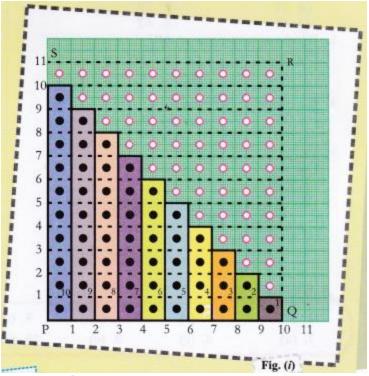
Objective

To verify that the sum of first n natural numbers is $\frac{n(n+1)}{2}$ by graphical method.

The product of two polynomials say A and B represents a rectangle of sides A and B. Thus n(n+1) represents a rectangle of sides n and (n + 1).

Prerequisite Knowledge

- 1. Concept of natural numbers.
- 2. Area of squares and rectangles.


Materials Required

Graph papers, white chart paper, coloured pens, geometry box.

Procedure

Let us consider the sum of first n natural numbers 1 + 2 + 3 + 4 + n (say n = 10).

- 1. Take a graph paper and paste it on a white chart paper.
- 2. Mark the rectangles 1, 2, 3 n, (n + 1) along the vertical line and 1,2, 3,.... n along the horLontal line.
- 3. Colour the rectangular strips of length 1 cm, 2 cm, 3 cm n cm each of width 1 cm.
- 4. Complete the rectangle with sides n and n+1. Name this rectangle as PQRS. Mark dot in each square as shown in fig. (i).
- 5. Count the coloured squares and total number of squares in rectangle PQRS.

Observation

We observe, number of shaded squares = $\frac{1}{2}$ x total no. of squares No. of shaded squares = 1+ 2 + 3 + ... + n Total squares = Area of rectangle = n (n + 1) Therefore 1 + 2 + 3 + ... + n = $\frac{1}{2}$ n(n + 1)

Mathematically

Area of rectangle PQRS = 10 x 11 Area of shaded region = $\frac{1}{2}$ x 10 x 11 = 55(i) Also, area of shaded region = (1 x 1) + (2 x 1) + (3 x 1) +... + (10 x 1) = 1+2 + 3 + ... + 10 = 55(ii) From (i) and (ii), 1+2 + 3 + ... + 10 = $\frac{1}{2}$ x 10 x 11 = 55 Verified that 1 + 2 + 3 + ... + 10 = $\frac{1}{2}$ x 10 (10 + 1) by graphical method.

Result

It is verified graphically that $1 + 2 + 3 + ... + n = \frac{1}{2}n(n+1)$ or sum of first n natural numbers $= \frac{1}{2}n(n+1)$.

Learning Outcome

Students will develop a geometrical intuition of the formula for the sum of natural numbers starting from one.

Activity Time

- 1. Find the sum of first 100 natural numbers.
- 2. Find the sum of first 1000 natural numbers.
- 3. Evaluate 10 + 11 + 12 + ... + 25.

Viva Voce

Question 1: Are all natural numbers whole numbers ? Answer: Yes

Question 2:

Are all whole numbers natural numbers ? Answer: Except zero, all whole numbers are natural numbers.

Question 3:

Write down an AP having the sum of first 7 terms as zero. **Answer:** -3, -2, -1, 0, 1, 2, 3.

Question 4:

What does represent, where S, represents the sum of n terms of anAP? **Answer:**

The n th term of an AP.

Question 5:

What is the formula for the sum of n terms of an AP ? Answer: $\mathbf{S_n} = \frac{n}{2} [2a + (n-1)d]$

Question 6:

What is the formula for the sum of n terms of an AP whose common difference is not given ? [First term (a) and last term (i) known]

Answer:

 $S_n = \frac{n}{2}[a+l]$, where I represents the last term.

Question 7: If $S_n = 3n^2+2n$, find the first term. **Answer:** 5

Question 8:

What is the arithmetic mean of 4 and 8 ? **Answer:** 6

Question 9:

What is the sum of first 10 natural numbers ? **Answer:** 55

Question 10:

Find the common difference of an arithmetic progression of first 20 natural numbers. **Answer:**

1

Multiple Choice Questions

Question 1:

Sum of first n terms of an AP is (a) $\frac{n}{2}[2a + (n-1)d]$ (b) $\frac{n}{2}2n[a + (n-1)d]$ (c) $\frac{n}{2}[2a - (n-1)d]$ (d) $\frac{n}{2}[2a - (n+1)d]$

Question 2:

Sum of first n positive integers is

(a) $\frac{\frac{n(n-1)}{2}}{(b) \frac{2n(n+1)}{2}}$ (b) $\frac{n(n+1)}{2}$ (c) $\frac{n(n+1)}{2}$

(d) none of these

Question 3:

The sum of 0.70 + 0.71 + 0.72 + + to 50 terms is (a) 4.725 (b) 47.25 (c) 472.5 (d) none of these

Question 4:

If $a_n = 3 + 4n$ is n th termof an AP, then S15 is (a) 525

(b) 325 (c) 425

(d) none of these

Question 5:

Sum of all odd numbers between 0 and 50 is (a) 623 (b) 627 (c) 624 (d) 625

Question 6:

Sum of -37, -33, -29, ... to 12 terms is (a) -180 (b) 180 (c) 108

(d) -108

Question 7:

In an AP, given that $a_{12} = 37$ and d = 3. Find S12.

- (a) 246
- (b) 642
- (c) 264
- (d) 624

Question 8:

In an AP, if a = 8, $a_n = 62$ and Sn = 210, then n is

- (a) 4
- (b) 6
- (c) 5
- (d) 7

Question 9:

Sum of first 40 positive integers divisible by 6 is (a) 4092

- (b) 4029
- (c) 4920
- (d) 4290

Question 10:

Sum of first 15 multiples of 8 is

- (a) 690
- (b) 609

(r) 906

(d) 960

Answers

- 1. (a) 2. (c) 3. (b)
- 4. (a)
- 5 (d) 6. (a)
- 7. (a) 8. (b)
- 9. (c) 10. (d)