# To Measure the Dimensions of a Given Regular Body of Known Mass Using a Vernier Callipers and Hence Find its Density

# Aim

To measure the dimensions of a given regular body of known mass using a Vernier Callipers and hence find its density.

# Apparatus

Vernier callipers, a small rectangular metallic block or glass slab of known mass, magnifying lens.

# Theory

(i) For measuring dimensions. Same as in Experiment 1 A. (ii) For volume Volume of a rectangular block = Length x Breadth x Thickness (height) Density= Mass/Volume i.e,..  $\rho$ =m/V

# Diagram







Fig. Rectangular metallic block.

#### **Procedure**

- 1. Proceed in similar manner as in steps 1 to 5 in Experiment 1A.
- 2. Repeat above steps for the other edge of same face of same dimension.
- 3. Repeat above steps for other face of same dimension.
- 4. Repeat steps 1, 2 and 3 above for both edges of both faces of other dimensions.

- 5. Record your observations in tabular form.
- 6. Make calculations for each dimension applying zero correction.
- 7. Take mean of different values of same dimension.
- 8. Multiply the three mean dimensions to obtain volume of the block.
- 9. Calculate the density of the block material by dividing its known mass by obtained volume.

### **Observations**

- 1. Known mass of the block, m =.....g.
- 2. Determination of Vernier Constant (Least Count) of the Vernier Callipers
  1 M.S.D. = 1 mm 10 V.S.D. = 9 M.S.D.
  ∴ 1 V.S.D. = 9/10 M.S.D. = 0.9 mm.
- Vernier constant, V.C. = 1 M.S.D. 1 V.S.D. = (1 0.9) mm = 0.1 mm = 0.01 cm 3. Zero error = (i).....cm, (ii).....cm, (iii).....cm.
- Mean zero error (e) =..... cm Mean zero correction (c) = – e =.....cm.
- 4. Table for the length (I)

| Serial<br>No.<br>of Obs. | Side | Main Scale<br>Reading (N)<br>(cm) | Vernier Scale Reading                       |                       | Total Reading                                |                                                    |
|--------------------------|------|-----------------------------------|---------------------------------------------|-----------------------|----------------------------------------------|----------------------------------------------------|
|                          |      |                                   | No of Vernier<br>division<br>coinciding (n) | Value<br>[n × (V.C.)] | Observed<br>$l_0 = N + n$<br>$\times (V.C.)$ | $\begin{array}{c} Corrected\\ l=l_0+c \end{array}$ |
| 1.                       | AB   |                                   | 1.                                          |                       |                                              | l <sub>1</sub> =                                   |
| 2.                       | EF   |                                   |                                             | 55                    |                                              | $l_2 =$                                            |
| 3.                       | CD   |                                   | _                                           |                       |                                              | <i>l</i> <sub>3</sub> =                            |
| 4.                       | GH   |                                   |                                             |                       |                                              | <i>l</i> <sub>4</sub> =                            |

5. Table for the breadth (b)

| Serial<br>No.<br>of Obs. | Side                 | Main Scale<br>Reading (N)<br>(em) | Vernier Sco                                 | ale Reading           | Total Reading                        |                                     |
|--------------------------|----------------------|-----------------------------------|---------------------------------------------|-----------------------|--------------------------------------|-------------------------------------|
|                          |                      |                                   | No of Vernier<br>division<br>coinciding (n) | Value<br>[n × (V.C.)] | $Observed b_0 = N + n \times (V.C.)$ | $Corrected \\ b = b_0 + c$          |
| 1.<br>2.<br>3.<br>4.     | BC<br>FG<br>DA<br>HE |                                   |                                             |                       |                                      | $b_1 = b_2 = b_3 = b_4 = b_4 = b_4$ |

6. Table for the thickness (t)

| Serial<br>No. | Side | Main Scale<br>Reading (N)<br>(cm) | Vernier Scale Reading                        |                       | Total Reading                                                           |                            |
|---------------|------|-----------------------------------|----------------------------------------------|-----------------------|-------------------------------------------------------------------------|----------------------------|
| of Obs.       |      |                                   | No. of Vernier<br>division<br>coinciding (n) | Value<br>[n × (V.C.)] | $\begin{array}{l} Observed \\ t_0 = N + n \\ \times (V.C.) \end{array}$ | $Corrected \\ t = t_0 + c$ |
| 1.            | CG   |                                   |                                              |                       |                                                                         | <i>t</i> <sub>1</sub> =    |
| 2.            | BF   |                                   |                                              |                       |                                                                         | $t_2 =$                    |
| 3.            | HD   |                                   |                                              |                       |                                                                         | t <sub>3</sub> =           |
| 4.            | EA   |                                   |                                              |                       |                                                                         | <i>t</i> <sub>4</sub> =    |

# Calculations

Mean corrected length of the block,

$$l = \frac{l_1 + l_2 + l_3 + l_4}{4} = \dots$$
 cm

Mean corrected breadth of the block,

 $b = \frac{b_1 + b_2 + b_3 + b_4}{4} = \dots \dots \text{ cm}$ 

Mean corrected thickness of the block,

$$t = \frac{t_1 + t_2 + t_3 + t_4}{4} = \dots \text{ cm.}$$

Volume of block,  $V = l \times b \times t = \dots \text{ cm}^3$ 

Density of the block material,

$$\rho = \frac{m}{V} = \dots g \text{ cm}^{-3}$$

#### Result

Density of block material = ......g cm<sup>-3</sup>

#### **Precautions**

Same as given in Experiment 1A.

# Sources of error

Same as given in Experiment 1A.