2.4 THE SECOND LAW OF THERMODYNAMICS. ENTROPY

2.113

2.114

2.115

The efficiency is given by

I -1,
n= T I,>T;
Now in the two cases the cfficiencies are
T, +AT-T, T d
Ny = -“W , 1 MCrease
T,-T,+ AT
Ny = ————, T, decreased
T
Thus Mh<n
7
For H,, y= =
5 PT’V!
V=PV p3Va=pY, Qf
pVi=p V], pVi=p, V] PZKZ
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Define #n by V= nV,  adighatic

Then py= p,n”" so0 Pu}Vu
| A —Als

4

PyV,=p3Vy= P2V2"1—Y‘ Py Vl”l_

PaVimp, VI so ViTT= V! "al™Y or V,= aV,

VS 1-vy V3
Also Q F 4 Vz ln QZ P3 V3 In vn =Dy Vs ].[I;"—
4 4
Finally n= 1--3—3= 1-n'"1= 0242
1

(b) Define n by py= ‘%2-

P2 1/
szg-—ﬁ—V; or V= 21V,

So we get the formulae here by n — #'" in the previous case.
V-1 2
M= l-n( T e 1-nT ~ 018
Used as a refrigerator, the refrigerating
efficiency of a heat engine is given by

! ! / _
g= Q_zz 0 Q2 Q{ 1-7 = 9 here,
A Q- Qz [ - ..Q..Z, Ul
2,

where 7 is the efficiency of the heat engine.
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2.116 Given V,=nV,, V,=nV,
@, = Heat taken at the upper temperature

= R Inn+RT,Inn= R(T\+T,)Inn

-
Now VIt =T,V or V= (—] v,

1

Similarly

1 1

RT;1 LYY - RT; I hyt e
B Sl U2 B 7 “Tz 2V,

1
Tl'r-_ll Ty -1
= —RT;In (Fz] ;2-(};

2T,

Cy
2117 Q)= C (T,-Ty) = Vz(Pz P3)

CV
Q= ?V1 (Pl ‘P4)

V, (P2 'P3)

V, (- py)

On the other hand,

6p, Vi=p, V), pyV]=p, V] also V,= nV,

Thus n=1-

Thus p,= p,n', p,= psn'

and n= 1-nt

C C
2118 Q= Fp(V,-V), Qo= F P (V3- V)

So n= l_Pz(Vs'V4)
pP1{V,-Vy)
1
Now p, = np,, p, V) or Va= nyV,
1
¥Vl or V=tV
"1 1

= =-1

so M= 1--:;- nt=1-n?

PV -

Tz'rTl T1 -1
V5= T_3 V‘, V6= };) Vl

Thus 2, = heat ejected at the lower temperature = - RT; In —

Rls

7Y, with y= —;—for N, this is n = 0-602

VS
= 2RT,Inn
2
2173
Q1 a
i Al
Ay, 181
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2.119 Since the absolute temperature of the gas rises n times both in the isochoric heating and

2.120

in the isobaric expansion
py=np; and V, = nV, . Heat taken is

Q1= Cu+Crp
where @), = C,(n-1)T, and @), = C, T, (1 —%)
Heat rejected is
o i Q. %
QL= Oy + 05 where Pg,V! , 11
1 * 4 P’JVZ
Qu=C,T(n-1}, Q= CPTI(I-;
Y !
1 l —t— "——‘?ng
0 Cyn-1)+C,|' " 2 A
Thus = 1-—==1- 1 l
1 C (n-1)+Cyf{1-= <
ARt i I N Y vy YA
(ymy’" Q22
n-l+y(1-—} 1+
= 1— A3 ni = 1— n = I—E—Y—
1 1™ T Tem
7(n—1)+(1—n) v+
(2) Here py=npy, pyVi=py Vg,
np, V= p, Vo 7emp 71 1o
' VU
Q= RTyIn -, Q1= Cy Ty (n-1)
1
Q
=L
But n V! '= V{71 or, V= Vynt-! Pl
L R, A ka
Q= RlyInnr=t = ——nn LY sothermatl
| 2 b Q2 (mpry)
nn \ .
Thus n= l-n_l,onusmgcvz y-1
(®) Here V= 0V, p, V= p, V,
and p(nVY=p,V{
ie. n'V] 1 =V2"! or Vl-n'y—zTVo
Also Q, = C, T, (n-1) Q'-RTlnE Q&
i p-0 ’ 2, i] Vl PV /P:’,Vz’?’lra
14 :
v adhabatie
or Q';= RT,Inny-1= Y—“;J—Tolnn= C,Tylnn |
Q.
- Inn isothermal Py v
Thus n l_n-l N
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zan

2.122

Here the isothermal process proceeds at the maximum temperature instead of at the minimum
temperature of the cycle as in 2,120,

Po, Ve,
B.lo%  yothermal (%)
1A UTo Qs
P isachor . isothermal
0! adwabatic
, 2

adiabatic Tovi,Tohn N (B.V,To)

@) y > (2 g,

h)
Py
(a) Here py V= p, V¥, po= n

paVi=pyV§ or p; V= np, V{§
1

ie. ViTl= Vi~ or V= Vyny-1
, {; _1 Vi RT,
st CvTokl—; 3 Q1= RToln‘i/_(;' Y-llnna CvTolnn-
Q' n-1
Thus = I—Ql 1_nlnn

Vi
(b) Here V, = ‘;;»Puvo'hvl
PeVe=p V= pyn T V] 'W)'l”ﬂvlhl or Vl“"(w-l)vo

4 1 Vl R
Q,= CPTO(I -;), Q:= RTyIn - = Y—_LToinn= C,TyInn
n-1
ninn

Thus Mn=1-

The section from (p,, V,, T,) to (p,, V,, To/n) is a polytropic process of index a. We shall
assume that the corresponding specific beat C is + ve.
Here, dQ = CdT = CydT + pdV

T
Now pV®= constant or TV -1 _ constant. p Fo Vo, OQ, -

RT R isothermal
sopdV= Sy dV= g3 /%,V,,?

Polytrevi
ThllC=C..R = R 1 _ 1 ?T?P‘.;Gti
e Vo oa-1 y-1 a-1 . ' Qz nefex
RT, pV dﬂ!’ﬂbﬂl!f’ y

We have p, V= RTo= p, V= —n_D' 1n : FPL 2)7(-?/,1

v
PoVo=pVi=np Vo py Vi=p, V3,
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1
piViw pyVs or Vil %Vz"'l or Vo= Vyny—1
P 1 a1
Vi = - 2 - ot Vi=n a-1Vy= ny-1 a-1 ¥,
Now @', = T, [1-1), 0,= RT,In 2= RT, [~ - L Vtan= CTyinn
o 2 oft =) =1 o“VG o|371 Ta-1 0
n-1
Thus ne= l-nlnn
R’JVOJB Ve
B'ﬁgr’ EJVO;‘”TI
L\ adiabatic A
& _ 1> &z
[ ﬂdiﬂbﬂﬁa ~—
R’VO,% h #Qlfz PFJTZVO;-E Pa, Va;Tb

) T, 1 T,
(a) Here @', = CP[T1-7]= C, T (1—;), Q= CV(TO_I)
Along the adiabatic line
T Vi l= T,(n V)" o, Ty= Tyn'™"

T n-1
50 lecvil-(n’—l). Thus 7= 1-%1—)

(b) Here Q'y= Cy(nT,-Tp), Q1= C, T, (n-1)

Along the adiabatic line TV'™!= constant

y-1
17
T, VI''= T, (7"] or T,=n""'T,

n'-1
Th @ ] = —————
© PR Y
fo,Vo, 70 Q;
W%J%QE ! > ”t%, Vg’Tbn
A !
r ,
A 1
p &2
QI ’I Q.w R0l
- = nn
%JVO;E ‘}QZ "";Q:n Va_’ To 2 ’ Po, VQ’TO

ey (b)
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2.125

2.126

’ 1 " ! 1 ¢ L]
(a) Q= CpTD(l‘;]» Q"= RTylnn, ¢ = CVT“(l_;]’ Q;= 1+ 0"

)
, c =%
1 Cv(l——)+Rlnn
n
=-1- b -1- y(n-1)
R nlnn n-1+{y=-1)nhn
1+ =207
Cyn-1
(b) Q1= Cp TD (n_1)9Q”2= CVTO(n'—l) sz- RTDIIIH, Q‘2= Q"2+Q"'2
5! n=1+(-1nn
So = 1-—m ]
" & y(n-1)
We have

Q' = TRT inv, Q"= C, Tyt~ 1)Q,= @', +Q", and
"= RI,lnv, Q" = C,Ty(x-1)

as well as O, = Q"+, and

sz = Qzlf + szlf

S . Q' ) Cy(t-1)+Rlnv

e M= g T T, G- D+tRIny
T -

-1- y-1+lnv _ f=-Nlnv

1:-1+1:1u\.r 'l:lnv+1_1
v-1 y-1

Here Q," =C, Tt - 1}, Q'1"" =RTJun and
Q) =CFT{x-1), @," =RTJnn

in addition to we have

0,=0,/+0Q," and

Q2f - Q2H + QZJ"

! C(t-1)+Rlnn
So n=1—gz= 1- p(r-1)

Q, Cp(t—1)+'chnn

1
T_1+(1-;-)lnn

T-1+ 1—l tinn
Y

1
1-=|Inn
1_t_l+( Y] (t-1)Inn

1-1+(1-%)1:lnn 1:lnn+y%__1—l)

=1-
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2.127 Because of the linearity of the section
B C whose equation is

YW«
P Vo(.P V) ]

T
We have "':= v or v= \/"-E

Here Q",= C,T,(Vx -1),

o - Cﬂo[“%)’ p\/_(\/;—l)

RT,

Thus Q.= Q" +Q" = — (Wt - 1)1+

Q3= 22+Q"= o5 )( ﬁ)

Along BC, the specific heat C is given by

CdT = C,dT + pdV = CVdT+d( ) ( +%R)dT

y+lz-1

Thus Ql'z 07_1 N

Finally —m=1-22a1- pYiry 1 4-D0E-1
2, Ve+11+1 g+1)(Vx+1)

2128 We write Claussius inequality in the form

Fefos

where &Q is the heat transeferred to the system but &, @ is heat rejected by the system,
both are +ve and this explains the minus sign before 4, O,

In this inequality 7 >T7>7_  and we can write

f@_fdé <0
Tmﬂx Tmm

r T r
Thus -—-Q1 <——--‘;22 OF g 9_3

Tmax Tmm Tmax QI
1 Q 2 1 Tmln
= ep— -
o " Ql Tmax Teamer

2129 We consider an infinitesimal carnot cycle with isothermal process at temperatures
T+dT and T.

Let 8A be the work done in the cycle and 80, be the heat received at the higher temperature,
Then by Carnot’s theorem
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2.130

2131

2132

2133

8A 4T P R— T 8Q

30,° T : 2

P.- -------- 4

v

On the other hand 8A = dp dV = (g%) dardv

av

FAY
Hence (av)r-bp T(aT]V

(a) In an isochoric process the entropy change will be

while 8Q, = dU, + pdV = [(ﬂ) +p]dV
T

hrre e — e —— ——— —

:
|
I
i
Vv V+dy

T
CydT T Rlnn
= = —L= = n
AS f T CVInT,- Cylnn r-1
T

For carbon dioxide y= 1-30

50, AS = 192 Joule/°K - mole
(b) For an isobaric process, /l
T \ - 1sotherm
AS= C,lnzt=C inn= tRlnn VS
r, - y-1 '\
\
= 25 Joule/°K —mole J \,
\
A Y
In an isothermal expansion ‘\
V .
AS = Vithli% N \\\\\h
Vi_ asw : 2132
50, V= e = 20 times )
1]

The entropy change depends on the final & initial states only, so we can calcujate it
directly along the isotherm, it is AS= 2R Inn = 20J/°K
(assuming that the final volume is n times the inital volume)

If the initial temperature is T, and volume is V; then in adiabatic expansion.
y-1 v-1
TV =T,V

- Vi
s0, T=Tyn V=T, where n= —
Yo

V| being the volume at the end of the adiabatic process. There is no entropy change in
this process. Next the gas is compressed isobarically and the net entropy change is

T
m ot d
AS = ( C'P]ln T,
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But Vi _ Y T, = T, T,
u T—1=T—f’ or f V—s Gn

m 1 m Ry
= | m -t = = -971/K
So AS (MCP)I“n MCplnn M 1ln.n /

The entropy change depends on the initial and r pa’ Vo]b
final state only so can be calculated for any
process whatsoever.

We choose to evaluate the entropy change along Y
the pair of lines shown above, Then
] ely
B B > .
vC,dT dT 5 7 p .
= — [
as f T f P T T)VQ*E ——Q)&VGJ@
T, . T, Il ﬁ
3
= (-Cylnp+C,1 =R ma—inp)e - 11200
=(-Cylnpf+C,ma)v= Y_lyna—nﬁ oK

To calculate the required entropy difference we only have to calculate the entropy difference
for a process in which the state of the gas in vessel 1 is changed to that in vessel 2.

Tl Tl
AS= v f Cv"‘g”‘*f c ar
T
T, T,
‘ - PV,

=v(C,Ina-Cyln af)

lr;ﬁ)= vR[Ina-'—“—p-)

R
-v(Rlna—Y_l v

With y= %, a=2and = 135,v=12,

il P Yk
this gives AS = (-85 Joule/°K ) JU”G[[)’ PZ-M V’&"‘BL

For the polytropic process with index »
p V"= constant
Along this process (See 2.122)

C-R(l-l) n=y

y-1 n-1] -1)(n- 1)

T Tn

= -y
So AS-fCT G-D - 1)Rln'l:
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2.137

2.138

2.139

The process in question may be written as

where « is a constant and p, V, are some reference values. For this process (see 2.127)
the specific heat is
1 1 1 1 y+1
C=Cy+=R=R|l——+—-{= =R
V2 y-1 2] 27 y-1
Along the line volume increases a times then so does the pressure. The temperature must
then increase a’times. Thus

c:zTu
AS-vaﬂz- 1"-Ii:\{-i—l—lnlotz- lei—lﬂnu
T 2 y-1 y=-1
TO
if v=2,y= %,a=2,AS=46-1Jou1e/°K

Let (), V) be a reference point on the line

p=py-av
and let (p, V') be any other point.
The entropy difference

AS=S(p,V)-5(p,, V)

o

X

J7 vV Pyp-Q K
Cy InE+Cpln—‘71- Cyln P +Cpln Vi v
For an exetremum of AS

aas_ -aly G, o £V

WV  py-aV V (gyi)

or C,(pp-aV)-aVCy=0

Y Pp

or y(pp-aV)-aV=0 or V= Vm-m

& AS
This gives a maximum of AS because prre <0

(Note :- a maximum of AS is a maximum of S(p, V))

Along the process line : S= a7+ Cyin T
or the specific heat is : C = T%- al +C,,
On the other hand : dQ = CdT' = C,dT + pdV for an ideal gas.

Thus, pav = R-VTdV-ﬂdeT
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2.141

2.142

n |

or %- dT or, %ln V + constant = T

Using T=T, when V=V, weget, T= T0+£ln‘l;-
0

For a Vander Waal gas
a
+—|{V-b)= RT

The entropy change along an isotherm can be calculated from

2
M
as= f (av)rdv
VI.
it follows from (2.129) that

a8\ _ () | _R_
) - (2) -
assuming a, b to be known constants.
V,~b
V,-b

Thus AS= Rln

L

LA A

V2
We use, AS-de(V D= f(g‘;.) dT+f (_;J_Sﬁ] dav
v, T=T,

v
“W14 T,

C,dr R T, V,-b
-f T +J'V—-de=C]nTl+RmV1—-b
T, v

assuming Cy,, g, b to be known constants.

We can take S — 0 as T— 0 Then

T T

dr 2 1 .3

S-fC T-faT d.T-3aT
(]

T.
2143 AS= deT fm(‘“'bndT- mb(T,-T1)+maln7.-2-
1

237
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2.144 Here T= aS" or S= (%)

2.145

2.146

2.147

1
n

i
17" S
Then C=T-— L/n";

nog
Clearly C<0 if n<0.

We know, T JP C>O

T
cdT T
s-snsf 7 - Clg
T, v

assuming C to be a known coustant.

5-35
Then  T= T exp [ C 0) €<0

Y
w

@ C= er—T-— So

NIR

) 2= fcar- a]n-—-—
T
(c) W= AQ—AU = aln T2+CV(T1 T,)
7 A

Since for an ideal gas C, is constant
and AU= C,(T,-T))
{U does not depend on V)

(a} We have from the definition Y

Q= f TdS = area under the curve

'
Q1= Ty (S, - Sp) G S,
2= %(To + T} (5, - 5

T
Thus, using T, = ,,’;Q,’ A So,7o

1
n= LT, _1+;= n-1
27T, 2 2n A Qr
(6) Here 0, = 25, - 59 (T, + Ty ¥
Q)= T,(5,-5) |
2, Tp-T, n-1 So,Tr \LQ:’Z ST
T,+T, T,-T, n+l > S
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In this case, called free expansion no work is done and no heat is exchanged. So internal
energy must remain unchanged Uy = U, For an ideal gas this implies constant temperature

T; = T, The process is irreversible but the entropy change can be calculated by considering

a reversible isothermal process. Then, as before
v

2
As-f%ngﬂ}ﬂ= vRInn = 201 J/K
Vl

The process consists of two parts. The first part is free expansion in which U, = U, The

second part is adiabatic compression in which work done results in change of internal

energy. Obviously,

Yo

0= UF-Uf+fpdV, Vi= 2V,
Vv
f

Now in the first part p, = %Pn’ V; = 2V, because there is no change of temperature.

In the second part, p V' = % Po(2Vp)' = 27 'poVd

v, i
v,
f 27—1P0ngv ZV‘IPOVE’:Vl_, ’
pdV = = | el Y
Y, 2v, °

. —y+1 y-1
- 211 ¥ —1'4—12 ! -1__(2 -1
27 pe Vs Ve y-1 ¥-1 R

T

RT, .,
Thus AU=Up-U; = =3 @71 -1)

The entropy change AS = AS,+ AS,;
AS;= RIn2 and AS, = 0 as the process is reversible adiabatic. Thus AS = Rn 2.

In all adiabatic processes
Q = Uf - Ui +A = 0
by virtue of the first law of thermodynamics. Thus,
U;=U;-A
v
For a slow process, A’ = f pdV where for a quasistatic adiabatic process pV' = constant.
Vﬂ
On the other hand for a fast process the external work done is A” <A’ In fact A" = 0
for free expansion. Thus U’y (slow) <U" (fast)

Since U depends on temperature only, Tf <T
Consequently, p”f >p's
(From the ideal gas equation pV= RT)
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2,151

2.152

2.153

2.154

Let V, = V,, V= nV,

Since the temperature is the same, the required eniropy change can be calculated by con-
sidering isothermal expansion of the gas in either parts into the whole vessel.
v, Vi+V,

Vi +
Thus AS = AS, + AS, = leln——l--~+v2R1n
Vi V2

1+n

=v,RIn(l+m) +v,RIn = 51J/K

Letc, = speciﬁc hest of copper specific heat of water = ¢,
974273

cym, dT '"1‘—'1dT Ty 370
Then AS-I f mzczlnzgo—mlc lnT

T+273

7, is found from
280myc, + 370 my ¢y

Camy(TH—280)=m ¢, 370 -1,) or I= P "y

using c,=0391/g°K, ¢, = 4181/ °K,
T,= 300°K and AS = 284245« 3-97/°K

For an ideal gas the internal energy depends on temperature only. We can consider the
process in question to be one of simultancous free expansion. Then the total energy
U= U, + U, Since

T, +T.
U= CyT,, Uy= CyT,, U= 2C,— == and (T, + T,} /2 is the final temperature. The

eniropy change is obtained by considering isochoric processes because in effect, the gas
remains confined to its vessel.

(T +T,v2
c,, f c (T1+T2)
Cv T v 4T1T2
(T,+T,)2
Since (T1+T2) '(Tl'Tz) +4T,T,, AS>0

{a) Each atom has a probability %—to be in either campartment. Thus

p=27"
(b) Typical atomic velocity at room temperature is. 10° cm/s so it takes an atom

107 sec to cross the vessel. This is the relevant time scale for our problem. Let

T=10""° sec, then in time # there will be t/T crossing or arrangements of the atoms. This
will be large enough to produce the given arrangement if
Int/t

~ 75
In2

-t—2‘N,... 1 or N
T
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2.156
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2,158

2159
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The statistical weight is

M 10x9x8Bx7Tx6
Newa™ N~ Bx4xaxz - B2
N/21 3

The probability distribution is
N, 27% = 252x27 "= 246 %
N/2
The probabilites that the half A contains # molecules is
N! -N
nT(N-n)! !

The probability of one molecule being confined to the marked volume is

N x 27 %=

-
p"Vo

We can choose this molecuie in many (N ) ways. The probability that n molecules get
1

confined to the marked volume is cearly

R —D '
N p"(-pf' "= e =gy
In a sphere of diameter d there are
3
N= Eino molecules

where n, = Loschmidt’s number = No. of molecules per unit volume (1 cc) under NTP.

The relative fluctuation in this number is

av_ YN 1
F'T'W’"
6 \V°
or —15 udsno o &= 5 of d=( 3 ) = 0-41 um
n KM N,

The average number of molecules in this sphere is —12- - 10

For a monoatomic gas Cy,= %R per mole

The entropy change in the process is
Ta+ AT

ss=5-5,- [ &% 2rm x(1.47)

rﬂ
Now from the Boltzmann equation
S= klnQ

w
A 3:6,‘1023

Q S-Sk AT\ 2 11312 13 21
2 . - = —_ = 10 10
e (1 + T:) 1+ 300 x

Thus the statistical weight increascs by this factor.



