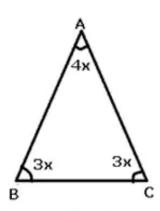
Chapter 12. Isosceles Triangle

Ex 12.1

Answer 1.



The equal angles and the non-equal angle are in the ratio 3:4.

Let equal angles be 3x each, therefore non-equal angle is 4x.

Angles of a triangle =180°

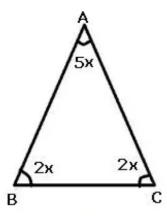
$$\Rightarrow$$
3x + 3x + 4x = 180°

$$\Rightarrow$$
10 x = 180°

Therefore, $3x = 54^{\circ}$ and $4x = 72^{\circ}$

Angles = 54° , 54° and 72°

Answer 2.



The equal angles and the non-equal angle are in the ratio 2:2:5.

Let equal angles be 2x each, therefore non-equal angle is 5x.

Angles of a triangle =180°

$$\Rightarrow 2x + 2x + 5x = 180^{\circ}$$

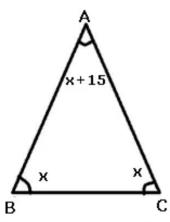
$$\Rightarrow$$
9 x = 180°

$$\Rightarrow x = 20^{\circ}$$

Therefore, $2x = 40^{\circ}$ and $5x = 100^{\circ}$

Angles = 40° , 40° and 100°

Answer 3.



Let equal angles of the isosceles triangle be x each. Therefore, non-equal angle = $x+15^{\circ}$

Angles of a triangle = 180°

$$x + x + (x+15^{\circ}) = 180^{\circ}$$

$$3x + 15^{\circ} = 180^{\circ}$$

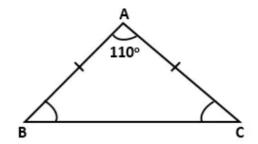
$$3x = 165^{\circ}$$

$$x = 55^{\circ}$$

$$x+15 = 70^{\circ}$$

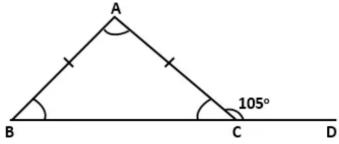
Angles are 55°, 55° and 70°

Answer 4A.



```
In ABC, \angle A = 110^\circ
AB = AC
\Rightarrow \angle C = \angle B \quad .... \text{ (angles opposite to two equal sides are equal)}
Now, by angle sum property,
\angle A + \angle B + \angle C = 180^\circ
\Rightarrow \angle A + \angle B + \angle B = 180^\circ
\Rightarrow 110^\circ + 2\angle B = 180^\circ
\Rightarrow 2\angle B = 180^\circ - 110^\circ
\Rightarrow 2\angle B = 70^\circ
\Rightarrow 2\angle B = 35^\circ
\Rightarrow \angle C = 35^\circ
Hence, \angle B = 35^\circ and \angle C = 35^\circ
```

Answer 4B.



```
In ABC, 

AB = AC 

\Rightarrow \angle ACB = \angle ABC ....(1)(angles opposite to two equal sides are equal) 

Now, \angle ACB + \angle ACD = 180^{\circ} ....(linear pair) 

\Rightarrow \angle ACB = 180^{\circ} - \angle ACD 

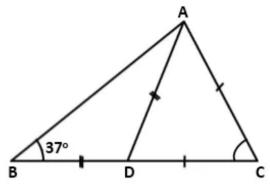
\Rightarrow \angle ACB = 180^{\circ} - 105^{\circ} 

\Rightarrow \angle ACB = 75^{\circ} ....[From (1)]
```

By angle sum property, in \triangle ABC \angle ABC + \angle ACB - \angle BAC = 180° \Rightarrow 75° + 75° + \angle BAC = 180° \Rightarrow 150° + \angle BAC = 180° \Rightarrow \angle BAC = 180° - 150° \Rightarrow \angle BAC = 30°

Hence, in $\triangle ABC$, $\angle A = 30^{\circ}$, $\angle B = 75^{\circ}$ and $\angle C = 75^{\circ}$

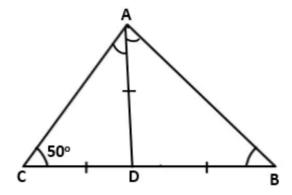
Answer 4C.



```
In ∆ABD,
AD = BD
                       ....(given)
\Rightarrow \angleABD = \angleBAD ....(angles opposite to two equal sides are equal)
Now, \angle ABD = 37^{\circ} ....(given)
⇒ ∠BAD = 37°
By exterior angle property,
\angle ADC = \angle ABD + \angle BAD
\Rightarrow \angleADC = 37° + 37° = 74°
In AADC,
AC = DC
                       ....(given)
⇒∠ADC = ∠DAC
                      ....(angles opposite to two equal sides are equal)
⇒ ∠DAC = 74°
Now, \angle BAC = \angle BAD + \angle DAC
\Rightarrow \angleBAC = 37° + 74° = 111°
In AABC,
ZBAC + ZABC + ZACB = 180°
\Rightarrow 111° + 37° + \angleACB = 180°
\Rightarrow \angleACB = 180° - 111° - 37° = 32°
```

Hence, the interior angles of ΔABC are 37°, 111° and 32°.

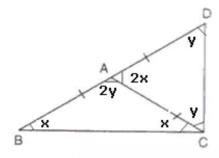
Answer 4D.



```
In ∆ACD,
                      ....(given)
AD = CD
                      ....(angles opposite to two equal sides are equal)
⇒∠ACD = ∠CAD
Now, ∠ACD = 50°
                      ....(given)
\Rightarrow \angleCAD = 50°
By exterior angle property,
\angle ADB = \angle ACD + \angle CAD = 50^{\circ} + 50^{\circ} = 100^{\circ}
 In ∆ADB,
 AD = BD
                       ....(given)
                      ....(angles opposite to two equal sides are equal)
 ⇒ ∠DBA = ∠DAB
 Also, ZADB + ZDBA + ZDAB = 180°
 ⇒100° + 2∠DBA = 180°
 ⇒ 2∠DBA = 80°
 ⇒∠DBA = 40°
 ⇒∠DAB = 40°
 \angle BAC = \angle DAB + \angle CAD = 40^{\circ} + 50^{\circ} = 90^{\circ}
```

Hence, the interior angles of $\triangle ABC$ are 50°, 90° and 40°.

Answer 5.



Let \angle ABC = x, therefore \angle BCA = x since AB = AC In \triangle ABC,

$$\angle$$
ABC + \angle BCA + \angle BAC = 180°(i)

But
$$\angle$$
 BAC + \angle DAC = 180°(ii)

From (i) and (ii)

$$\angle ABC + \angle BCA + \angle BAC = \angle BAC + \angle DAC$$

$$\angle DAC = \angle ABC + \angle BCA = x + x = 2x$$

Let \angle ADC = y, therefore \angle DCA = y since AD = AC

In ΔADC,

$$\angle ADC + \angle DCA + \angle DAC = 180^{\circ} \dots (iii)$$

But
$$\angle$$
 BAC + \angle DAC = 180°(iv)

From (iii) and (iv)

$$\angle ADC + \angle DCA + \angle DAC = \angle BAC + \angle DAC$$

$$\angle$$
BAC = \angle ADC + \angle DCA = y + y = 2y

Substituting the value of \angle BAC and \angle DCA in (ii)

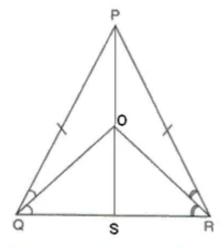
$$2x + 2y = 180^{\circ}$$

$$x + y = 90^{\circ}$$

$$\Rightarrow \angle BCA + \angle DCA = 90^{\circ}$$

$$\Rightarrow \angle$$
 BCD is a right angle.

Answer 6.



Join PO and produce to meet QR in S.

In ∆PQS and ∆PRS

PS = PS (common)

PQ = PR (given)

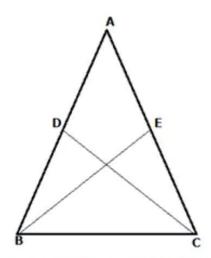
 $\angle Q = \angle R$

∴ ΔPQS ≅ ΔPRS

 $\therefore \angle QPS = \angle RPS$

Hence, PO bisects $\angle P$.

Answer 7.



Let ABC be an isosceles triangle with AB=AC.

Let D and E be the mid points of AB and AC.

Join BE and CD.

Then BE and CD are the medians of this isosceles triangle.

```
In \triangle ABE and \triangle ACD

AB = AC \quad (given)
AD = AE \quad (D \text{ and E are mid points of AB and AC})
\angle A = \angle A \quad (common \text{ angle})
Therefore, <math>\triangle ABE \cong \triangle ACD (SAS criteria)

Hence, BE = CD
```

Answer 8.

In
$$\triangle QDP$$
,

$$DP = DQ$$

$$\angle Q = \angle P$$

$$\angle QDR = \angle Q + \angle P$$

$$2\angle QDC = \angle Q + \angle P \qquad (DC \text{ bisects angle QDR})$$

$$2\angle QDC = \angle Q + \angle Q = 2\angle Q$$

$$\angle QDC = \angle Q$$
But these are alternate angles.
$$DC \mid PQ$$

Answer 9.

In
$$\triangle PQS$$
,
 $PQ = PS$
 $\therefore \angle PQS = \angle PSQ$
 $\angle P + \angle PQS + \angle PSQ = 180^{\circ}$
 $50^{\circ} + 2\angle PQS = 180^{\circ}$
 $2\angle PQS = 130^{\circ}$
 $\angle PQS = 65^{\circ} = \angle PSQ$ (i)
In $\triangle SRQ$,
 $SR = RQ$
 $\therefore \angle RQS = \angle RSQ$
 $\angle R + \angle RQS + \angle RSQ = 180^{\circ}$
 $110^{\circ} + 2\angle RQS = 180^{\circ}$
 $2\angle RQS = 70^{\circ}$

$$\angle$$
RQS = 35° = \angle RSQ(ii)
Adding (i) and (ii)
 \angle PSQ + \angle RSQ = 65° + 35°
 \angle PSR = 100°

Answer 10.

In
$$\triangle$$
BDC, \angle BDC = 70°

BD = BC

Therefore, \angle BDC = \angle BCD

 \Rightarrow \angle BCD = 70°

Now \angle BCD + \angle BDC + \angle DBC = 180°

 $70^{\circ} + 70^{\circ} + \angle$ DBC = 180°

 \angle DBC = 40°

 \angle DBC = \angle ABC (BC is the angle bisector)

 \Rightarrow \angle ABC = 40°

In \triangle ABC,

Since AB = AC, \angle ABC = \angle ACB \Rightarrow \angle ACB = 40°

 \angle ACB + \angle ABC + \angle BAC = 180°

 \angle A0° + 40° + \angle BAC = 180°

 \angle BAC = 100°

Hence, \angle BAC = 100° and \angle DBC = 40°

Answer 11.

(i) In ΔPQR,

$$PQ = PR$$
 (given)

$$\therefore \angle R = \angle Q \dots (i)$$

Now in △QNT and △RMT

$$\angle QNT = \angle RMT$$
 (90°)

$$\angle Q = \angle R$$
 (from (i))

$$\therefore \triangle QNT \cong \triangle RMT$$
 (AAS criteria)

$$\therefore TN = TM$$

(ii) Since, ΔQNT ≅ ΔRMT

$$But PQ = PR(iii)$$
 (given)

Subtracting (ii) from (iii)

$$PQ - NQ = PR - MR$$

$$\Rightarrow PN = PM$$

(iii) In △PNT and △PMT

$$TN = TM$$
 (proved)

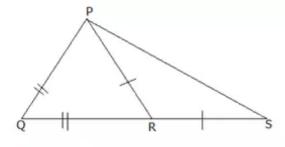
$$\angle PNT = \angle PMT$$
 (90°)

Therefore, △PNT≅ △PMT

Hence,
$$\angle NPT = \angle MPT$$

Thus, PT bisects ∠ P

Answer 12.



In ΔPQR,

$$PQ = QR$$
 (given)

$$\angle PRQ = \angle QPR$$
(i)

In ΔPRS,

$$\angle PSR = \angle RPS$$
(ii)

Adding (i) and (ii)

$$\angle QPR + \angle RPS = \angle PRQ + \angle PSR$$

$$\angle QPS = \angle PRQ + \angle PSR \dots (iii)$$

Now in APRS,

$$\angle PRQ = \angle RPS + \angle PSR$$

$$\angle PRQ = \angle PSR + \angle PSR \text{ (from (ii))}$$

$$\angle PRQ = 2 \angle PSR$$
(iv)

Now,
$$\angle QPS = 2 \angle PSR + \angle PSR (from (iii) and (iv))$$

$$\angle QPS = 3 \angle PSR$$

$$\frac{\angle PSR}{\angle QPS} = \frac{1}{3}$$

$$\Rightarrow \angle PSR : \angle QPS = 1 : 3$$

Answer 13.

```
In \triangleKTM, 

KT = TM (given)

Therefore, \angleTKM = \angleTMK .....(i)

Now, \angleKTL = \angleTKM + \angleTMK

80^{\circ} = \angleTKM + \angleTKM = 2\angleTKM (from (i))

\angleTKM = 40^{\circ} = \angleTMK = \angleLMK .......(ii)

But \angleTKM = \angleTKL(KT is the angle bisector)

Therefore, \angleTKL = 40^{\circ}

In \triangleKTL,

\angleTKL + \angleKTL + \angleKLT = 180^{\circ}

\angleKLT = 60^{\circ} = \angleKLM

\angleKLM = 60^{\circ} and \angleLMK = 40^{\circ}
```

Answer 14

In
$$\triangle$$
 PTQ and \triangle PSR

PQ = PR (given)

PT = PS (given)

 \angle TPQ = \angle SPR (vertically opposite angles)

Therefore, \triangle PTQ \cong \triangle PSR

Hence, TQ = SR

Answer 15.

In ΔADB and ΔADC

AB = AC (given)

AD = AD (common)

 $\angle BAD = \angle CAD$ (AD bisects $\angle BAC$)

Therefore, △ADB≅ △ADC

Hence, BD = DC and $\angle BDA = \angle CDA$

But \angle BDA + \angle CDA = 180°

 $\Rightarrow \angle BDA = \angle CDA = 90^{\circ}$

Therefore, AD bisects BC perpendicularly.

Answer 16.

```
In ADEC,
\angle DEC = \angle ADE + \angle A = 2a (ext. Angle to \triangle ADE)
DE = DC
\Rightarrow \angle DEC = \angle DCE = 2a ......(ii)
In \triangle BDC, let \angle B = b
DC = BC
\Rightarrow \angle BDC = \angle B = b ......(iii)
In ΔABC,
\angle ADB = \angle ADE + \angle EDC + \angle BDC
180^{\circ} = a + \angle EDC + b (from (i) and (iii))
\angle EDC = 180^{\circ} - a - b .....(iv)
Now again in ADEC
180 ° = \angle EDC + \angle DCE + \angle DEC (from (ii))
180 ° = ∠EDC + 2a + 2a
                              .....(v)
∠EDC = 180° - 4a
Equating (iv) and (v)
```

Answer 17.

(i) In ΔADC,

$$AD = AC$$
 (given)

Therefore,
$$\angle ADC = \angle ACD \dots (i)$$

But
$$\angle$$
 ADB + \angle ADC = 180°(ii)

$$\angle ADB = \angle DCE$$

(ii) In ΔABD and ΔDCE

$$BD = CD$$
 (D is mid-point of BC)

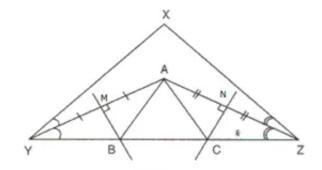
$$\angle ADB = \angle DCE (proved)$$

$$AD = CE$$
 (since $AD = AC$ and $AC = CE$)

Therefore, $\triangle ABD \cong \triangle DCE$

Hence, AB = CE.

Answer 18.



Let M and N be the points where AY and AZ are bisected.

In AABM and ABMY

MY = MA (BM bisects AY)

BM = BM (common)

∠BMY=∠BMA

Therefore, △ABM ≅ △BMY

Hence, $YB = AB \dots (i)$

In ΔACN and ΔCNZ

NZ = NA (CN bisects AZ)

CN = CN (common)

 $\angle CAN = \angle CNZ$

Therefore, △ACN ≅ △CNZ

Hence, CZ = AC(ii)

YZ = YB + BC + CZ

Substituting from (i) and (ii)

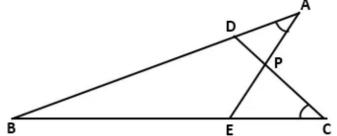
YZ = AB + BC + AC

Hence, YZ is equal to the perimeter of ΔABC

Answer 19.

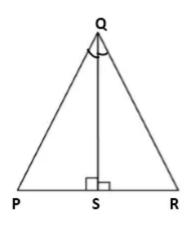
```
In \triangle PQR, let \angle PQR = x
  PQ = PR
 \Rightarrow \angle PQR = \angle PRQ = x \dots(i)
 In ΔRNS,
 \angle NRS = \angle PRQ = x ......(vertically opposite angles)
\angle RNS = 90^{\circ}
                              (given)
\angle NSR + \angle RNS + \angle NRS = 180^{\circ}
\angle NSR + 90^{\circ} + x = 180^{\circ}
\angle NSR = 90^{\circ} - x ......(ii)
Now in Quadrilateral PTRS
\angle PTS = 90^{\circ} (given)
\angle TPR = \angle PQR + \angle PRQ = 2x (exterior angle to triangle PQR)
\angle PRS = 180^{\circ} - \angle PRQ = 180^{\circ} - x (QRS is a st. Line)
\angle PTS + \angle TPR + \angle PRS + \angle TSR = 360^{\circ} (angles of a quad. = 360°)
90^{\circ} + 2x + 180^{\circ} - x + \angle TSR = 360^{\circ}
\angle TSR = 90^{\circ} - x .....(iii)
From (ii) and (iii)
\angle TSR = \angle NSR
Therefore, QS bisects \angle TSN.
```

Answer 20.



Join DE and AC. In ΔAPD and ΔEPC, ZDAP = ZECP $....(\because \angle BAE = \angle BCD)$ AP = CP....(given)(vertically opposite angles) $\angle APD = \angle EPC$ ∴ ΔAPD ≅ ΔEPC(By ASA Congruence criterion) ⇒ AD = EC(c.p.c.t) In ∆APC, AP = CP....(given) ⇒ ∠PAC = ∠PCA(angles opposite to two equal sides are equal) Now, $\angle BAE = \angle BCD$ and $\angle PAC = \angle PCA$ ⇒ ∠BAC = ∠BCA \Rightarrow BC = BA(sides opposite to two equal angles are equal) \Rightarrow BE + EC = BD + DA ⇒BE = BD(::EC = DA) \Rightarrow \angle BDE = \angle BED(angles opposite to two equal sides are equal) \Rightarrow \triangle BDE is an isosceles triangle.

Answer 21.



```
In \triangle PQS and \triangle SQR, QS = QS ....[Common] \angle QSP = \angle QSR ....[each = 90^{\circ}] \angle PQS = \angle RQS ....[given] \therefore \triangle PQS \cong \triangle SQR ....[By ASA criterion] \Rightarrow PS = RS \Rightarrow x + 1 = y + 2 \Rightarrow x = y + 1 ....(i)
```

```
And PQ = SQ

\Rightarrow 3x + 1 = 5y - 2

\Rightarrow 3(y + 1) + 1 = 5y - 2 ....[From (i)]

\Rightarrow 3y + 3 + 1 = 5y - 2

\Rightarrow 3y + 4 = 5y - 2

\Rightarrow 2y = 6

\Rightarrow y = 3

Putting y = 3 in (i),

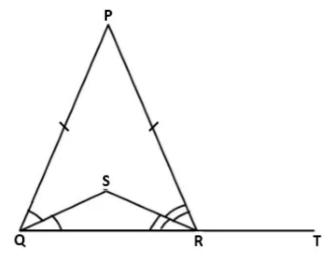
x = y + 1 = 3 + 1 = 4
```

Answer 22A.

```
a.
In ΔPQS,
PQ = QS
                      ....(gi ven)
\Rightarrow \angle QSP = \angle QPS ....(angles opposite to two equal sides are equal)
Now, ∠PQS+QSP+∠QPS=180°
\Rightarrow 60° + 2\angle QSP = 180°
⇒ 2∠QSP = 120°
⇒∠QSP = 60°
⇒∠QPS = 60°
In ΔPRS,
PS = SR
                     ....(given)
\Rightarrow \anglePRS = \angleRPS ....(angles opposite to two equal sides are equal)
By exterior angle property,
\angleQSP = \angleRPS + \anglePRS
⇒ 60° = 2∠RPS
⇒ ∠RPS = 30°
Now, \angle QPR = \angle QPS + \angle RPS = 60^{\circ} + 30^{\circ} = 90^{\circ}
Ь.
In ΔPQS,
\angle PQS = 60^{\circ}, \angle QPS = 60^{\circ} and \angle QSP = 60^{\circ}
\Rightarrow \Delta PQS is an equilateral triangle.
⇒PQ = QS = PS
And, PS = SR
\Rightarrow PQ = PS = QS = SR
```

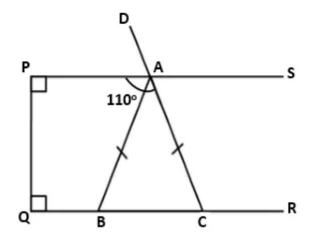
Answer 23.

∠QSR = ∠PRT



```
Let \angle PQS = \angle SQR = x and \angle PRS = \angle SRQ = y
In ΔPQR,
\angleQPR + \anglePQR + \anglePRQ = 180°
\Rightarrow \angleQPR + 2x + 2y = 180°
\Rightarrow \angle QPR = 180^{\circ} - 2x - 2y \dots (i)
Since PQ = PR,
\angle PRQ = \angle PQR ....(angles opposite to two equal sides are equal)
\Rightarrow 2x = 2y
\Rightarrow x = y
Now, \angle PRT = \angle PQR + \angle QPR ....(by exterior angle property)
\Rightarrow \anglePRT = 2x + 180° - 2x - 2y ....[From (i)]
                                            ....(ii)
\Rightarrow \angle PRT = 180^{\circ} - 2y
In ΔSQR,
\angleQSR + \angleSQR + \angleSRQ = 180°
\Rightarrow \angle QSR + x + y = 180^{\circ}
\Rightarrow \angle QSR = 180^{\circ} - \times - y
\Rightarrow \angle QSR = 180^{\circ} - y - y ....[\because x = y \text{ (proved)}]
⇒∠QSR = 180° - 2y
                                        ....(iii)
From (ii) and (iii),
```

Answer 24.



Given: ∠PAC = 110°

To find:

Base angles: ∠ABC and ∠ACB

Vertex angle: ∠BAC In quadrilateral APQC,

 $\angle APQ + \angle PQC + \angle ACQ + \angle PAC = 360^{\circ}$

⇒∠ACQ = 70°

 \Rightarrow \angle ACB = 70°(i)

In AABC,

AB = AC(given)

 \Rightarrow \angle ACB = \angle ABC(angles opposite to two equal sides are equal)

 $\Rightarrow \angle ABC = 70^{\circ}$ [From (i)]

In ∆ABC,

 \angle ABC + \angle ACB + \angle BAC = 180°(angle sum property)

 \Rightarrow 70° + 70° + \angle BAC = 180°

⇒ ∠BAC = 180° - 140°

⇒∠BAC = 40°