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Simple Harmonic Motion

At first sight the eight physical systems in Figure 1.1 appear to have little in common.

1.1(a) is a simple pendulum, a mass m swinging at the end of a light rigid rod of length l.

1.1(b) is a flat disc supported by a rigid wire through its centre and oscillating through

small angles in the plane of its circumference.

1.1(c) is a mass fixed to a wall via a spring of stiffness s sliding to and fro in the x

direction on a frictionless plane.

1.1(d) is a mass m at the centre of a light string of length 2l fixed at both ends under a

constant tension T. The mass vibrates in the plane of the paper.

1.1(e) is a frictionless U-tube of constant cross-sectional area containing a length l of

liquid, density �, oscillating about its equilibrium position of equal levels in each

limb.

1.1(f ) is an open flask of volume V and a neck of length l and constant cross-sectional

area A in which the air of density � vibrates as sound passes across the neck.

1.1(g) is a hydrometer, a body of mass m floating in a liquid of density � with a neck of

constant cross-sectional area cutting the liquid surface. When depressed slightly

from its equilibrium position it performs small vertical oscillations.

1.1(h) is an electrical circuit, an inductance L connected across a capacitance C carrying

a charge q.

All of these systems are simple harmonic oscillators which, when slightly disturbed from

their equilibrium or rest postion, will oscillate with simple harmonic motion. This is the

most fundamental vibration of a single particle or one-dimensional system. A small

displacement x from its equilibrium position sets up a restoring force which is proportional

to x acting in a direction towards the equilibrium position.

Thus, this restoring force F may be written

F ¼ �sx

where s, the constant of proportionality, is called the stiffness and the negative sign shows

that the force is acting against the direction of increasing displacement and back towards
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the equilibrium position. A constant value of the stiffness restricts the displacement x to

small values (this is Hooke’s Law of Elasticity). The stiffness s is obviously the restoring

force per unit distance (or displacement) and has the dimensions

force

distance
� MLT �2

L

The equation of motion of such a disturbed system is given by the dynamic balance

between the forces acting on the system, which by Newton’s Law is

mass times acceleration ¼ restoring force

or

m€xx ¼ �sx

where the acceleration

€xx ¼ d2x

dt 2

This gives

m€xxþ sx ¼ 0

c

q

L

x

A

m

p

(h)(g)

mx + Apgx = 0
..

ω2 = A pg/m

Lq +
q
c = 0

..

ω2 = 
1
Lc

Figure 1.1 Simple harmonic oscillators with their equations of motion and angular frequencies ! of
oscillation. (a) A simple pendulum. (b) A torsional pendulum. (c) A mass on a frictionless plane
connected by a spring to a wall. (d) A mass at the centre of a string under constant tension T. (e) A
fixed length of non-viscous liquid in a U-tube of constant cross-section. (f ) An acoustic Helmholtz
resonator. (g) A hydrometer mass m in a liquid of density �. (h) An electrical L C resonant circuit
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or

€xxþ s

m
x ¼ 0

where the dimensions of

s

m
are

MLT �2

ML
¼ T �2 ¼ � 2

Here T is a time, or period of oscillation, the reciprocal of � which is the frequency with

which the system oscillates.

However, when we solve the equation of motion we shall find that the behaviour of x

with time has a sinusoidal or cosinusoidal dependence, and it will prove more appropriate

to consider, not �, but the angular frequency ! ¼ 2�� so that the period

T ¼ 1

�
¼ 2�

ffiffiffiffi
m

s

r

where s=m is now written as !2. Thus the equation of simple harmonic motion

€xxþ s

m
x ¼ 0

becomes

€xxþ !2x ¼ 0 ð1:1Þ

(Problem 1.1)

Displacement in Simple Harmonic Motion

The behaviour of a simple harmonic oscillator is expressed in terms of its displacement x

from equilibrium, its velocity _xx, and its acceleration €xx at any given time. If we try the solution

x ¼ A cos!t

where A is a constant with the same dimensions as x, we shall find that it satisfies the

equation of motion

€xxþ !2x ¼ 0

for

_xx ¼ �A! sin!t

and

€xx ¼ �A!2 cos!t ¼ �!2x
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Another solution

x ¼ B sin!t

is equally valid, where B has the same dimensions as A, for then

_xx ¼ B! cos!t

and

€xx ¼ �B!2 sin!t ¼ �!2x

The complete or general solution of equation (1.1) is given by the addition or

superposition of both values for x so we have

x ¼ A cos!t þ B sin!t ð1:2Þ

with

€xx ¼ �!2ðA cos!t þ B sin!tÞ ¼ �!2x

where A and B are determined by the values of x and _xx at a specified time. If we rewrite the

constants as

A ¼ a sin� and B ¼ a cos�

where � is a constant angle, then

A2 þ B2 ¼ a2ðsin2�þ cos2�Þ ¼ a2

so that

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
and

x ¼ a sin� cos!t þ a cos� sin!t

¼ a sin ð!t þ �Þ

The maximum value of sin (!t þ �) is unity so the constant a is the maximum value of x,

known as the amplitude of displacement. The limiting values of sin ð!t þ �Þ are �1 so the

system will oscillate between the values of x ¼ �a and we shall see that the magnitude of a

is determined by the total energy of the oscillator.

The angle � is called the ‘phase constant’ for the following reason. Simple harmonic

motion is often introduced by reference to ‘circular motion’ because each possible value of

the displacement x can be represented by the projection of a radius vector of constant

length a on the diameter of the circle traced by the tip of the vector as it rotates in a positive
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anticlockwise direction with a constant angular velocity !. Each rotation, as the radius

vector sweeps through a phase angle of 2� rad, therefore corresponds to a complete

vibration of the oscillator. In the solution

x ¼ a sin ð!t þ �Þ

the phase constant �, measured in radians, defines the position in the cycle of oscillation at

the time t ¼ 0, so that the position in the cycle from which the oscillator started to move is

x ¼ a sin�

The solution

x ¼ a sin!t

defines the displacement only of that system which starts from the origin x ¼ 0 at time

t ¼ 0 but the inclusion of � in the solution

x ¼ a sin ð!t þ �Þ

where � may take all values between zero and 2� allows the motion to be defined from any

starting point in the cycle. This is illustrated in Figure 1.2 for various values of �.

(Problems 1.2, 1.3, 1.4, 1.5)

Velocity and Acceleration in Simple Harmonic Motion

The values of the velocity and acceleration in simple harmonic motion for

x ¼ a sin ð!t þ �Þ
are given by

dx

dt
¼ _xx ¼ a! cos ð!t þ �Þ
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Figure 1.2 Sinusoidal displacement of simple harmonic oscillator with time, showing variation of
starting point in cycle in terms of phase angle �
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and

d2x

dt 2
¼ €xx ¼ �a!2 sin ð!t þ �Þ

The maximum value of the velocity a! is called the velocity amplitude and the

acceleration amplitude is given by a!2.

From Figure 1.2 we see that a positive phase angle of �=2 rad converts a sine into a

cosine curve. Thus the velocity

_xx ¼ a! cos ð!t þ �Þ

leads the displacement

x ¼ a sinð!t þ �Þ

by a phase angle of �=2 rad and its maxima and minima are always a quarter of a cycle

ahead of those of the displacement; the velocity is a maximum when the displacement is

zero and is zero at maximum displacement. The acceleration is ‘anti-phase’ (� rad) with

respect to the displacement, being maximum positive when the displacement is maximum

negative and vice versa. These features are shown in Figure 1.3.

Often, the relative displacement or motion between two oscillators having the same

frequency and amplitude may be considered in terms of their phase difference �1 � �2

which can have any value because one system may have started several cycles before the

other and each complete cycle of vibration represents a change in the phase angle of

� ¼ 2�. When the motions of the two systems are diametrically opposed; that is, one has

x = a sin(ωt +  )

x = aω cos(ωt +  )
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Figure 1.3 Variation with time of displacement, velocity and acceleration in simple harmonic
motion. Displacement lags velocity by �=2 rad and is � rad out of phase with the acceleration. The
initial phase constant � is taken as zero
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x ¼ þa whilst the other is at x ¼ �a, the systems are ‘anti-phase’ and the total phase

difference

�1 � �2 ¼ n� rad

where n is an odd integer. Identical systems ‘in phase’ have

�1 � �2 ¼ 2n� rad

where n is any integer. They have exactly equal values of displacement, velocity and

acceleration at any instant.

(Problems 1.6, 1.7, 1.8, 1.9)

Non-linearity

If the stiffness s is constant, then the restoring force F ¼ �sx, when plotted versus x, will

produce a straight line and the system is said to be linear. The displacement of a linear

simple harmonic motion system follows a sine or cosine behaviour. Non-linearity results

when the stiffness s is not constant but varies with displacement x (see the beginning of

Chapter 14).

Energy of a Simple Harmonic Oscillator

The fact that the velocity is zero at maximum displacement in simple harmonic motion and

is a maximum at zero displacement illustrates the important concept of an exchange

between kinetic and potential energy. In an ideal case the total energy remains constant but

this is never realized in practice. If no energy is dissipated then all the potential energy

becomes kinetic energy and vice versa, so that the values of (a) the total energy at any time,

(b) the maximum potential energy and (c) the maximum kinetic energy will all be equal;

that is

E total ¼ KEþ PE ¼ KEmax ¼ PEmax

The solution x ¼ a sin (!t þ �) implies that the total energy remains constant because the

amplitude of displacement x ¼ �a is regained every half cycle at the position of maximum

potential energy; when energy is lost the amplitude gradually decays as we shall see later in

Chapter 2. The potential energy is found by summing all the small elements of work sx. dx

(force sx times distance dx) done by the system against the restoring force over the range

zero to x where x ¼ 0 gives zero potential energy.

Thus the potential energy¼ ð x
0

sx � dx ¼ 1
2
sx2

The kinetic energy is given by 1
2
m _xx2 so that the total energy

E ¼ 1
2
m _xx2 þ 1

2
sx2
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Since E is constant we have

dE

dt
¼ ðm€xxþ sxÞ _xx ¼ 0

giving again the equation of motion

m€xxþ sx ¼ 0

The maximum potential energy occurs at x ¼ �a and is therefore

PEmax ¼ 1
2
sa2

The maximum kinetic energy is

KEmax ¼ ð1
2
m _xx2Þmax ¼ 1

2
ma2!2½cos2ð!t þ �Þ�max

¼ 1
2
ma2!2

when the cosine factor is unity.

But m!2 ¼ s so the maximum values of the potential and kinetic energies are equal,

showing that the energy exchange is complete.

The total energy at any instant of time or value of x is

E ¼ 1
2
m _xx2 þ 1

2
sx2

¼ 1
2
ma2!2½cos2ð!t þ �Þ þ sin2ð!t þ �Þ�

¼ 1
2
ma2!2

¼ 1
2
sa2

as we should expect.

Figure 1.4 shows the distribution of energy versus displacement for simple harmonic

motion. Note that the potential energy curve

PE ¼ 1
2
sx2 ¼ 1

2
ma2!2 sin2ð!t þ �Þ

is parabolic with respect to x and is symmetric about x ¼ 0, so that energy is stored in the

oscillator both when x is positive and when it is negative, e.g. a spring stores energy

whether compressed or extended, as does a gas in compression or rarefaction. The kinetic

energy curve

KE ¼ 1
2
m _xx2 ¼ 1

2
ma2!2 cos2ð!t þ �Þ

is parabolic with respect to both x and _xx. The inversion of one curve with respect to the

other displays the �=2 phase difference between the displacement (related to the potential

energy) and the velocity (related to the kinetic energy).

For any value of the displacement x the sum of the ordinates of both curves equals the

total constant energy E.

Energy of a Simple Harmonic Oscillator 9



(Problems 1.10, 1.11, 1.12)

Simple Harmonic Oscillations in an Electrical System

So far we have discussed the simple harmonic motion of the mechanical and fluid systems

of Figure 1.1, chiefly in terms of the inertial mass stretching the weightless spring of

stiffness s. The stiffness s of a spring defines the difficulty of stretching; the reciprocal of

the stiffness, the compliance C (where s ¼ 1=C) defines the ease with which the spring is

stretched and potential energy stored. This notation of compliance C is useful when

discussing the simple harmonic oscillations of the electrical circuit of Figure 1.1(h) and

Figure 1.5, where an inductance L is connected across the plates of a capacitance C. The

force equation of the mechanical and fluid examples now becomes the voltage equation

E
ne
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Total energy E = KE + PE
E
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E
2
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KE =    mx 

2

1
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= E −    sx 
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2
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Displacement

Figure 1.4 Parabolic representation of potential energy and kinetic energy of simple harmonic
motion versus displacement. Inversion of one curve with respect to the other shows a 90� phase
difference. At any displacement value the sum of the ordinates of the curves equals the total
constant energy E

I +

+
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− q
c

Lq + 
q
c = 0

L
dI
dt

Figure 1.5 Electrical system which oscillates simple harmonically. The sum of the voltages around
the circuit is given by Kirchhoff’s law as L dI=dt þ q=C ¼ 0
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(balance of voltages) of the electrical circuit, but the form and solution of the equations and

the oscillatory behaviour of the systems are identical.

In the absence of resistance the energy of the electrical system remains constant and is

exchanged between the magnetic field energy stored in the inductance and the electric field

energy stored between the plates of the capacitance. At any instant, the voltage across the

inductance is

V ¼ �L
dI

dt
¼ �L

d2q

dt 2

where I is the current flowing and q is the charge on the capacitor, the negative sign

showing that the voltage opposes the increase of current. This equals the voltage q=C
across the capacitance so that

L€qqþ q=C ¼ 0 ðKirchhoff’s LawÞ

or

€qqþ !2q ¼ 0

where

!2 ¼ 1

LC

The energy stored in the magnetic field or inductive part of the circuit throughout the

cycle, as the current increases from 0 to I, is formed by integrating the power at any instant

with respect to time; that is

EL ¼
ð
VI � dt

(where V is the magnitude of the voltage across the inductance).

So

EL ¼
ð
VI dt ¼

ð
L
dI

dt
I dt ¼

ð I
0

LI dI

¼ 1
2
LI 2 ¼ 1

2
L _qq2

The potential energy stored mechanically by the spring is now stored electrostatically by

the capacitance and equals

1
2
CV 2 ¼ q2

2C
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Comparison between the equations for the mechanical and electrical oscillators

mechanical (force) ! m€xxþ sx ¼ 0

electrical (voltage) ! L€qqþ q

C
¼ 0

mechanical (energy) ! 1
2
m _xx2 þ 1

2
sx2 ¼ E

electrical (energy) ! 1

2
L _qq2 þ 1

2

q2

C
¼ E

shows that magnetic field inertia (defined by the inductance L) controls the rate of change

of current for a given voltage in a circuit in exactly the same way as the inertial mass

controls the change of velocity for a given force. Magnetic inertial or inductive behaviour

arises from the tendency of the magnetic flux threading a circuit to remain constant and

reaction to any change in its value generates a voltage and hence a current which flows to

oppose the change of flux. This is the physical basis of Fleming’s right-hand rule.

Superposition of Two Simple Harmonic Vibrations in One
Dimension

(1) Vibrations Having Equal Frequencies

In the following chapters we shall meet physical situations which involve the superposition

of two or more simple harmonic vibrations on the same system.

We have already seen how the displacement in simple harmonic motion may be

represented in magnitude and phase by a constant length vector rotating in the positive

(anticlockwise) sense with a constant angular velocity !. To find the resulting motion of a

system which moves in the x direction under the simultaneous effect of two simple

harmonic oscillations of equal angular frequencies but of different amplitudes and phases,

we can represent each simple harmonic motion by its appropriate vector and carry out a

vector addition.

If the displacement of the first motion is given by

x1 ¼ a1 cos ð!t þ �1Þ

and that of the second by

x2 ¼ a2 cos ð!t þ �2Þ

then Figure 1.6 shows that the resulting displacement amplitude R is given by

R2 ¼ ða1 þ a2 cos �Þ2 þ ða2 sin �Þ2

¼ a2
1 þ a2

2 þ 2a1a2 cos �

where � ¼ �2 � �1 is constant.
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The phase constant � of R is given by

tan � ¼ a1 sin�1 þ a2 sin�2

a1 cos�1 þ a2 cos�2

so the resulting simple harmonic motion has a displacement

x ¼ R cos ð!t þ �Þ

an oscillation of the same frequency ! but having an amplitude R and a phase constant �.

(Problem 1.13)

(2) Vibrations Having Different Frequencies

Suppose we now consider what happens when two vibrations of equal amplitudes but

different frequencies are superposed. If we express them as

x1 ¼ a sin!1t

and

x2 ¼ a sin!2t

where

!2 > !1

y

x

a2

a1

R a2

  2

a2 sin δ

a2 cos δ
  2 −   1 = δ

φ θ

φ φ

f1

Figure 1.6 Addition of vectors, each representing simple harmonic motion along the x axis at
angular frequency ! to give a resulting simple harmonic motion displacement x ¼ R cos ð!t þ �Þ ---
here shown for t ¼ 0
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then the resulting displacement is given by

x ¼ x1 þ x2 ¼ aðsin!1t þ sin!2tÞ

¼ 2a sin
ð!1 þ !2Þt

2
cos

ð!2 � !1Þt
2

This expression is illustrated in Figure 1.7. It represents a sinusoidal oscillation at the

average frequency ð!1 þ !2Þ=2 having a displacement amplitude of 2a which modulates;

that is, varies between 2a and zero under the influence of the cosine term of a much slower

frequency equal to half the difference ð!2 � !1Þ=2 between the original frequencies.

When !1 and !2 are almost equal the sine term has a frequency very close to both !1

and !2 whilst the cosine envelope modulates the amplitude 2a at a frequency (!2 � !1)=2
which is very slow.

Acoustically this growth and decay of the amplitude is registered as ‘beats’ of strong

reinforcement when two sounds of almost equal frequency are heard. The frequency of the

‘beats’ is ð!2 � !1Þ, the difference between the separate frequencies (not half the

difference) because the maximum amplitude of 2a occurs twice in every period associated

with the frequency (!2 � !1Þ=2. We shall meet this situation again when we consider

the coupling of two oscillators in Chapter 4 and the wave group of two components in

Chapter 5.

2a

2a
x

ω2 − ω1

2
t

ωt

cos

ω2 + ω1

2
tsin

Figure 1.7 Superposition of two simple harmonic displacements x1 ¼ a sin! 1t and x 2 ¼ a sin! 2t
when !2 > !1. The slow cos ½ð!2 � !1Þ=2�t envelope modulates the sin ½ð!2 þ !1Þ=2�t curve
between the values x ¼ �2a
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Superposition of Two Perpendicular Simple Harmonic
Vibrations

(1) Vibrations Having Equal Frequencies

Suppose that a particle moves under the simultaneous influence of two simple harmonic

vibrations of equal frequency, one along the x axis, the other along the perpendicular y axis.

What is its subsequent motion?

This displacements may be written

x ¼ a1 sin ð!t þ �1Þ
y ¼ a2 sin ð!t þ �2Þ

and the path followed by the particle is formed by eliminating the time t from these

equations to leave an expression involving only x and y and the constants �1 and �2.

Expanding the arguments of the sines we have

x

a1

¼ sin!t cos�1 þ cos!t sin�1

and

y

a2

¼ sin!t cos�2 þ cos!t sin�2

If we carry out the process

x

a1

sin�2 � y

a2

sin�1

� �2

þ y

a2

cos�1 � x

a1

cos�2

� �2

this will yield

x2

a2
1

þ y2

a2
2

� 2xy

a1a2

cos ð�2 � �1Þ ¼ sin2ð�2 � �1Þ ð1:3Þ

which is the general equation for an ellipse.

In the most general case the axes of the ellipse are inclined to the x and y axes, but these

become the principal axes when the phase difference

�2 � �1 ¼ �

2

Equation (1.3) then takes the familiar form

x2

a2
1

þ y2

a2
2

¼ 1

that is, an ellipse with semi-axes a1 and a2.
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If a1 ¼ a2 ¼ a this becomes the circle

x2 þ y2 ¼ a2

When

�2 � �1 ¼ 0; 2�; 4�; etc:

the equation simplifies to

y ¼ a2

a1

x

which is a straight line through the origin of slope a2=a1.

Again for �2 � �1 ¼ �, 3�, 5�, etc., we obtain

y ¼ � a2

a1

x

a straight line through the origin of equal but opposite slope.

The paths traced out by the particle for various values of � ¼ �2 � �1 are shown in

Figure 1.8 and are most easily demonstrated on a cathode ray oscilloscope.

When

�2 � �1 ¼ 0; �; 2�; etc:

and the ellipse degenerates into a straight line, the resulting vibration lies wholly in one

plane and the oscillations are said to be plane polarized.

δ  =  0 δ  = π
4

δ  =
π
2

δ  = δ  =π3
4

π

δ  = π5
4

δ  = π3
2

δ  = π7
4 δ  =  2π δ  = π

4
9

   2 −   1 = δx = a sin (ωt +  1)

y 
=

 a
 s

in
 (

ω
t +

   
2)

φ φ φ

φ

Figure 1.8 Paths traced by a system vibrating simultaneously in two perpendicular directions with
simple harmonic motions of equal frequency. The phase angle � is the angle by which the y motion
leads the x motion
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Convention defines the plane of polarization as that plane perpendicular to the plane

containing the vibrations. Similarly the other values of

�2 � �1

yield circular or elliptic polarization where the tip of the vector resultant traces out the

appropriate conic section.

(Problems 1.14, 1.15, 1.16)

�Polarization
Polarization is a fundamental topic in optics and arises from the superposition of two

perpendicular simple harmonic optical vibrations. We shall see in Chapter 8 that when a

light wave is plane polarized its electrical field oscillation lies within a single plane and

traces a sinusoidal curve along the direction of wave motion. Substances such as quartz and

calcite are capable of splitting light into two waves whose planes of polarization are

perpendicular to each other. Except in a specified direction, known as the optic axis, these

waves have different velocities. One wave, the ordinary or O wave, travels at the same

velocity in all directions and its electric field vibrations are always perpendicular to the

optic axis. The extraordinary or E wave has a velocity which is direction-dependent. Both

ordinary and extraordinary light have their own refractive indices, and thus quartz and

calcite are known as doubly refracting materials. When the ordinary light is faster, as in

quartz, a crystal of the substance is defined as positive, but in calcite the extraordinary light

is faster and its crystal is negative. The surfaces, spheres and ellipsoids, which are the loci

of the values of the wave velocities in any direction are shown in Figure 1.9(a), and for a

Optic axis

O vibration

E vibration

x
y

x
E ellipsoid

O sphere

z

y

O sphere

E ellipsoid

Optic axis

z

Quartz (+ve)Calcite (−ve)

Figure 1.9a Ordinary (spherical) and extraordinary (elliposoidal) wave surfaces in doubly refracting
calcite and quartz. In calcite the E wave is faster than the O wave, except along the optic axis. In
quartz the O wave is faster. The O vibrations are always perpendicular to the optic axis, and the O and
E vibrations are always tangential to their wave surfaces

�This section may be omitted at a first reading.
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given direction the electric field vibrations of the separate waves are tangential to the

surface of the sphere or ellipsoid as shown. Figure 1.9(b) shows plane polarized light

normally incident on a calcite crystal cut parallel to its optic axis. Within the crystal the

faster E wave has vibrations parallel to the optic axis, while the O wave vibrations are

perpendicular to the plane of the paper. The velocity difference results in a phase gain of

the E vibration over the O vibration which increases with the thickness of the crystal.

Figure 1.9(c) shows plane polarized light normally incident on the crystal of Figure 1.9(b)

with its vibration at an angle of 45� of the optic axis. The crystal splits the vibration into

Plane polarized
light normally
incident

O vibration
    to plane of paper

E vibration Optic
axis

Calcite
crystal

Figure 1.9b Plane polarized light normally incident on a calcite crystal face cut parallel to its optic
axis. The advance of the E wave over the O wave is equivalent to a gain in phase

E
O

45°

E vibration 90°
ahead in phase
of O vibration

O

E (Optic axis)

Calcite
crystal

Optic axis

Phase difference
causes rotation of
resulting electric
field vector

Sinusoidal
vibration of
electric field

Figure 1.9c The crystal of Fig. 1.9c is thick enough to produce a phase gain of �=2 rad in the
E wave over the O wave. Wave recombination on leaving the crystal produces circularly polarized
light
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equal E and O components, and for a given thickness the E wave emerges with a phase gain

of 90� over the O component. Recombination of the two vibrations produces circularly

polarized light, of which the electric field vector now traces a helix in the anticlockwise

direction as shown.

(2) Vibrations Having Different Frequencies (Lissajous Figures)

When the frequencies of the two perpendicular simple harmonic vibrations are not equal

the resulting motion becomes more complicated. The patterns which are traced are called

Lissajous figures and examples of these are shown in Figure 1.10 where the axial

frequencies bear the simple ratios shown and

� ¼ �2 � �1 ¼ 0 (on the left)

¼ �

2
(on the right)

If the amplitudes of the vibrations are respectively a and b the resulting Lissajous figure

will always be contained within the rectangle of sides 2a and 2b. The sides of the rectangle

will be tangential to the curve at a number of points and the ratio of the numbers of these

tangential points along the x axis to those along the y axis is the inverse of the ratio of the

corresponding frequencies (as indicated in Figure 1.10).

2a

2b

2b

2a

2b

2a

2a

2b

ωx

ωy
= 3ωx

ωy
= 2

ωy

ωx
= 3ωy

ωx
= 2

δ = 0

π
2

δ =

Figure 1.10 Simple Lissajous figures produced by perpendicular simple harmonic motions of
different angular frequencies

Polarization 19



SuperpositionofaLargeNumbernofSimpleHarmonicVibrations
of Equal Amplitude a and Equal Successive Phase Difference d

Figure 1.11 shows the addition of n vectors of equal length a, each representing a simple

harmonic vibration with a constant phase difference � from its neighbour. Two general

physical situations are characterized by such a superposition. The first is met in Chapter 5

as a wave group problem where the phase difference � arises from a small frequency

difference, �!, between consecutive components. The second appears in Chapter 12 where

the intensity of optical interference and diffraction patterns are considered. There, the

superposed harmonic vibrations will have the same frequency but each component will have

a constant phase difference from its neighbour because of the extra distance it has travelled.

The figure displays the mathematical expression

R cos ð!t þ �Þ ¼ a cos!t þ a cos ð!t þ �Þ þ a cos ð!t þ 2�Þ
þ � � � þ a cos ð!t þ ½n� 1��Þ

A
Ba

a

a

a

a

a

a

C
r

O

rr

α δ

δ

δ
δ

δ

δ

δ

δ

90° −
290° − 2

n δ

n δ

2n δ

R = 2r
 si

n

2
 δa = 2r sin

Figure 1.11 Vector superposition of a large number n of simple harmonic vibrations of equal
amplitude a and equal successive phase difference �. The amplitude of the resultant

R ¼ 2r sin
n�

2
¼ a

sin n�=2

sin �=2

and its phase with respect to the first contribution is given by

� ¼ ðn� 1Þ�=2
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where R is the magnitude of the resultant and � is its phase difference with respect to the

first component a cos!t.
Geometrically we see that each length

a ¼ 2r sin
�

2

where r is the radius of the circle enclosing the (incomplete) polygon.

From the isosceles triangle OAC the magnitude of the resultant

R ¼ 2r sin
n�

2
¼ a

sin n�=2

sin �=2

and its phase angle is seen to be

� ¼ OÂAB� OÂAC

In the isosceles triangle OAC

ÔOAC ¼ 90� � n�

2

and in the isosceles triangle OAB

OÂAB ¼ 90� � �

2

so

� ¼ 90� � �

2

� �
� 90� � n�

2

� �
¼ ðn� 1Þ �

2

that is, half the phase difference between the first and the last contributions. Hence the

resultant

R cos ð!t þ �Þ ¼ a
sin n�=2

sin �=2
cos !t þ ðn� 1Þ �

2

� �

We shall obtain the same result later in this chapter as an example on the use of exponential

notation.

For the moment let us examine the behaviour of the magnitude of the resultant

R ¼ a
sin n�=2

sin �=2

which is not constant but depends on the value of �. When n is very large � is very small

and the polygon becomes an arc of the circle centre O, of length na ¼ A, with R as the

chord. Then

� ¼ ðn� 1Þ �
2
� n�

2
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and

sin
�

2
! �

2
� �

n

Hence, in this limit,

R ¼ a
sin n�=2

sin �=2
¼ a

sin�

�=n
¼ na

sin�

�
¼ A sin�

�

The behaviour of A sin�=� versus � is shown in Figure 1.12. The pattern is symmetric

about the value � ¼ 0 and is zero whenever sin � ¼ 0 except at � ! 0 that is, when sin

�=� ! 1. When � ¼ 0, � ¼ 0 and the resultant of the n vectors is the straight line of length

A, Figure 1.12(b). As � increases A becomes the arc of a circle until at � ¼ �=2 the first and
last contributions are out of phase ð2� ¼ �Þ and the arc A has become a semicircle of

which the diameter is the resultant R Figure 1.12(c). A further increase in � increases � and

curls the constant length A into the circumference of a circle (� ¼ �) with a zero resultant,

Figure 1.12(d). At � ¼ 3�=2, Figure 1.12(e) the length A is now 3/2 times the

circumference of a circle whose diameter is the amplitude of the first minimum.

�Superposition of n Equal SHM Vectors of Length a with
Random Phase

When the phase difference between the successive vectors of the last section may take

random values � between zero and 2� (measured from the x axis) the vector superposition

and resultant R may be represented by Figure 1.13.

(b)
(c)

(e)
(d)

0

R A

2A

A

A=na

A =

R =

α

α

2ππ π

π

2

2

π
23

3 circumference

A sinα

Figure 1.12 (a) Graph of A sin �=� versus �, showing the magnitude of the resultants for (b)
� ¼ 0; (c) � ¼ �/2; (d) � ¼ � and (e) � ¼ 3�/2

�This section may be omitted at a first reading.
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The components of R on the x and y axes are given by

Rx ¼ a cos�1 þ a cos�2 þ a cos�3 . . . a cos�n

¼ a
Xn
i¼1

cos� i

and

Ry ¼ a
Xn
i¼1

sin� i

where

R2 ¼ R2
x þ R2

y

Now

R2
x ¼ a2

Xn
i¼1

cos� i

 !2

¼ a2
Xn
i¼1

cos2 � i þ
Xn
i¼1
i 6¼j

cos� i

Xn
j¼1

cos� j

2
4

3
5

In the typical term 2 cos � i cos � j of the double summation, cos � i and cos � j have random

values between � 1 and the averaged sum of sets of these products is effectively zero.

The summation

Xn
i¼1

cos2 � i ¼ n cos2 �

R

x

y

Figure 1.13 The resultant R ¼ ffiffiffi
n

p
a of n vectors, each of length a, having random phase. This result

is important in optical incoherence and in energy loss from waves from random dissipation processes
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that is, the number of terms n times the average value cos2 � which is the integrated value

of cos2 � over the interval zero to 2� divided by the total interval 2�, or

cos2 � ¼ 1

2�

ð 2�
0

cos2 � d� ¼ 1

2
¼ sin2 �

So

R2
x ¼ a2

Xn
i¼1

cos2 � i ¼ na2cos2 � i ¼ na2

2

and

R2
y ¼ a2

Xn
i¼1

sin2 � i ¼ na2sin2 � i ¼ na2

2

giving

R2 ¼ R2
x þ R2

y ¼ na2

or

R ¼ ffiffiffi
n

p
a

Thus, the amplitude R of a system subjected to n equal simple harmonic motions of

amplitude a with random phases in only
ffiffiffi
n

p
a whereas, if the motions were all in phase R

would equal na.

Such a result illustrates a very important principle of random behaviour.

(Problem 1.17)

Applications

Incoherent Sources in Optics The result above is directly applicable to the problem of

coherence in optics. Light sources which are in phase are said to be coherent and this

condition is essential for producing optical interference effects experimentally. If the

amplitude of a light source is given by the quantity a its intensity is proportional to a2, n

coherent sources have a resulting amplitude na and a total intensity n2a2. Incoherent

sources have random phases, n such sources each of amplitude a have a resulting amplitudeffiffiffi
n

p
a and a total intensity of na2.

Random Processes and Energy Absorption From our present point of view the

importance of random behaviour is the contribution it makes to energy loss or absorption

from waves moving through a medium. We shall meet this in all the waves we discuss.
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Random processes, for example collisions between particles, in Brownian motion, are of

great significance in physics. Diffusion, viscosity or frictional resistance and thermal

conductivity are all the result of random collision processes. These energy dissipating

phenomena represent the transport of mass, momentum and energy, and change only in the

direction of increasing disorder. They are known as ‘thermodynamically irreversible’

processes and are associated with the increase of entropy. Heat, for example, can flow only

from a body at a higher temperature to one at a lower temperature. Using the earlier

analysis where the length a is no longer a simple harmonic amplitude but is now the

average distance a particle travels between random collisions (its mean free path), we see

that after n such collisions (with, on average, equal time intervals between collisions) the

particle will, on average, have travelled only a distance
ffiffiffi
n

p
a from its position at time t ¼ 0,

so that the distance travelled varies only with the square root of the time elapsed instead of

being directly proportional to it. This is a feature of all random processes.

Not all the particles of the system will have travelled a distance
ffiffiffi
n

p
a but this distance is

the most probable and represents a statistical average.

Random behaviour is described by the diffusion equation (see the last section of

Chapter 7) and a constant coefficient called the diffusivity of the process will always

arise. The dimensions of a diffusivity are always length2/time and must be interpreted in

terms of a characteristic distance of the process which varies only with the square root of

time.

Some Useful Mathematics

The Exponential Series

By a ‘natural process’ of growth or decay we mean a process in which a quantity changes

by a constant fraction of itself in a given interval of space or time. A 5% per annum

compound interest represents a natural growth law; attenuation processes in physics usually

describe natural decay.

The law is expressed differentially as

dN

N
¼ �� dx or

dN

N
¼ �� dt

where N is the changing quantity, � is a constant and the positive and negative signs

represent growth and decay respectively. The derivatives dN/dx or dN/dt are therefore

proportional to the value of N at which the derivative is measured.

Integration yields N ¼ N0e
��x or N ¼ N0e

��t where N0 is the value at x or t ¼ 0 and e

is the exponential or the base of natural logarithms. The exponential series is defined as

e x ¼ 1þ xþ x2

2!
þ x3

3!
þ � � � þ xn

n!
þ � � �

and is shown graphically for positive and negative x in Figure 1.14. It is important to note

that whatever the form of the index of the logarithmic base e, it is the power to which the
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base is raised, and is therefore always non-dimensional. Thus e�x is non-dimensional and �
must have the dimensions of x�1. Writing

e�x ¼ 1þ �xþ ð�xÞ2
2!

þ ð�xÞ3
3!

þ � � �

it follows immediately that

d

dx
ðe�xÞ ¼ �þ 2�2

2!
xþ 3�3

3!
x2 þ � � �

¼ � 1þ �xþ ð�xÞ2
2!

þ ð�xÞ3
3!

!
þ � � �

" #

¼ �e�x

Similarly

d2

dx2
ðe� xÞ ¼ �2 e� x

In Chapter 2 we shall use d(e�t)=dt ¼ � e�t and d2 (e�t)=dt 2 ¼ �2 e�t on a number of

occasions.

By taking logarithms it is easily shown that e x e y ¼ e xþy since loge ðe x e yÞ ¼
loge e

x þ loge e
y ¼ xþ y.

The Notation i ¼ ffiffiffiffiffiffiffi�1
p

The combination of the exponential series with the complex number notation i ¼ ffiffiffiffiffiffiffi�1
p

is

particularly convenient in physics. Here we shall show the mathematical convenience in

expressing sine or cosine (oscillatory) behaviour in the form eix ¼ cos xþ i sin x.

0
x

y

1

y = exy = e−x

Figure 1.14 The behaviour of the exponential series y ¼ e x and y ¼ e�x
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In Chapter 3 we shall see the additional merit of i in its role of vector operator.

The series representation of sin x is written

sin x ¼ x� x3

3!
þ x5

5!
� x7

7!
� � �

and that of cos x is

cos x ¼ 1� x2

2!
þ x4

4!
� x6

6!
� � �

Since

i ¼
ffiffiffiffiffiffiffi
�1

p
; i2 ¼ �1; i3 ¼ �i

etc. we have

eix ¼ 1þ ixþ ðixÞ2
2!

þ ðixÞ3
3!

þ ðixÞ4
4!

þ � � �

¼ 1þ ix� x2

2!
� ix3

3!
þ x4

4!
þ � � �

¼ 1� x2

2!
þ x4

4!
þ i x� x3

3!
þ x5

5!
þ � � �

� �
¼ cos xþ i sin x

We also see that

d

dx
ðeixÞ ¼ i e ix ¼ i cos x� sin x

Often we shall represent a sine or cosine oscillation by the form eix and recover the original

form by taking that part of the solution preceded by i in the case of the sine, and the real

part of the solution in the case of the cosine.

Examples

(1) In simple harmonic motion (€xxþ !2x ¼ 0) let us try the solution x ¼ a ei!t e i�, where a

is a constant length, and � (and therefore e i�) is a constant.

dx

dt
¼ _xx ¼ i!a ei!t ei� ¼ i!x

d2x

dt 2
¼ €xx ¼ i2!2a ei!t ei� ¼ �!2x

Therefore

x ¼ a ei!t ei� ¼ a eið!tþ�Þ

¼ a cos ð!t þ �Þ þ i a sin ð!t þ �Þ

is a complete solution of €xxþ !2x ¼ 0.
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On p. 6 we used the sine form of the solution; the cosine form is equally valid and merely

involves an advance of �=2 in the phase �.
(2)

e ix þ e�ix ¼ 2 1� x2

2!
þ x4

4!
� � � �

� �
¼ 2 cos x

eix � e�ix ¼ 2i x� x3

3!
þ x5

5!
� � � �

� �
¼ 2i sin x

(3) On p. 21 we used a geometrical method to show that the resultant of the superposed

harmonic vibrations

a cos!t þ a cos ð!t þ �Þ þ a cos ð!t þ 2�Þ þ � � � þ a cos ð!t þ ½n� 1��Þ

¼ a
sin n�=2

sin �=2
cos !t þ n� 1

2

� �
�

� �

We can derive the same result using the complex exponential notation and taking the real

part of the series expressed as the geometrical progression

a ei!t þ a eið!tþ�Þ þ a eið!tþ2�Þ þ � � � þ a ei½!tþðn�1Þ��

¼ a ei!tð1þ zþ z2 þ � � � þ z ðn�1ÞÞ
where z ¼ e i�.

Writing

SðzÞ ¼ 1þ zþ z2 þ � � � þ zn�1

and

z½SðzÞ� ¼ zþ z2 þ � � � þ zn

we have

SðzÞ ¼ 1� zn

1� z
¼ 1� ein�

1� ei�

So

a ei!tSðzÞ ¼ a ei!t
1� ein�

1� ei�

¼ a ei!t
ein�=2ðe�in�=2 � e in�=2Þ
ei�=2ðe�i�=2 � ei�=2Þ

¼ a ei½!tþ
n�1
2ð Þ�� sin n�=2

sin �=2
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with the real part

¼ a cos !t þ n� 1

2

� �
�

� �
sin n�=2

sin �=2

which recovers the original cosine term from the complex exponential notation.

(Problem 1.18)

(4) Suppose we represent a harmonic oscillation by the complex exponential form

z ¼ a ei!t

where a is the amplitude. Replacing i by � i defines the complex conjugate

z� ¼ a e�i!t

The use of this conjugate is discussed more fully in Chapter 3 but here we can note that the

product of a complex quantity and its conjugate is always equal to the square of the

amplitude for

zz� ¼ a2 e i!t e�i!t ¼ a2 e ði�iÞ!t ¼ a2 e0

¼ a2

(Problem 1.19)

Problem 1.1
The equation of motion

m€xx ¼ �sx with !2 ¼ s

m

applies directly to the system in Figure 1.1(c).

If the pendulum bob of Figure 1.1(a) is displaced a small distance x show that the stiffness (restoring

force per unit distance) is mg=l and that !2 ¼ g=l where g is the acceleration due to gravity. Now use

the small angular displacement � instead of x and show that ! is the same.

In Figure 1.1(b) the angular oscillations are rotational so the mass is replaced by the moment of

inertia I of the disc and the stiffness by the restoring couple of the wire which is C rad�1 of angular

displacement. Show that !2 ¼ C=I.

In Figure 1.1(d) show that the stiffness is 2T=l and that !2 ¼ 2T=lm.

In Figure 1.1(e) show that the stiffness of the system in 2�Ag, where A is the area of cross section

and that !2 ¼ 2g=l where g is the acceleration due to gravity.
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In Figure 1.1(f) only the gas in the flask neck oscillates, behaving as a piston of mass �Al. If the
pressure changes are calculated from the equation of state use the adiabatic relation pV � ¼ constant

and take logarithms to show that the pressure change in the flask is

dp ¼ ��p
dV

V
¼ ��p

Ax

V
;

where x is the gas displacement in the neck. Hence show that !2 ¼ �pA=l�V . Note that �p is the

stiffness of a gas (see Chapter 6).

In Figure 1.1(g), if the cross-sectional area of the neck is A and the hydrometer is a distance x above

its normal floating level, the restoring force depends on the volume of liquid displaced (Archimedes’

principle). Show that !2 ¼ g�A=m.

Check the dimensions of !2 for each case.

Problem 1.2
Show by the choice of appropriate values for A and B in equation (1.2) that equally valid solutions

for x are

x ¼ a cos ð!t þ �Þ
x ¼ a sin ð!t � �Þ
x ¼ a cos ð!t � �Þ

and check that these solutions satisfy the equation

€xxþ ! 2x ¼ 0

Problem 1.3
The pendulum in Figure 1.1(a) swings with a displacement amplitude a. If its starting point from rest

is

ðaÞ x ¼ a

ðbÞ x ¼ �a

find the different values of the phase constant � for the solutions

x ¼ a sin ð!t þ �Þ
x ¼ a cos ð!t þ �Þ
x ¼ a sin ð!t � �Þ
x ¼ a cos ð!t � �Þ

For each of the different values of �, find the values of !t at which the pendulum swings through the

positions

x ¼ þa=
ffiffiffi
2

p

x ¼ a=2
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and

x ¼ 0

for the first time after release from

x ¼ �a

Problem 1.4
When the electron in a hydrogen atom bound to the nucleus moves a small distance from its

equilibrium position, a restoring force per unit distance is given by

s ¼ e2=4�	0r
2

where r ¼ 0:05 nm may be taken as the radius of the atom. Show that the electron can oscillate with

a simple harmonic motion with

!0 � 4:5	 10�16 rad s�1

If the electron is forced to vibrate at this frequency, in which region of the electromagnetic spectrum

would its radiation be found?

e ¼ 1:6	 10�19 C; electron mass m e ¼ 9:1	 10�31 kg

	 0 ¼ 8:85	 10�12 N�1 m�2 C2

Problem 1.5
Show that the values of !2 for the three simple harmonic oscillations (a), (b), (c) in the diagram are

in the ratio 1 : 2 : 4.

m

m m

ssss

s

(a) (b) (c)

Problem 1.6
The displacement of a simple harmonic oscillator is given by

x ¼ a sin ð!t þ �Þ

If the oscillation started at time t ¼ 0 from a position x0 with a velocity _xx ¼ v0 show that

tan� ¼ !x0=v 0

and

a ¼ ðx20 þ v 2
0=!

2Þ 1=2
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Problem 1.7
A particle oscillates with simple harmonic motion along the x axis with a displacement amplitude a

and spends a time dt in moving from x to xþ dx. Show that the probability of finding it between x

and xþ dx is given by

dx

�ða2 � x2Þ 1=2

(in wave mechanics such a probability is not zero for x > a).

Problem. 1.8
Many identical simple harmonic oscillators are equally spaced along the x axis of a medium and a

photograph shows that the locus of their displacements in the y direction is a sine curve. If the

distance 
 separates oscillators which differ in phase by 2� radians, what is the phase difference

between two oscillators a distance x apart?

Problem 1.9
A mass stands on a platform which vibrates simple harmonically in a vertical direction at a

frequency of 5 Hz. Show that the mass loses contact with the platform when the displacement

exceeds 10�2m.

Problem 1.10
A massM is suspended at the end of a spring of length l and stiffness s. If the mass of the spring is m

and the velocity of an element dy of its length is proportional to its distance y from the fixed end of

the spring, show that the kinetic energy of this element is

1

2

m

l
dy

� 	 y

l
v

� 	 2

where v is the velocity of the suspended mass M. Hence, by integrating over the length of the spring,

show that its total kinetic energy is 1
6
mv2 and, from the total energy of the oscillating system, show

that the frequency of oscillation is given by

!2 ¼ s

M þ m=3

Problem 1.11
The general form for the energy of a simple harmonic oscillator is

E ¼ 1
2
mass (velocity) 2 þ 1

2
stiffness (displacement)2

Set up the energy equations for the oscillators in Figure 1.1(a), (b), (c), (d), (e), (f) and (g), and use

the expression

dE

dt
¼ 0

to derive the equation of motion in each case.
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Problem 1.12
The displacement of a simple harmonic oscillator is given by x ¼ a sin !t. If the values of the

displacement x and the velocity _xx are plotted on perpendicular axes, eliminate t to show that the locus

of the points (x; _xx) is an ellipse. Show that this ellipse represents a path of constant energy.

Problem 1.13
In Chapter 12 the intensity of the pattern when light from two slits interferes (Young’s experiment)

will be seen to depend on the superposition of two simple harmonic oscillations of equal amplitude a

and phase difference �. Show that the intensity

I ¼ R2 / 4a 2 cos2 �=2

Between what values does the intensity vary?

Problem 1.14
Carry out the process indicated in the text to derive equation (1.3) on p. 15.

Problem 1.15
The co-ordinates of the displacement of a particle of mass m are given by

x ¼ a sin!t

y ¼ b cos!t

Eliminate t to show that the particle follows an elliptical path and show by adding its kinetic and

potential energy at any position x, y that the ellipse is a path of constant energy equal to the sum of

the separate energies of the simple harmonic vibrations.

Prove that the quantity mðx _yy� y _xxÞ is also constant. What does this quantity represent?

Problem 1.16
Two simple harmonic motions of the same frequency vibrate in directions perpendicular to each

other along the x and y axes. A phase difference

� ¼ �2 � � 1

exists between them such that the principal axes of the resulting elliptical trace are inclined at an

angle to the x and y axes. Show that the measurement of two separate values of x (or y) is sufficient to

determine the phase difference.

(Hint: use equation (1.3) and measure y(max), and y for (x ¼ 0.)

Problem 1.17
Take a random group of n > 7 values of � in the range 0
�
� and form the product

Xn
i¼1
i6¼j

cos� i

Xn
j¼1

cos� j

Show that the average value obtained for several such groups is negligible with respect to n=2.
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Problem 1.18
Use the method of example (3) (p. 28) to show that

a sin!t þ a sin ð!t þ �Þ þ a sin ð!t þ 2�Þ þ � � � þ a sin ½!t þ ðn� 1Þ��

¼ a sin !t þ ðn� 1Þ
2

�

� �
sin n�=2

sin �=2

Problem 1.19
If we represent the sum of the series

a cos!t þ a cos ð!t þ �Þ þ a cos ð!t þ 2�Þ þ � � � þ a cos ½!t þ ðn� 1Þ��
by the complex exponential form

z ¼ a e i!tð1þ e i� þ e i2� þ � � � þ e iðn�1Þ�Þ
show that

zz� ¼ a 2 sin
2 n�=2

sin2 �=2

Summary of Important Results

Simple Harmonic Oscillator (mass m, stiffness s, amplitude a)

Equation of motion €xxþ !2x ¼ 0 where !2 ¼ s=m
Displacement x ¼ a sin ð!t þ �Þ
Energy ¼ 1

2
m _xx2 þ 1

2
sx2 ¼ 1

2
m!2 a2 ¼ 1

2
sa2 ¼ constant

Superposition (Amplitude and Phase) of two SHMs
One-dimensional

Equal !, different amplitudes, phase difference �, resultant R where R2 ¼ a2
1 þ a2

2þ
2a1a2 cos �
Different !, equal amplitude,

x ¼ x1 þ x2 ¼ aðsin!1t þ sin!2tÞ

¼ 2a sin
ð!1 þ !2Þt

2
cos

ð!2 � !1Þt
2

Two-dimensional: perpendicular axes
Equal !, different amplitude—giving general conic section

x2

a2
1

þ y2

a2
2

� 2xy

a1a2

cos ð�2 � �1Þ ¼ sin2ð�2 � �1Þ

(basis of optical polarization)
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Superposition of n SHM Vectors (equal amplitude a , constant successive phase difference �)

The resultant is R cos ð!t þ �Þ, where

R ¼ a
sin n�=2

sin �=2

and

� ¼ ðn� 1Þ�=2

Important in optical diffraction and wave groups of many components.
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