PHYSICS

DPP No. 17

Total Marks: 28

Max. Time: 28 min.

Topics: Projectile Motion, Rectilinear Motion, Mathematical Tools

Type of Questions

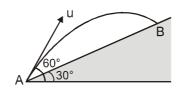
M.M., Min.

Single choice Objective ('-1' negative marking) Q.1 to Q.6

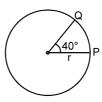
Multiple choice objective ('-1' negative marking) Q.7

Comprehension ('-1' negative marking) Q.8 to Q.9

M.M., Min.


[18, 18]

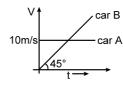
(4 marks, 4 min.)


[4, 4]

(3 marks, 3 min.)

- 1. A stone projected at angle '0' with horizontal from the roof of a tall building falls on the ground after three second. Two second after the projection it was again at the level of projection. Then the height of the building is -
 - (A) 5 m
- (B) 25 m
- (C) 20 m
- (D) 15 m
- 2. The maximum height attained by a projectile thrown over a horizontal ground is increased by 5%, keeping the angle of projection constant. What is the percentage increase in the horizontal range?
 - (A) 20%
- (B) 15%
- (C) 10%
- (D) 5%
- 3. A stone is projected from point A with speed u making an angle 60° with horizontal as shown. The fixed inclined surface makes an angle 30° with horizontal. The stone lands at B after time t. Then the distance AB is equal to .

- (A) $\frac{\text{ut}}{\sqrt{3}}$
- (B) $\frac{\sqrt{3}ut}{2}$
- (C) $\sqrt{3}ut$
- (D) 2 ut
- The velocity of a particle moving on the x-axis is given by $v = x^2 + x$ (for x > 0) where v is in m/s and x is in m. Find its acceleration in m/s² when passing through the point x = 2m
 - (A) 0
- (B) 5
- (C) 11
- (D) 30
- **5.** A particle is moving in a circle of radius r with constant speed v as shown in the figure. The magnitude of change in velocity in moving from P to Q is:


(A) 2 v cos 40°

(B) 2 v sin 20°

(C) 2 v cos 20°

(D) none of these

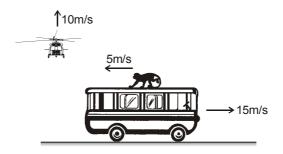
6. Initially car A is 10.5 m ahead of car B. Both start moving at time t = 0 in the same direction along a straight line. The velocity time graph of two cars is shown in figure. The time when the car B will catch the car A, will be

(A) $t = 21 \sec$

(B) $t = 2\sqrt{5} \sec x$

(C) 20 sec.

- (D) None of these
- 7. Two particles, one with constant velocity 50m/s and the other start from rest with uniform acceleration 10m/s², start moving simultaneously from the same position in the same direction. They will be at a distance of 125m from each other after
 - (A) 5 sec.


(B) $5(1 + \sqrt{2})$ sec.

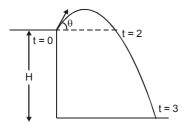
(C) 10sec.

(D) $10(\sqrt{2} + 1)$ sec.

COMPREHENSION

A bus is moving rightward with a velocity of 15 m/sec and on the bus a monkey is running oppositely with a velocity of 5 m/sec (with respect to the bus). Nearby a helicopter is rising vertically up with a velocity of 10 m/sec.

- **8.** Find out the direction of the helicopter as seen by the monkey.
- **9.** Find out the direction of the bus as seen by the helicopter's pilot.

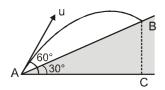

Answers Key

DPP NO 17								
1.	(D)	2.	(D)	3.	(A)	4.	(D)	5. (B)
6.	(A)	7.	(A), (B) 8. ((/	9.	(\searrow) .	

Hint & Solutions

DPP NO. - 17

1.
$$2 = \frac{2u_y}{g} \implies u_y = 10 \text{ m/s}$$



Now,
$$H = -u_y t + \frac{1}{2} gt^2$$

= -30 + 45 = 15 m.

3. The horizontal displacement in time t is

$$AC = u \cos 60^{\circ} t = \frac{ut}{2}$$

$$\therefore \text{ Range on inclined plane} = \frac{AC}{\cos 30} = \frac{ut}{\sqrt{3}}$$

4.
$$V = x^2 + x$$

$$a = V \frac{dv}{dx} = (x^2 + x) (2x + 1)$$

At
$$x = 2 \text{ m}$$

$$a = (4 + 2) (4 + 1)$$

$$a = 30 \text{ m/s}^2$$
.

6.
$$X_{A} = X_{B}$$

10.5 + 10t =
$$\frac{1}{2}$$
 at² a = tan45° = 1

$$t^2 - 20t - 21 = 0$$
 $t = \frac{20 \pm \sqrt{400 + 84}}{2}$ $t = 21$ sec.

7.
$$S_1 - S_2 = 125 \text{ m}$$
 if $S_1 > S_2 \text{ then}$

$$50 \text{ t} - \frac{1}{2} \times 10 \text{ t}^2 = 125$$

$$10 t - t^2 = 25$$

$$t^2 - 10 t + 25 = 0$$

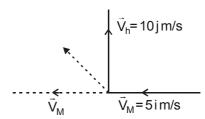
t = 5 sec.

$$S_2 - S_1 = 125m \text{ if } S_2 > S_1 \text{ then,}$$

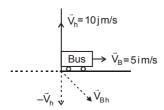
$$\frac{1}{2}$$
 × 10 t² – 50 t = 125

$$t^2 - 10 t - 25 = 0$$

$$t = \frac{10 + \sqrt{100 + 100}}{2}$$


$$t = 5 \left(1 + \sqrt{2} \right) sec.$$

(8 to9)
$$\vec{V}_{hM} = \vec{V}_h - \vec{V}_M = 10 j - 10i = -10i + 10 j$$


∴
$$\vec{V}_{hM}$$
 = 10 (–i) + 10 j

∴ As seen bny

the monkey helicopter is moving in ($^{\cite{N}}$) direction.

$$\vec{V}_{Bh} = \vec{V}_{B} - \vec{V}_{h} = 15 i - 10 j = 15 i + 10 (j)$$

∴ As seen by helicopter's pilot the bus is moving in(\(\subseteq \)) direction.