COMPUTER ORGANIZATION AND ARCHITECTURE TEST 2

Number of Questions: 25

Directions for questions 1 to 25: Select the correct alternative from the given choices.

- 1. Which of the following memory access methods, will accurately predict the amount of time it will take to receive the data after requesting it?
 - (A) Sequential access (B) Direct access
 - (C) Random access (D) Both (B) and (C)
- 2. In which of the following access method, any location can be accessed in a fixed amount of time after specifying its address?
 - (A) Sequential access (B) Random access
 - (C) Direct access (D) None of the above
- **3.** Which of the following statement is TRUE with respect to write-through and write-back techniques?
 - (A) Write-back scheme is faster than write-through.
 - (B) Write-through improves performance better than write-back.
 - (C) Write-through is more complex to implement than write-back
 - (D) All the above
- 4. Increasing the degree of associativity of a cache memory will
 - (A) increases the miss rate.
 - (B) decreases the miss rate.
 - (C) increases the number of sets.
 - (D) decreases the number of elements per set.
- 5. Which of the following address information is required to identify whether a word in the cache corresponds to the requested word or not?
 - (A) Tag (B) Index
 - (C) Line number (D) offset
- **6.** Which of the following factors will be better effected because of larger cache memory?
 - (i) Hit rate (ii) Cost

(iii) Speed (iv) Power consumption

- (v) Reliability (A) (ii), (iv), (v) (B) (ii), (iii)
- (C) (i) only (D) (i), (iii), (iv)
- **7.** If the depth of a pipeline increases, then which of the following is true?
 - (i) Clock frequency increases
 - (ii) CPI increases
 - (iii) Branch mis-prediction penalty reduced.
 - (A) (i), (ii) only (B) (ii), (iii) only
 - (C) (i), (iii) only (D) (i), (ii), (iii)
- 8. Which of the following are the necessary conditions for an n-stage pipeline is *n* times faster than a non pipelined processor?
 - (A) Equal cycle time (of the stages).
 - (B) All instructions take equal number of cycles.

- (C) No stalls between instructions.
- (D) All of the above
- **9.** Which of the following technique is generally used to avoid WAR and WAW hazards?
 - (A) By executing an instruction only when the operands are available.
 - (B) By Register renaming.
 - (C) Delayed pranching.
 - (D) All the above
- 10. Assume a memory access to main memory on a cache miss takes 10 ns and a memory access to the cache on a cache hit takes 1 ns. If 90% of the processors memory requests result in a cache hit, what is the average memory access time?
 - (A) 2 ns (B) 1 ns
 - (C) 1.9 ns (D) 1.4 ns
- 11. Consider the following set of instructions:

$$I_1: R_1 \leftarrow R_2 + R_3$$
$$I_2: R_3 \leftarrow R_1 + R_2$$

$$V_3: R_1 \leftarrow R_1 * R_3$$

The time taken by the 4-stages of the pipeline is given below:

	Fetch	Decode	Execute	Write
<i>I</i> ₁	1	2	2	1
<i>I</i> ₂	1	2	1	2
<i>I</i> ₃	1	1	2	1

What is the number of cycles needed to execute above instructions (use operand forwarding)?

- (A) 9 (B) 10 (C) 11 (D) 12
- **12.** Consider the execution of *n* instructions using *k* stages of a pipeline, each stage requires '*t*' time units. Which of the following expression provides the speed up measure of the pipeline?

(A)
$$\frac{nk}{n+k-1}$$
 (B) $\frac{nk}{n+k}t$
(C) $\frac{n}{(n+k-1)}$ (D) $\frac{k}{n+k}$

- **13.** Consider 2 MB of RAM and 4 KB of cache with block size of 16 B. What are the sizes of fields used in associative mapping technique?
 - (A) 16,5 (C) 9,8,4 (D) 17,4
- **14.** Consider a cache, which requires 2 clock cycles. If there is a cache miss, it will stall the processor for an additional 5 clock cycles. Then what will be the hit rate to achieve an average memory access of 3 clock cycles?

Section Marks: 30

Computer Organization and Architecture Test 2 | 3.23

(A)	80%	(B)	85%	
(\mathbf{C})	0004	(D)	05%	

- (C) 90% (D) 95%
- 15. A digital computer has a memory unit of 64 K × 16 and a cache memory of 1 K words. The cache uses direct mapping with a block size of 4 words. The number of bits present in each line of cache are_____.
 - (A) 20 bits
 (B) 22 bits
 (C) 26 bits
 (D) 33 bits
- **16.** Consider a cache of 4 K blocks, a 4 word block size and a 32 bit address main memory. What is the total number of tag bits per set for 4 way set associative cache?

(A) 18	(B) 36
(C) 72	(D) 64

17. A 5-stage pipeline contains IF, ID, FO (fetch operands), EX, WB stages. Each stage takes 1 clock cycle. Consider the execution of the following two instructions on this pipeline:

 I_1 : ADD $a, b; a \leftarrow a + b$

 I_2 : MUL $c, a; c \leftarrow c * a$

What is the number of clock cycles required for the execution using operand forwarding?

- (A) 6 (B) 7
- (C) 8 (D) 9
- **18.** Consier a main memory address of *p*-bits and an associated direct-mapped cache of having 2^n blocks. Block size is 2^m bytes. Then the Tag field is of _____ bits. (A) p - (n + m + 2) (B) p + n + m(C) p - n + m (D) p - n - m
- **19.** A 2-way set-associative cache is made up of 32-bit words, has 4 words per line and 4096 sets. Then the cache capacity in bytes is

(A)	32 K	(B)	64 K
(C)	128 K	(D)	256 K

- **20.** A main memory of a computer has 4096 blocks, each consisting of 128 words. Each word is of 32-bits in size. Then the number of bits present in main memory address is _____ bits.
 - (A) 18 (B) 19 (C) 20 (D) 21
- 21. Consider a computer, whose address has *M* bits (using
- byte addressing), the cache data size is *C* bytes, the block size is $B = 2^b$ bytes and the cache is *k*-way set-associative. Then the number of bits in the set field of the address is given by

(A) $\log_2^c - \log_2^M$	(B) $\log_2^c - \log_2^M - b$
---------------------------	-------------------------------

(C) 1	$og_2^M - b$	(D)	$\log_2^B - \log_2^M$
-------	--------------	-----	-----------------------

22. Consider a 5-stage pipeline with the stage delays as shown below:

Stage	Delay
Fetch	30 ns
Decode	40 ns
Execute	35 ns
Memory	50 ns
Write	10 ns

Latch delay between the pipeline stages is 2 ns. What are the cycle time and latency values (in ns) of an instruction respectively?

(A)	50, 50	(B)	52, 260
(C)	50,1	(D)	52, 1

23. Consider the execution of the following program on a 5 stage pipeline with the stages Fetch (*F*), Decode (*D*), Execute (*E*), Memory (*M*) and write (*W*). ADD $R_1, R_2, 10; R_1 \leftarrow R_2 + 10$ LOAD $R_2, 4$ (R_1); $R_3 \leftarrow M[R_1 + 4]$ ADD $R_4, R_2, R_3;; R_4 \leftarrow R_2 + R_3$ STORE $R_4, 8(R_1); M[8 + R_1] \leftarrow R_4$ LOAD $R_5, 0(R_6); R_5 \leftarrow M(R_6)$ OR $R_5, R_1, R_4;; R_5 \leftarrow R_1$ or R_4 If each stage requires one clock cycle, the number of stalls required for the program execution with forward-

ing are	
(A) 0	(B) 1
(C) 2	(D) 3

24. The outcome of a branch is given as: T, T, NT, T

Where T: Taken

NT: Not Taken

What is the accuracy of 'always taken' predictor for the above sequence of branch outcomes?

- (A) 100% (B) 75%
- (C) 50% (D) 25%
- **25.** The outcome of a branch is given as:

T, T, NT, T. Where T: Taken

NT: Not Taken

What is the accuracy of '2-bit predictor' for the above sequence of branch outcome?

(If the 2-bit predictor starts with *T*)

(A) 100% (B) 75%

()		(-)	
(C)	50%	(D)	25

	Answer Keys								
1. C	2. B	3. A	4. B	5. A	6. C	7. A	8. D	9. B	10. C
11. B	12. A	13. D	14. A	15. B	16. C	17. A	18. D	19. C	20. D
21. B	22. B	23. B	24. B	25. B					

HINTS AND EXPLANATIONS

- 1. Random access uses a decoder to instantly access the location regardless of current state of the memory where as sequential and Direct methods depends on current data read/write position. Choice (C)
- 2. Choice (B)
- **3.** Write-back scheme is faster than write-through writeback improves performance but is complex to implement. Choice (A)
- **4.** Increasing the degree of associativity of a cache will decrease the miss rate, decreases the number of sets and increases the number of elements per set.

Choice (B)

- 5. Choice (A)
- 6. With large cache memories, the hit rate is improved. Cost increases, speed reduced, power consumption is high and reliability is reduced. Choice (C)
- 7. If there is an increase in pipeline depth then clock frequency, CPI, mis-prediction penalty increases.

Choice (A)

Choice (C)

Choice (B)

- 8. Choice (A), (B), (C) are all the necessary conditions for an *n* stage pipeline to be efficient.
 Equal cycle time means no structural hazards. Equal number of cycles means no control hazards.
 No stalls means no data hazards. Choice (D)
- 9. Register renaming is used to avoid WAR and WAW hazards. Choice (B)
- 10. Miss time = 10 ns Hit time = 1 ns 90% are hits. Average memory access time = 0.9 * 1 + 0.1 * 10= 0.9 + 1 = 1.9 ns.
- 11.

	1	2	3	4	5	6	7	8	9	10
<i>I</i> ₁	F	D	D	Е	Е	W				
I ₂		F			D	D	E	W	W	
<i>I</i> ₃			F				D	Е	Е	W

 \therefore 10 clock cycles required.

- **12.** Choice (A)
- **13.** RAM size = $2 \text{ MB} = 2^{21} \text{ B}$

$$Tag \qquad Offset$$
Block size = 16 B = 2⁴ B
 $\Rightarrow \quad offset = 4$
 $\Rightarrow \quad Tag = 21 - 4 = 17.$
Choice (D)

21 bits

14. Cache hit requires 2 clock cycles. Cache miss requires 7 clock cycles. Average memory access requires 3 clock cycles. Let hit rate is x, then 3 = x * 2 + (1 - x)7 $\Rightarrow -2 = 2x + 7 = 7x$

$$\Rightarrow 5 = 2x + 7 - 7x$$

$$\Rightarrow 5x = 4$$

$$\Rightarrow x = \frac{4}{5} \times 100 = 80\%$$
 Choice (A)

15. Main memory capacity is 64 K × 16. It has 16-bit address

Block size =
$$4$$
 words = 2^2

- ⇒ word size = 2 Number of lines in cache = $\frac{2^{10}}{2^2} = 2^8$ ∴ line field with 2
- $\therefore \quad \text{line field width} = 8 \qquad 2$ $\Rightarrow \quad \text{Tag} = 16 10 = 6$ Each line cache holds $\text{Tag} + \text{Data} = 6 + 16 \text{-bits} = 22 \text{-bits.} \quad \text{Choice (B)}$
- 16. Main memory address has 32-bits.

TagSetOffsetBlock size = 4 words = 4 × 4 Bytes = 2⁴ B⇒offset = 4Number of blocks in cache = 4 K = 2¹²Number of sets =
$$\frac{2^{12}}{4} = 2^{10}$$
⇒set field width = 10∴Tag = 32 - (10 + 4) = 18

Number of tag bits per set is 18 * 4 = 72 bits.

Choice (C)

•										
		1	2	3	4	5	6	7	8	9
	<i>I</i> ₁	IF	ID	FO	EX	WB				
	<i>I</i> ₂		IF	ID	FO	EX	WB			

 \therefore number of clock cycles required = 6. Choice (A)

← p-bits Tag Line Offset n m

$$\Rightarrow$$
 Tag = $p - (n + m)$ bits. Choice (D)

19. Number of sets = 4096Number of words = 4 wordsWord length = 32-bits = 4 B

Computer Organization and Architecture Test 2 | 3.25

- $\Rightarrow \text{ Number of words (in bytes)} = 4 * 4 \text{ B} = 16\text{B}$ The cache is 2-way set associative. Cache capacity = 2 * 4096 * 16 = 2¹ * 2¹² * 2⁴ = 2¹⁷ B = 128 KB. Choice (C)
- 20. Number of blocks = 4096 Number of words per block = 128 Word size = 32 bits = 4 B Number of words per block (in bytes) = 128 * 4 B = 512 B Main memory capacity = 4096 * 512 B = $2^{12} * 2^9 B = 2^{21} B$ ∴ 21-bits required for main memory address.
 - Choice (D)
- **21.** Cache size = *C* bytes Block size, $B = 2^b$ bytes The cache is *m*-way set-associative.

Number of sets in cache = $\frac{C}{M \times B}$

Bits required for set field is $\log_2^{\left(\frac{C}{M}\times 3\right)}$

$$= \log_{2}^{C} - \log_{2}^{(M \times B)} = \log_{2}^{C} - \log_{2}^{M} - \log_{2}^{B}$$

= $\log_{2}^{C} - \log_{2}^{M} - \log_{2}^{2^{b}}$
= $\log C - \log M - b$. Choice (B)

22. Cycle time = maximum stage delay + latch delay
= 50 + 2 = 52 ns
Latency = number of stages * cycle time

$$= 5 * 52 = 260$$
 ns. Choice (B)

23.

	1	2	3	4	5	6	7	8	9	10	11
I_1	F	D	Ę	Μ	W						
I ₂		F		Е	M	W					
I_3			F		D	Ę	М	W			
I_4				F		D	Е	М	W		
I_5					F		D	Е	М	W	
I_6						F		D	Е	М	W

One stall caused by 2^{nd} and 3^{rd} instructions.

Choice (B)

24. Given predictor always predicts about the branch 'Taken'.

Prediction	Т	Т	Т	Т
Outcome	Т	Т	NT	Т
Result	True	True	False	True

1 out of 4 predictions is wrong.

i.e., Accuracy of predictor
$$=\frac{3}{4}$$

Choice (B)

25. Using 2-bit predictor, the predictor will change its decision with two successive wrong predictions. Initial prediction: T

Prediction	Т	Т	Т	Т
Outcome	Т	Т	NT	Т
Result	True	True	False	True

Accuracy
$$=\frac{3}{4}$$

* 100 = 75%.

* 100 = 75%.

Choice (B)