Chapter 3

Partial Differential
Equations

CHAPTER HIGHLIGHTS

w  Fourier series w  Heat equation
FOURIER SERIES where a; a , b are called Fourier coefficients and these are
obtained by
Periodic Function A function f{x) is said to be periodic .
if f{ix + a) = f{x) for all x. The least value of a is called the ap = 1 I F(x)dx
period of f{x). T ’
Example: sinx, cosx are periodic functions with period L "
27, a, =— jf(x)cosnxdxforn=1,2,3,...
b
NOTES ™
1. f(x) and g(x) are periodic functions with period k b, = L I f(x)sinnxdxforn=1,2,3,...
then af(x) + bg(x) is also a periodic function with T
period k.

2. If f(x) is a periodic function with period %, then the
SOLVED EXAMPLES

k
period of f(ax) is —.
a

. . Example 1
3. If the periods of functions f{(x), g(x) and %(x) are a, b,

¢, respectively, then the period of f(x) + g(x) + A (x) is
the Icm of a, b and c.

Obtain the Fourier series expansion of f(x) = e* in (0, 27).

Solution

Euler’s Formula for the 1%
. - ay=— [ f(x)dx
Fourier Coefficients T g

Let f(x) is a periodic function whose period is 27 and is o
integrable over a period. Then f(x) can be represented by = 1 J‘ e dx
trigonometric series. T o

s 2
f(x):a—°+ J.(a,, cos nx + b, sin nx) =—€X} =l(€2”—1) (1)
2 T b4

n=1



1 2n
a, =— J'f(x)cosnxdx
T

2
=— Ie" cos nxdx
Ty

we know that je“" cos bxdx

ax

= z—bz[acosbx+bsinbx]
as+

27

1| e* .
S, =— (cos nx + nsin nx)
n 2
| 1l+n 0

1 eZn’ 1 :|
=— cos2mn)—
{ 2( ) 1+ n?

Tl l+n
1271 127T
b, =— J.f(x)sinnxdx:— Iex sin nxdx
V4 0 T 0

_ 1 e*(sinnx—ncos nx 13"

T 1+ n?

ax

( J.e"x sin bxdx = J(a sin bx — b cos bx))

a* +b?
1 1
R (n—e** ncos2rn)
wl+n
= ﬁ(l—ezﬂ COSZ?T}’I)

S f(x)= D Z(an cosnx + b, sinnx)

n=1

1, z
=—-/(e" -1+
! ) ;

1

_n
n(1+n%)

1
(e’ cos2mn—1)+

(1-e%* cos 27m)}
nl+n

Even and Odd Functions

Even function: A function f{(x) is said to be even if f(—x) =
f(x) for all x.

Example: x%, cos x

Odd function: A function f(x) is said to be odd if f(—x)
=—f(x) for all x

Example: x°, sin x

1. The sum of two odd functions is odd.
2. The product of an odd function and an even function
is odd.

3. Product of two odd functions is even.
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Fourier Series for Odd Function and Even Function

Case 1: Let f(x) is an even function in (-, 7). Then the
Fourier series of the even function contains only cosine
terms and is known as Fourier cosine series and it is

0
a
f(x)=="+ z a, cosnx, where

n=1

ay = %T[f(x)dx, a, = %?f(x) cos nxdx
0 0

Case 2: If f(x) is an odd function, then the Fourier series of
an odd function contains only sine terms, and is known as
Fourier sine series.

f(x)= ibn sin nx,

n=1

where b =2 [/ () sinnxdx
Ty
Example 2
72 x2
Expand the function f(x)= EYRrY in Fourier series in
the interval (-, 7).
Solution
2 x?
X)=———
/e 24 8
2 (-x)? #% Xx?
—-X)=—=—-——= X
A 24 8 24 8 S
.~ f(x) is an even function.
f(x)= a?OJrZan cos nx
n=1
27 2 %2 X2
ag=— | f(x¥)dx =— |———dx
’ nojf( ) 24 8

_l(ﬂzx x3ﬂ”_o
n\ 24 "24)];

27f
a, =— .[f(x)cosnxdxs
o

2% 72 x2
:—J' — —— |cos nxdx

Ty 24 8
T

ﬁ_ﬁ _(sinnx
2124 8 n 0

_77,' LS .
1 J[ ( 2x)smnxjdx
80 n
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L
_ 27 2xsinnx where b, =3jf(x)sinﬂdx.
T 0 8 n L 0 L
2| 2 [—xcosnx " reos snx HALF RANGE EXPANSION
x| 8n n } J In the pervious examples we define the function f(x) with
the period 2L.
—4 Suppose f{x) is not periodic function and defined in half
- Sn? (m cos nr) the interval say (0, L) of lengths L. such expansions are
known as half range expansions or half range Fourier series.
- _—l(con nr),n=1,2,3 In particular a half range expansion containing only cosine
series of f{x) in the interval (0, L) in a similar way half range
(~1y! Fourier sine series contains only sine terms. To find the
= 2 Fourier series of f{x) which is neither periodic nor even nor

odd we obtain Fourier cosine series and Fourier sine series

(- )"+1 of f{x) as follows. We define a function g(x) such that g (x) =

()= z cosnx f(x) in the interval from (0, L) and g(x) is an even function

in (L, L) and is periodic with period 2L and g(x) is obtained

1 [ cos2x cos3x } by previous methods which are discussed earlier. Similarly
=—|cosSx————+———-- . . .

we can obtain a fourier sine series as follows. Assume f(x) =

h(x) in (0, L) and /4 (x) is an odd function in the interval (-L,

L) with period 2L and evaluate /4 (x) by pervious methods

Function of Any Period (P = 2L) which are discussed earlier.
If the function f'(x) is of period P = 2L has a Fourier series,
then f'(x) can be expressed as, Example 3
0 If f(x) =1 —xin 0 < x < 1 find Fourier cosine series and
a nrw . Nm
fx)=="+ Z(an COSTX +b, sme) Fourier sine series.
where the Fourier coefficients are as follows: Solution

Given f(x) = 1l —x in 0 <x < 1 since f(x) is neither periodic
ap = 7 _[f (x)dx nor even nor odd function.
Letus assume g(x) =f(x) =1 —-xin0<x<1

1k nx =1+xin-1<x<0
a, =— jf(x)cos—xdx
L L

. g(x) is even function in (-1, 1)

1 . nm »
b= [ f()sin="xdx g0 =243 a,cos X
i) 2 5 L
L 1
Fourier Series of Even and Odd Functions Let f(x) be an a = 2 J‘ f(x)dx =2 J‘ £(x)dx (here L =1)
even function in (—L, L), then the Fourier series is L
! x2 : 1
(x)——+z cos— =2f(-xdr =2 x-=| =-x2=1
5 2], 2
1 Lf 2 Lf L
=— | S(x)dx =— | f(x)dx _2 "X 4
L Ly a, L(;[f(x)cos 7 x
2k nwx 1
W=7 If(x)cos I dx :ZI(I—x)cosnnxdx
—L 0
Let f'(x) be an odd function in (L, L) then Fourier series is sin nwxx
. 1o —_—
sinnmx
f(x) = Zb sin 7 =2/ (1-%) - [ —
0



smmrx smmrx
{(l—) el j(l) - }

__2cosn7rx ! 5 1 _cosnm
nn? 0 n27t2 n?r?
2
Zm(l—(—l)”)-

.. Fourier cosine series is

2
221 ( )cosmrx

g(x)=

Fourier sine series in (0, 1)
Shx)=f(x)=1-x0<x<1
=—(1+x);-1<x<0

h(x) is an odd function
ch(x) = Z b, sin ”’Lr al
n=1

2 b . NTX
b, = Zoj f(x)sin=~dx

1
=2 _"(1 — x)sin nwxdx
0

=2(1-x)

1
COSI’lT[’X:| _2J‘C08nﬂxd Y-
0

—nr nr

Lh(x)=2/n I—sm(mrx)
n= 1
Partial Differential Equations (PDE)

An equation involving two or more independent variables
and a dependent variable and its partial derivatives is called
a partial differential equation.

62 62
, Z, . |=0.
f(xy oz’ oy’ j

Standard Notation

0z 0Oz
a_p_zx’ 5 =2y
0%z 0%z
ax—zzl":Zxx, 8}}—2 t:Zyy
LT
oy 7

Formation of Partial Differential Equations
Partial differential equation can be formed by two ways.
1. By eliminating arbitrary constants.
2. By eliminating arbitrary functions.

Formation of PDE by Eliminating Arbitrary Constants
Consider a function f(x, y, z, a, b)) =0
where a, b, are arbitrary constants.
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Differentiating this partially wrt, x and y eliminate a, b
from these equations we get an equation f(x, y, z, p, q) = 0,
which is partial differential equation of first order.

Example 4

z=ax*- by a, b are arbitrary constants.

Solution

Given
z=ax?— by? (1)

Differentiating z partially wrt x,

E oo = p=2ax = a=L

ox 2x

Differentiate z partially wrt y,

& =2by,i.e.,q=-2by
oy
= bp=_4

2y
Substituting the values of @ and & in Eq. (1), we get

=L 4 2
2x 2y

2z =px + gy which is a partial differential equation of order 1.

Formation of PDE by Eliminating Arbitrary Function
Consider z = f(u) (1)
f'is an arbitrary function in # and u is function in x, y, z.

Now differentiate Eq. (1) wrt x, y partially by chain rule
we get

o ou o ou iz )
Ox Ou Ox Ou Oz Ox @)
62 9 au of ou oz

f l__ (3)

6y  ou 6‘y au 0z Oy

by eliminating the arbitrary functions from Egs. (1), (2), (3)
we get a PDE of first order.

Formation of PDE when Two Arbitrary Functions are Involved
When two arbitrary functions are involved, we differentiate the
given equation two times and eliminate the two arbitrary func-
tions from the equation obtained.

Example 5
Form the partial differential equation of
e
g(»)
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Solution
Given =&
g(»y)
_. S |
pP=z, —g(y) (D
-f(x)
= = —_— 2
q=z, 0P gWw) (2)
%z —f(x)

"o fgoop £ €)

f1(x) _[—f(X) : g'(y)j _

Ea.(1)xEqg.(2) = =
DXEAR)=pa =" TP

pq+sz=0

Forming PDE by the Elimination of Arbitrary Function of

Specific Functions
Consider f(u, v) =0
Where u, v are the functions in x, y, z.
Differentiate the above equation wrt x and y by chain rule

and eliminate the or , or and convert them in the form Pp

ou Ov

+ Qg = R, which is a first order linear PDE where P, O, R
are functions of x, y, z.

Linear Equation of First Order

Linear equation of first order is Pp + Qg = R. This is also
called Lagrange’s equation, where P, O, R are the functions
inx,y,and z.

Procedure For solving Lagrange’s Equations
Take the auxiliary equation as

dv _dy _d

P O R’
Solve any two equations and take the solutions as # and v.
The complete solution is ¢(u, v) = 0 or u = f(v).

Example 6

Solve (z—y)p+(x—z)g=y—x.
Solution

Auxiliary equation is

dx dy  dz

z—y_x—z_y—x'

Using the multipliers as x, y, z we get
xdx+ydy+zdz
X(z=y)+y(x—z)+z(y-x)
=xdx+ydy +zdz=0
X2+y2+22=0

dx+dy+dz

and also =0

z—y+x—z+y-z
dx+dy+dz=0,x+y+z=0.

.. The required solution is x* + ) + 22 =f(x + y + 2).

Non-linear Equations of First Order
There are four types of non linear equations of first order.
Type 1:

S, 9)=0.

If the given equation contains only p and ¢ then the solution
is taken as z = ax + by + c. Where a, b and c are arbitrary,
such that fla, b) = 0.

Example 7
Solve 2p +3¢g =5

Solution
Given 2p +3g =5
z=ax+by+c.
Where 2a+3b=35,

b 5-2a

3

.. The solution is z = ax + (5 —32ajy +c.

Type 2:
fzp,9)=0
When the equation is not containing x and y then to solve the

. . dz dz
equation assume u =x + ay and substitute p = ’ qg=a—
u

du’
Solve the resulting equation and replace u by x + ay.

Type 3:
S, p)=g, ).

The equation is not containing z.

Assume f(x, p)=aand g(y, q) = a.
Solve the equations for p and ¢ and then write the solution.

Example 8
Solve p? — ¢*> = x> — )2,

Solution
Pog=x-y
p-x=+q
Let pP-x=a=-y+q
PP=d+x2 F=y+a



p=Na®+x* g =+Ja’®+?
.. Take dz = pdx+ qdy
Integrating on both sides, Jdz = [pdx + fqdy

z= I\/az +x2dx + j\/az +y2dy

a2
=§\/a +x2+— 5

222

X
sinh~! a’+y

2
at .
+ L sinh ' L 45,
a

Type 4:
z=px+qy+f(p,q)

The equation in the above form is Clairaut’s equation. The
solution is z = ax + by + f(a, D).

Classification of Second Order
Homogeneous Linear Equations

A second order linear homogeneous PDE of the form
62¢>
ayz

Where 4, B, C, D, E and F are either functions of x and y
only or constants, is called

2
AM+B
ox2

26 .

o .o o
ooy Da +an+F¢(x,y)—O()

1. a parabolic equation, if B2 —44C=0
2. an elliptic equation, if B> —44C <0
3. a hyperbolic equation, if B> —44C >0

Examples:

1. Consider the one-dimensional heat equation:

ou 2 0%u
Z_onZ=
ot ox2
, 0%u _Ou _
=
8x2 at

Comparing it with Eq. (1), we have
A=c?B=0and C=0
—4AC=0*—4x2%x0=0
.. One dimensional heat equation is parabolic.
Similarly, it can be easily observed that
2. One-dimensional wave equation:

0%y

0%y . .
—= =2 =< is hyperbolic (B2 — 44C > 0) and
or? ox?
3. The Laplace equation:
2 2
ou 6—2‘ = 0 is elliptic (B> — 44C < 0)

ox?
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Method of Separation of Variables

Consider a PDE involving a dependent variable u and two
independent variables x and y. In the method of separation
of variables, we find a solution of the PDE in the form of a
product of a function of x and a function of y, i.e., we write

u(x, y) = X(x) - Y(») (1)
Then 6—”=£(XY):X'Y;%:3(XY):XY'
ox Ox dy Oy
2
Q:X”Y, Ou =X'Y', 02 Y XY" and so on
ox? Ox0y " o2
2 2

Here X’:di Y’—d—Y'X” d—X,Y" ar

dx dy dx? dy?

Substituting these in the given PDE, separating X and its
derivatives from Y and its derivatives, finding solutions for
x and y and substituting them in Eq. (1), we get the solution
of the given PDE

This is best explained through the examples given below:

Example 9
Solve xp + yq = 0 by the method of separation of variables.

Solution
For the PDE,
xp+yq=0 (1)
Let z=X(x) - Y(») (2)
be the solution
p:%:X’Y andq:%:XY’
ox

Substituting these in Eq. (1)
xX'Y+yXY'=0

= xX'Y=-yXY'
X' Y’

= x—yl 3)
x Ty

In Eq. (3), as LHS is a function of x alone and RHS is a
function of y alone, they are equal only if each of them is
equal to some constant

! ’

= yY7 = k (say) 4)

X
Where £ is a constant

’

From Eq. (4), x%zk = xXX'=kX

= xd—X:kx
dx

= d_X—k @
X X
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Integrating on both sides we have,
dx _ k j dx
X b

= logX=klogx+logC,
= log X=log x'C
= X=Cx* 5)

Again from Eq. (4), — yY7 =k

= Y'=kY
= yd—Y=—kY

dy
a __,d
Y y

Integrating on both sides,
ay _ —k J’ dy
Y y
= logY=-klogy+logC,
= logY=logy™*C,
= Y=Cy* (6)
Substituting Eqgs. (5) and (6) in Eq. (2), we get the solution
of Eq. (1) as,
z=(Cx" (Cy™)
=C,C,xty™*

k
z= C[ij where C = C,C,.
y

Example 10

Solve the PDE u_+ u, = 3u; u(0, f) = 4¢' by the method of
separation of variables.

Solution

Let u = X(x). T(¢) )
be the solution of the PDE

u +u =3u 2)
u=XT = uxza—u:X’Tandut
Ox
_ My
ot

Substituting these in Eq. (2), we get
X'T+XT'=3XT
Dividing throughout by X7, we have

X T

—+—=3

X T
X -1

= —=—+3=k 3), (sa
YT (3), (say)
X' ,

From Eq. (3), YZk = X'=kX
= X' -kX=0 4)

Which is a linear equation with its auxiliary equation being
m—-k=0 = m=k

Hence its solution is X = C| e (5)

Again from Eq. (3), ? +3=k

= Lz3—k
T
= T'=CB-kHT
= T'-B-kT=0 (6)

Which is a linear equation with its auxiliary equation being
m—-0B-k)=0
= m=3-k
. The solution of Eq. (6) is T'=C, e® " (7)
Substituting Egs. (5) and (7) in Eq. (1), we get the general
solution of given PDE (2) as
u=X-T=(Ce") (Cet ")

— Joc+(3—k)t
=C/Cpe
sou=ce M wherec=c¢, c,
u(x, t) = ce+3-hr (8)

Given u(0, f) = 4¢'
. From Eq. (8), u(0, 1) = ce®™M = 4¢'
Comparing on both sides, we get

C=4,3-k=1

= C=4;k=2
Substituting these in Eq. (8), we get the required solution of
Eq. (2) as

u(x, t) = 4e>*

One Dimensional Diffusion Egquation The diffusion
equation is a partial differential equation that describes
density fluctuations in a material undergoing diffusion.
The partial differential equation representing the one
dimensional diffusion equation is

ou . 0%u

o ox?
where u(x, ) is the density of the diffusing material at time ¢
and D is diffusion coefficient

Example 11

Find the solution of the one dimensional diffusion equation
0 0?
X —1; on the interval xe [0, L] with initial
ot Ox

condition

u (x, 0)=f(x),Vx e[0,L]
and Dirichlet’s boundary conditions
u(0,)=u(L,£)=0 V>0
Solution
We will solve the one-dimensional diffusion equation
o _pdu
ot ox?
by the method of separation of variables.

(1



Let u(x, ) = X(x) T(¢) 2)
be the solution of Eq. (1)
.'.%zX'T and @:X"T and %zXT’
Ox ox? ot
Substituting these in Eq. (1),
XT'=DX"T
17 _X' !
D T X 3

As the left hand side depends only on the variable 7 and the
right hand side depends only on the variable x, both sides
are equal to some constant say — 4

(Negative sign is taken for convenience reason)

ITI XI!
From Eq. 3), ——=—=-1
q. 3), Dr 1
1 T! ”
= —landiz—l
DT X
=T'+DT=0 4)
and X"+2X=0 (%)

Clearly Egs. (4) and (5) are linear ordinary differential
equations involving the variables 7 and x respectively.
Solving (4), we get
1(f) = Ce *" (6)
Solving Eq. (5), we get different possible solutions depend-
ing on the value of A as given below.
Asin(\/_x) + Bcos(\/Ix)' for A >0
X(x) =1 A'eV* + BV for 2. <0
A"x+B";for A =0

Given boundary conditions are
w(0,)=0and u(L,t)=0

From Eq. (2), u (0, ) = X(0) T(r) =0

= X(0)=0
u(L,)=X(L) T()=0=X(L)=0
Taking into account, the boundary conditions X(0) = 0 and
X(L) =0, the values of X(x) for A=0 and A < 0 leads to only
the trivial solutions and hence we take the value X(x) given

for A > 0, which on application of the boundary conditions
becomes,

and

. [ nmx
X(x)=C sin (Tj, n=1,2,3...

and Eq. (6) becomes,

2
T(t)=BneXp[—D(%j t} n=1,2,3...

where B, is a constant

.. Substituting the values of X(x) and 7(7) in Eq. (2),
We get

u(x, t)
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Y 2
= ZA,, sin(%x}exp{—l)(%j f] (7
n=l1

where A4, = Constant (= B,C,)
Given Iinitial condition is

u(x,0) = f(x)
& . (nm
; A, sin (T x)
= f(x) (From Eq. (7)) ®)

By writing f'(x) as a half range Fourier sine series in [0, L]
we have

1e.,

f(x)= iF sin(%x]

where £, =— ff(é)sm[ ijdi

-.Eq. (8) becomes,
ZA sm(—x] ZF s1n(—xj

= 4,=F, =%gf<§)sin(%éjdé

Substituting the value of 4, in Eq. (7), we get the solution
of Eq. (1) as
u (x, t)

%ﬂ ff(é)sm[ gjdéjsm(nm
(]

HeAaT EQUATION

The heat flow in a body of homogeneous material is gov-
0 o’u o 0?

erned by the heat equation a—L: =c? [gz + 6y_2 + ggj

where ¢ = — and u (x, y, z, f) is the temperature in a
op

body, k is the thermal conductivity, o is specific heat of the
body, p is the density of the material and ¢? the constant
is called the diffusivity of the body. If the heat flow is in
x-direction only then u depends on x and ¢, then the heat

. ou 0%u -
equation becomes o =c 2 ) which is known as one-
X

dimensional heat equation.

Wave Equation

The one-dimensional wave equation of a vibrating elastic
string is given by,
0%u ) 0%u 62 2 _

—=c*—=c¢ —wherec
or? ot? ox?

‘D
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Laplace Equation

When the temperature in a homogeneous material is in steady
state and the temperature does not vary with time then the
2 2 2
heat conduction equation becomes 8_121 + 8_124 6_21 =
and this is known as ox* oyt oz
Laplace’s equation in cartesian system While solving the
boundary value problems the following results may be used
If u(x, t) is a function of x and ¢

0

1. L{%} = s;t(x, s)—u(x,0)

0%u )"
2. Ls—}=s"u(x,s)—su(x,0)—u/(x,0)
or?
ou| du
3. Li—=—
{ Ox } by
o’u d*u _
4. ng = ;Z where L {u (x, )} = u (x,s)
Example 49
0 0?
Solve the one dimensional heat equation 6_Ltl = 26—Z sat-
X

isfying the boundary conditions u (0, ) =0 =u (4 ,f) and u
(x, 0) = 8sin 27x.

Solution
Taking Laplace transform on both sides of the equation
o,
ot ox?
2
ol _, )0
ot ox?
d*u
U —u(x,0)=2—
s u (x, 0) e
o’u s _ , :
or — ——u =—4sin 27x as u (x, 0) = 8sin 27x
ox= 2

The general solution of the above equation is #
Qe -2
(2m) 5
or

_ _ in2
7= AeNSI2X 4 posix | 8sin2mx
812 +s

Q)
Butu (0,0)=0=u(4,1)

u (0,s)=0, u (4,5)=0
. From Eq. (1), we have 4 + B=0

8sin 87

and 0 = Ae¥s'2 + Be¥s/2 + 3
8w +s

= Ae¥s/2 £ Be¥5/2=0

Solving we get A=B=0

_  8sin2nx
- From (1) we have # = ————
8m° +s

.'.y=L1{8 28 sin27rx}
n?+s

2 .
y=8e¥"sin2mx.

ie.,

Example 50

Solve the wave equation of a stretched string given by
Fu_yotu
or? ox?

0,4, (c,0)=0,x>0and # (0,0 =F (1, lim u(x,1)= 0,120,

satisfying the boundary conditions u (x, 0) =

Solution
Gi 0%u 9 0%u
ven — =9—.
ot? ox?

Taking Laplace transform on both sides of the equation
with the boundary conditions we have

2 2
L&l _gp)ou
or? ox?
or 57 (x, 5) = su (x,0) —u, (x,0) =9-——or—--
x

(1

Also u (0, 5) = J.F(t)e’”dt =F andu(x,s)=0asx—> oo
0

.. The general solution Eq. of (1) is # (x, s)

s -5

—X —X
=ce’d +ces

and u (x,s)=0asx - =c¢ =0
and #(0,5)= F(s)=c,

SX
Hence, #(x,s)= F (s) e 3

su(x,t) = L‘l{ ’?F(s)}

F(f—fj,wf
_ 3 3 I (F(s) = F(t)),

0,t<f
3

when expressed in terms of Heaviside’s unit step function.

u(x, 1)
:F(t—f)H(z‘—fj.
3 3
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0 if —7<x<0 5. The Fourier series of f(x) is

1. Letf(x)z{ ;
X

i <
if O<x<nm (A) cosx + cos2x+cosz3x

Which is a periodic function with period 2p, then a, =

. sin2x sin3x sin4x
(B) sinx - + - +

3 3 2 3 4
» ®) o
. sin2x  sin3x
73 73 (C) sinx+ 3
© 7 D) T
1 (D) None of these
2. The value of the fourier coefficient a, for n > 2 for f{x)
=xsinx in (-, 7) is . 6. The value of % is
(n—Drm
(A) cos COS nx 111
" (A) I+—F—+—+-
2n-r 2 46
(B) cos ——— cos nx
n—1 1 1 1
B) 1-—4+———+---
1 & 2 4 6
©) —+Zcosnx
2 A 1111
(n-Dx  (n+1) © Tr3+gta+y
(D) |cos —cos 3579
n—1 n+l
1 1 1 1
3. If f(x) = in (-7, 7) then the value of b_is . (D) 1—§+g—;+§'“

(A) Z[6+nx?] o .
n Direction for questions 7 and 8:

2cosnm Let f(x) =x? in the interval (-7, 7).

B) ———[6-n’x?
(B) n’ [ ] 7. The Fourier series of f(x) is
2 2
C) —[6-n’r? _
© 3 [ 1 (A) 3
cos ni 2
(D) n—3[6+”2”2] B) -+ cosnx
n=1
4. Find the Fourier series of f(x) which is defined as ©
follows: ©) z cosnx
fx)=2 0<x<1 n=1
=3 l<x<2 2 @ (_1y
> D) ﬂ—+z4( D" cosnx
. X 3 = n?
(A) sin — n=l
n=l1 2 ﬂ-z
8. The value of — is
2% 1 (2n-1
B) 5.2 s1n( n-Dzx
2 r&=on-l 2 @A) 141411,
2% 1 owx
©) —Z sin— 1
o 2n-1 2 (B) 1+—2+—2+4—2+

(D) None of these

. . i (C) 1+l+l+l+...
Direction for questions 5 and 6: 2 3 4
T—X 1 1 1

> in the interval (0, 2m) (D) 1_2_2+3_2_4_2+...

Let f(x) =
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72
9. The value of ? is

1 1 1
R

1 1 1
B lrprmre

1 1 1
© bgrare

(D) None of these

10. The half-range sine series of f(x) = e¢* in 0 <x <[ 1is

(A) Z

I (1 —e(=1)")sin nmx

—e(=1)")sin nmx

(B) 2nn§—l+ — (1

©) i ! (1 —e(—=1)")sin nmx

2.2
i l+ntm

(D) None of these

2 2
11. The order and degree of the %Jﬁxy(a—zj +5=
X

ox
=8 are
A 1,1 B) 1,2
©) 2,1 (D) 2,2
12. The differential equation whose solution is z = (x — a)
v-byis______
(A) pg=2z B) pg=z
(©) p=2z (D) p=zq
13. FormaPDE of z=(x —y) ¢ (x> —)?)
(A) py—xq=z (B) py+xq=:z
©) px+yq=z D) px—yq=z

14. The solution of x*p + y*q = (x + y)z is .

(A) Sl x=7) =0, (B) f[xy xzyj 0
©) flzx,z—x)=0 (D) None of these
15. Solve 2p+1)g=pz
(A) alog(z—a)=x—ay+b
(B) 2alog(z+a)=ay+b
(C) 2alog(z—a)=x+ay+b
(D) alog(z+a)=3x+ay+b
16. The solution of ¢’x (1 +)%) =p)? is
(A) z=a(1+)?)

2
(B) z= % —a(1+1?)+h

©) z:%+\/a(l+y2)+b
(D) z=%+«/a(1+y2)+b

17.

18.

19.

20.

21.

Solve pgz = ¢*(yp + ¢*) + p*(xq + p*).
3 3

(A) z= ax+by+a—+b—
b a

(B) z=ax—-by

a
C) z=ax+by+ a_3+b_3

(D) None of these
In the process of solving the partial differential

o*u _0%u
equation —+ 52420 by the method of separation
ox?  dy?
of variables, the linear differential equation involv-
ing the independent variable ‘X’ is . (Here kis a
constant)

2

X
e +kX(x)=0

d*Xx
dx?

d*X dx
C +k—
© dx? dx

(A)

(B) — kX(x) =0

+k2X(x)=0

2
d X—kﬁ+2kX(x) 0
dx? dx

(D)

2
The second order partial differential equation 3x?2 %
X

2 2
ou 32 ou 5ou au 6u
Ox0y oy? 6x ay

—6xy =6x2yis
(A) elliptic equation

(B) parabolic equation

(C) hyperbolic equation

(D) depends on the value of x and y

Which of the following partial differential equations
represents the one-dimensional diffusion equation?

Pu_ 0

A) —=c¢

) ot? ox?
2 2

@) 24,0
ox*  oy?
ou 0%u

C) —=D—-

© ot ox2

D =c +—
) ox? oy?  ox

. . P . Ou
In the one-dimensional diffusion equation, 5=D

2
u .
5 u(x, t) and D represent respectively



22.

23.

(A) density of and diffusion coefficient.
(B) diffusion and density coefficient.
(C) viscosity and diffusion coefficient.
(D) diffusion and viscosity coefficient.

Which of the following pair can be represented by

the same partial differential equation? (Except pos-

sibly a change in the constant multiplying the partial

derivatives)

(A) The one-dimensional wave equation and the one
-dimensional heat equation.

(B) The one-dimensional wave equation and the two
-dimensional Laplace equation.

(C) The one-dimensional heat equation and the two-
dimensional Laplace equation.

(D) The one-dimensional heat equation and the one-
dimensional diffusion equation.

Solution of the one dimensional heat equation
ou 0%u
o = Py x >0, t > 0 satisfying the boundary condi-

tion u(0, f)=1,u(x,0)=01is

X
(A) erf(z—\/;]

© ”f(T]

® o)

0

o3

24,

25.
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A string is stretched between two fixed points follows
0? , 0%y
the equation K; =a? ey (t> 0, x> 0) satisfying the

boundary conditions y(x, 0) = 0, x > 0 and y(0, f) = ¢
Lt y(x,1)=0,>0, Find y(x, ) in terms of Heaviside’s
X—>00

unit step function.

(A) (t—x) H(t—x)

o ([
a a

(C) (t—xa) H(t —xa)

(D) None of these

The one dimensional wave equation is
() 2=
ot Ox
o%u o%u
B) —=c—
B % = o
o%u o%u
C) —=c2—
© ox? or?
o%u ou
D) —=c*—
) or? Ox

PRrREvVIiOUSs YEARS’ QUESTIONS

1. The equation K —+K

2 2
o zﬂ = 0 can be trans-
ox? 0z?

2h 62
f dto —+—=0Db bstituti
ormea to 6x,2 622 y substituting
[GATE, 2008]
zZ KX
K, SR

©) + | Kx K.
X=X |—
' K, K,

. The partial differential equation that can be formed

0
from z = ax + by + ab has the form (with p = a—z and
X

0z
g=—) [GATE, 2010]
oy
(A) z=px+gqy
(B) z=px+pq
(C) z=px+qy+pq
(D) z=qy+pq

3.

The Fourier series of the function,
f(x)=0, —r<x<0
=r—x. O0<x<m
In the interval [—7,7]is

m  2|cosx cos3x
—t | ——t—— - |+
4 7| 12 32
sinx sin2x sin3x
+ + +ee-
1 2 3

The convergence of the above Fourier series at x = 0

S(x)=

gives |GATE, 2016]
= q ( 1)n+1 7.[2
A) 2—~=" (B) Z >
n=1" 12
O 1 2 ( 1)n+1 7.[2
C —_—
© ;(Zn—l)2 8 ®) z 2n—-1
0’p 0°p
The type of partial differential equation St
o2 oy?
2
B30 P B [GATE, 2016]
Ox0y  Ox Oy
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(A) elliptic

©) arabol (A) Ccos(kt)[Cie Vx4 C,e=(Vk/a)x]
parabolic

(C) hyperbolic (B) Cel[CeWHa)x 4 C e (Wia)x]
(D) None of these . A
) L . . Ou (C) CeM| C, cos \/: x+C, cos —\/: x
5. The solution of the partial differential equation 6_ a a
t
o*u | . k k
=a6_2 is of the form [GATE, 2016] (D) Csin(kr)| C;cos| | — |x+Cycos| — | — |x
X a a
Exercises
1. A 2. D 3.B 4. B 5. C 6. D 7. D 8. D 9. B 10. B

11. C 12. B 13. B 14. B 15. C 16. C 17. A 18. B 19. B 20. C
21. A 22. D 23. A 24. B 25. B

Previous Years’ Questions
1. D 2. C 3. C 4. C 5. B
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