For XAT, CMAT, MAT, IIFT Exam

CHEMICAL REACTIONS AND EQUATIONS

PHYSICAL CHANGES

Properties such as shape, size, colour and state of a substance are called its physical properties. A change in which a substance undergoes a change in its physical properties is called a physical change. A physical change is generally reversible. In such a change no new substance is formed.

CHEMICAL CHANGE

A change in which one or more new substances are formed is called a chemical change. A chemical change is also called a chemical reaction

CHEMICAL REACTION & EQUATIONS

• A complete chemical equation represents the reactants, products and their physical

State symbolically.

- Following observations helps us to determine whether a chemical reaction has taken place
 - Change in state
 - Change in colour
 - Evolution of a gas
 - Change in temperature.
- Some of the example of chemical reactions in everyday life
 - Photosynthesis
 - Aerobic Cellular Respiration
 - Combustion of wood

- Rusting of iron
- Metathesis
- Digestion
- Cooking an egg
- Souring of milk
- Rotting bananas
- Exothermic reactions are reactions or processes that release energy, usually in the form of heat or light
- Reactions in which **energy is absorbed** are known as **endothermic reactions**.

BALANCED CHEMICAL EQUATIONS

- Mass can neither be created nor destroyed in a chemical reaction. That is, the total mass of the elements
 present in the products of a chemical reaction has to be equal to the total mass of the elements present in the
 reactants
- The number of atoms of each element remains the same, before and after a chemical reaction Some of the example of balanced equations

 $Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$

 $3\text{Fe} + 4\text{H}_2\text{O} \rightarrow \text{Fe}_3\text{O}_4 + 4\text{H}_2$

TYPES OF CHEMICAL REACTIONS

1. COMBINATION REACTION

• In a combination reaction two or more substances combine to form a new single Substance.

Example of combination reaction

Calcium oxide reacts vigorously with water to produce slaked lime(calcium hydroxide) Releasing a large
amount of heat

$$CaO(s) + H_2O(1) --> Ca(OH)_2 + Heat$$

• A solution of slaked lime produced by the above reaction is used for white washing wall

NOTE: **Calcium hydroxide** reacts slowly with the **carbon dioxide** in air to form a thin layer of calcium carbonate on the walls. **Calcium carbonate** is formed after two to three days of **whitewashing** and gives a shiny finish to the walls. It is interesting to note that the **chemical formula** for **marble is also CaCO₃**.

Ca
$$(OH)_2 + CO2 (g) \rightarrow CaCO3 (s) + H2O (l)$$

(Calcium (Calcium hydroxide) Carbonate)

2. DECOMPOSITION REACTION

- Decomposition reactions are opposite to combination reactions. In a decomposition reaction, a single substance decomposes to give two or more substances
- In this reaction, you can observe that a single reactant breaks down to give simpler products. This is a decomposition reaction.

$$2FeSO4(s) Heat---->Fe2O3(s) + SO2(g) + SO3(g)$$

• Decomposition of Silver bromide into silver and chlorine by light.

$$Sunlight \\ 2AgBr(s) \xrightarrow{\cdot} 2Ag(s) + Br_2(g)$$

- Silver bromide used in black and white photography
- Decomposition of calcium carbonate to calcium oxide and carbon dioxide on heating is an important decomposition reaction used in various industries. **Calcium oxide** is called **lime or quick lime**. It has many uses one is in the **manufacture of cement**. When a **decomposition reaction is carried out by heating**, it is called **thermal decomposition**

Heat
$$CaCO_3(s)$$
 ----- $> CaO(s) + CO_2(g)$ (Limestone)

3. DISPLACEMENT RECTION

• It is a reaction between an element and a compound. When they react, one of the elements of the compound-reactant is replaced by the element-reactant to form a new compound and an element.

$$Fe+ CuSO4 --> FeSO4 + Cu$$

• In this reaction, iron has displaced or removed another element copper from copper sulphate solution. This reaction is known as displacement reaction

4. DOUBLE DISPLACEMENT REACTIONS

• When two compounds react, if their ions are interchanged, then the reaction is called double displacement reaction. The ion of one compound is replaced by the ion of the another compound

$$Na_2SO_4$$
 (aq) + $BaCl_2$ (aq) $\rightarrow BaSO_4$ (s) + $2NaCl(aq)$

PRECIPITATION REACTIONS

- When aqueous solutions of two compounds are mixed, if they react to form an insoluble compound and a
 soluble compound, then it is called precipitation reaction. Because the insoluble compound, formed as one of
 the products, is a precipitate and hence the reaction is so called.
- Precipitation reactions produce insoluble salts.

NEUTRALISATION REACTION

• The reaction between an acid and a base is known as neutralisation. Salt and water are produced in this process with the evolution of heat.

NEUTRALISATION IN EVERYDAY LIFE

Ant bite

When an ant bites, it injects the acidic liquid (formic acid) into the skin. The effect of the acid can be neutralised by rubbing moist baking soda (sodium hydrogencarbonate) or calamine solution, which contains zinc carbonate.

Soil treatment

Excessive use of chemical fertilisers makes the soil acidic. Plants do not grow well when the soil is either too acidic or too basic. When the soil is too acidic, it is treated with bases like quick lime (calcium oxide) or slaked lime (calcium hydroxide). If the soil is basic, organic matter (compost) is added to it. Organic matter releases acids which neutralises the basic nature of the soil.

Factory wastes

The wastes of many factories contain acids. If they are allowed to flow into the water bodies, the acids will kill fish and other organisms. The factory wastes are, therefore, neutralised by adding basic substances.

OXIDATION AND REDUCTION

OXIDATION

 The chemical reaction which involves addition of oxygen or removal of hydrogen or loss of electrons is called oxidation.

$$2 \text{ Mg} + \text{O}_2 \rightarrow 2 \text{ MgO}$$
 (addition of oxygen)

$$CaH_2 \rightarrow Ca + H_2$$
 (removal of hydrogen)

$$Fe^{2+} \rightarrow Fe^{3+} + e-$$
 (loss of electron)

REDUCTION

 The chemical reaction which involves addition of hydrogen or removal of oxygen or gain of electrons is called reduction.

2 Na +
$$H_2 \rightarrow 2$$
 NaH (addition of hydrogen)

$$CuO + H_2 \rightarrow Cu + H_2 O$$
 (removal of oxygen)

$$Fe^{3+} + e \longrightarrow Fe^{2+}$$
 (gain of electron)

REDOX REACTIONS

• Generally, the oxidation and reduction occurs in the same reaction (simultaneously). If one reactant gets oxidized, the other gets reduced. Such reactions are called oxidation-reduction reactions or Redox reactions.

$$2 \text{ PbO} + \text{C} \rightarrow 2 \text{ Pb} + \text{CO}_2$$

$$Zn + CuSO_4 \rightarrow Cu + ZnSO_4$$

Oxidation	Reduction
Addition of oxygen	Removal of oxygen
Removal of hydrogen	Addition of hydrogen
Loss of electron	Gain of electron

OXIDATION AND REDUCTION AGENTS

- Substance that loses oxygen or gains hydrogen is known as an oxidizing agent
- Substance that loses hydrogen or gains oxygen is known as a reducing agent
- Compounds with oxygen atom are called oxidizing agent and compounds with hydrogen atom are called reducing agent
- Some compounds can act as either oxidizing agents or reducing agents. One example is hydrogen gas, which acts as an oxidizing agent when it combines with metals and As a reducing agent when it reacts with non-metals.

Oxidation reactions in daily life

- The shining surface of metals tarnishes due to the formation of respective metal oxides on their surfaces. This is called corrosion.
- The freshly cut surfaces of vegetables and fruits turn brown after some time because of the oxidation of compounds present in them

RANCIDITY

• When oils and fats or foods containing oils and fats are exposed to air, they get oxidized due to which the food becomes stale and gives a bad taste or smell. This is called Rancidity.

Following ways to **preventing rancidity**

- Adding antioxidants
- Refrigerating
- Storing food in airtight containers with nitrogen gas

When carbon dioxide is passed through lime water, calcium carbonate is formed, which makes lime water milky. The turning of lime water into milky is a standard test of carbon dioxide.

Carbon dioxide (CO2) + Lime water [Ca(OH)2] → Calcium Carbonate (CaCO3) + Water (H2O)

COMMON NAME AND FORMULA OF CHEMICAL COMPOUNDS

Chemical Compounds	Chemical formula	Common names
Calcium oxide	Cao	Quick lime
Calcium hydroxide	Ca(OH)2	Slaked lime
Calcium carbonate	CaCO ₃	Limestone
Trichloro Methane	CHCl ₃	Chloroform
Calcium Oxychloride	CaOCl ₂	Bleaching powder
sodium hydrogencarbonate	NaHCO ₃	Baking soda
Sodium carbonate	Na ₂ CO ₃	Washing soda
Calcium sulphate hemihydrate	CaSO4 .1/2H ₂ O	Plaster of Paris
calcium sulfate dihydrate	CaSO ₄ .2H ₂ O	Gypsum
Acetic acid	CH₃COOH	Vinegar
Silicon Oxide	SiO2	Sand
Methane	CH ₄	Marsh Gas

Nitrous oxide	N2O	Laughing Gas
Deuterium Oxide	D2O	Heavy water
Solid Carbondixide	CO2	Dry ice
Calcium Carbonate	CaCo ₃	Chalk
Sulphuric Acid	H2SO4	Oil of vitriol
Zinc sulphate	ZnSO4	White Vitriol
Copper sulphate	CuSO ₄ .5H2O	Blue Vitriol
Sodium hydroxide	NaOH	Caustic Soda
Potassium carbonate	K ₂ CO ₃	Potash Ash
Mercurous chloride	Hg2Cl2	Calomel
Sucrose	C12H22O11	Sugar
Silver nitrate	AgNO ₃	Lunar caustic
Ethyl Alcohol	C2H6O	Alcohol
Hydrochloric acid	HCl	Muriatic acid

CHEMICAL COMPOUNDS AND FORMULA

Chemical Compounds	Chemical formula
Sodium chloride	NaCl
Zinc sulphate	ZnSO ₄

Glucose	C6H12O6
Ferric oxide	Fe2O3
Ferrous sulphate	FeSO4
Lead oxide	PbO
Lead nitrate	Pb(NO ₃) ₂
silver chloride	AgCl
Silver bromide	AgBr
Sodium sulphate	Na ₂ SO ₄

CHEMICAL BONDING

Attraction between atoms, ions or molecules that enables the formation of chemical compounds is called chemical bonding

TYPES OF CHEMICAL BONDING

1. Ionic bond

Chemical bond formed between two atoms due to transfer of electron from one atom to the other atom

2. Covalent bond

A covalent bond is a chemical bond that involves the sharing of electron between two atoms

3. Metallic bond

Metallic bond is the force of attraction between metal ions to a number of electrons within its sphere of influence.