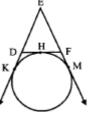
Sample Question Paper - 7 Mathematics-Standard (041) Class- X, Session: 2021-22 TERM II

Time Allowed: 2 hours

General Instructions:

- 1. The question paper consists of 14 questions divided into 3 sections A, B, C.
- 2. All questions are compulsory.
- 3. Section A comprises of 6 questions of 2 marks each. Internal choice has been provided in two questions.
- 4. Section B comprises of 4questions of 3 marks each. Internal choice has been provided in one question.
- 5. Section C comprises of 4 questions of 4 marks each. An internal choice has been provided in one question. It contains two case study-based questions.


Section A

1. Is the given sequence: $\sqrt{3}$, $\sqrt{6}$, $\sqrt{9}$, $\sqrt{12}$, ... form an AP? If it forms an AP, then find the **[2]** common difference d and write the next three terms.

OR

Find the nth term of the AP: 5, 11, 17, 23,

- 2. If x = 2 and x = 3 are roots of the equation $3x^2 2kx + 2m = 0$, find the value of k and m. [2]
- 3. In the adjoining figure, a circle touches the side DF of \triangle EDF at H and touches ED and EF [2] produced at K and M respectively. If EK = 9 cm, then what is perimeter of \triangle EDF?

- 4. A toy is in the form of a cone mounted on a hemisphere with the same radius. The diameter of [2] the base of the conical portion is 6 cm and its height is 4 cm. Determine the surface area of the toy. (Use π = 3.14)
- 5. If the class mark of a continuous frequency distribution are 12, 14, 16, 18, ..., then find the [2] class intervals corresponding to the class marks 16 and 22.
- 6. Two taps running together can fill a tank in $3\frac{1}{13}$ hours. If one tap takes 3 hours more than the **[2]** other to fill the tank, then how much time will each tap take to fill the tank?

OR

Find the values of k for which the given equation has real roots:

 $5x^2 - kx + 1 = 0$

Maximum Marks: 40

Section **B**

7. Find the median of the following frequency distribution:

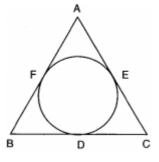
Weekly wages (in ₹)	60-69	70-79	80-89	90-99	100-109	110-119
No. of days	5	15	20	30	20	8

8. Let PQR be a right triangle in which PQ = 3 cm, QR = 4 cm and $\angle Q$ = 90°. QS is the perpendicular from Q on PR. The circle through Q, R, S is drawn. Construct the tangents from P to this circle.

9. The arithmetic mean of the following frequency distribution is 50.

Class	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50
Frequency	16	р	30	32	14

Find the value of p.


10. From a window (60 metres high above the ground) of a house in street the angles of elevation [3] and depression of the top and the foot of another house on opposite side of street are 60° and 45° respectively. Show that the height of the opposite house is $60(1 + \sqrt{3})$ metres.

OR

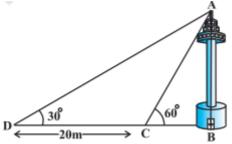
Two boats approach a light house in mid-sea from opposite directions. The angles of elevations of the top of the lighthouse from two boats are 30° and 45° respectively. If the distance between two boats is 100 m, find the height of the lighthouse.


Section C

- 11. The interior of a building is in the form of cylinder of diameter 4.3 m and height 3.8 m, [4] surmounted by a cone whose vertical angle is a right angle. Find the area of the surface and the volume of the building. (Use π = 3.14).
- 12. In figure the incircle of $\triangle ABC$ touches the sides BC, CA and AB at D, E and F respectively. [4] Show that AF + BD + CE = AE + BF + CD = $\frac{1}{2}$ (Perimeter of $\triangle ABC$)

OR

In fig., two tangents AB and AC are drawn to a circle with centre O such that $\angle BAC = 120^{\circ}$. Prove that OA = 2AB.


13. A TV tower stands vertically on a bank of a canal. From a point on the other bank of a canal. [4]From a point on the other bank directly opposite the tower, the angle of elevation of the top of

[3]

[3]

[3]

the tower is 60° from a point 20 m away from this point on the same bank the angle of elevation of the top of the tower is 30° .

i. Find the height of the tower

- ii. Find the width of the canal.
- 14. Deepa has to buy a scooty. She can buy scooty either making cashdown payment of Rs. 25,000 [4] or by making 15 monthly instalments as below.

Ist month - Rs. 3425, Ilnd month - Rs. 3225, Illrd month - Rs. 3025, IVth month - Rs. 2825 and so on.

i. Find the amount of 6th instalment.

ii. Total amount paid in 15 instalments.

Solution

MATHEMATICS STANDARD 041

Class 10 - Mathematics

Section A

Section A
1. From the given information, we can have
$a_2-a_1=\sqrt{6}-\sqrt{3}$
$a_3 - a_2 = \sqrt{9} - \sqrt{6} = 3 - \sqrt{6}$
$a_4 - a_3 = \sqrt{12} - \sqrt{9} = 2\sqrt{3} - 3~(since\sqrt{12} = \sqrt{2} imes 2 imes 3 = 2\sqrt{3})$
since $a_{k+1}-a_k$ is not the same for all values of k.
Hence, it is not an AP.
OR
The given AP is:
5, 11, 17, 23
a = 5,
d = 11 - 5 = 6
So n th term a _n = a + (n - 1)d
$= 5 + (n - 1) \times 6$
= 5 + 6n - 6
= 6n - 1
Hence n th term = 6n - 1
2. It is given that x = 2 and x = 3 are roots of the equation $3x^2 - 2kx + 2m = 0$.
$\therefore 3 \times 2^2 - 2k \times 2 + 2m = 0$ and $3 \times 3^2 - 2k \times 3 + 2m = 0$
$\Rightarrow 12 - 4k + 2m = 0 \text{ and } 27 - 6k + 2m = 0$
\Rightarrow 12 = 4k - 2m(i) and 27 = 6k - 2m(ii)
Solving i and ii equation, we get $k = \frac{15}{2}$ and $m = 9$
3. We know that tangent segments to a circle from the same external point are Equal. Therefore, we have
EK = EM = 9 cm
Now, $EK + EM = 18 \text{ cm}$
$\Rightarrow ED + DK + EF + FM = 18cm$
$\Rightarrow ED + DH + EF + HF = 18cm$
$\Rightarrow ED + DF + EF = 18cm$
\Rightarrow Perimeter of $ riangle$ EDF $= 18cm$
4. Height of cone = 4 cm
Radius of cone = 3 cm
Slant height of cone (l) = $\sqrt{r^2+h^2}$ = $\sqrt{3^2+4^2}$ = $\sqrt{9+16}$ = $\sqrt{25}$ = 5 cm
: Surface area of toy = Curved surface area of cone + Curved surface area of hemisphere
$=\pi rl+2\pi r^2$ = 3.14 $ imes$ 3 $ imes$ 5 + 2 $ imes$ 3.14 $ imes$ 3 $ imes$ 3
= 3.14 $ imes$ 15 + 3.14 $ imes$ 18 = 3.14 $ imes$ 33 = 103.62 cm 2
5. Class marks are 12, 14, 16
Class size $= 2$
Class Intervals are $11-13, 13-15, 15-17, 17-19, 19-21, 21-23, \dots$.so on.
6. Two tap running together fill the tank in $3\frac{1}{13}$ hr.
$=\frac{40}{13}$ hours
If first tap alone fills the tank in x hrs.
Then second tap alone fills it in (x + 3) hr
Now $\frac{1}{x} + \frac{1}{x+3} = \frac{13}{40}$
$\frac{x+3+x}{x(x+3)} = \frac{13}{40}$
$rac{2x+3}{x^2+3x}=rac{13}{40}$
$80x + 120 = 13x^2 + 39x$

or, $13x^2 - 41x - 120 = 0$ $13x^2 - (65 - 24)x + 120 = 0$ (x - 5)(13x + 24) = 0 $x = 5, x = -\frac{24}{13}$ time can't be negative Hence, 1st tap takes 5 hours and Ilnd tap takes = 5 + 3 = 8 hours

OR

We have, $5x^2 - kx + 1 = 0$. a = 5, b = -k and c = 1 $\therefore D = b^2 - 4ac = (-k)^2 - 4 \times 5 \times 1 = k^2 - 20$ To have a real roots, $D \ge 0$ $\Rightarrow \quad k^2 - 20 \ge 0$ $\Rightarrow \quad k \le -\sqrt{20} \text{ or }, k \ge \sqrt{20}$

Section **B**

7. Here, the frequency table is given in inclusive form. So, we first transform it into exclusive form by subtracting and adding $\frac{h}{2}$ to the lower and upper limits respectively of each class, where h denotes the difference of lower limit of a class and the upper limit of the previous class. Here, h = 1 So, $\frac{h}{2}$ = 0.5

Transforming the above table into exclusive form and preparing the cumulative frequency table, we get:-

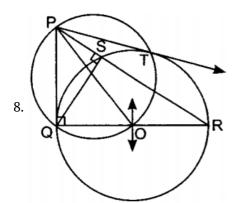
Weekly wages (in ₹)	No of workers	Cumulative frequency
59.5-69.5	5	5
69.5-79.5	15	20
79.5-89.5	20	40
89.5-99.5	30	70
99.5-109.5	20	90
109.5-119.5	8	98
		$\mathrm{N}=\Sigma f_i=98$

We have, N(Total frequency) = 98 Or, $\frac{h}{2}$ = 49

The cumulative frequency just greater than $\frac{h}{2}$ is 70 and the corresponding class is 89.5-99.5. So, 89.5-99.5 is the median class.

Now,

l = 89.5 (lower limit of median class),

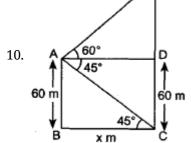

h = 10 (length of interval of median class),

f = 30 (frequency of median class)

F = 40 (cumulative frequency of the class just preceding the median class)

Now, Median is given by:-

 $= 1 + \frac{\frac{N}{2} - f}{F} \times h$ = 89.5 + $\frac{49 - 40}{30} \times 10$ = 89.5 + 3 = 92.5


Steps of Construction:

- i. Draw perpendicular bisector of QR intersecting at O.
- ii. Draw a circle with O as centre and OR as radius.
- iii. Join OP.
- iv. Draw a circle with OP as diameter intersecting the given circle at Q and T. Join PT.
 - ∴PQ and PT are required tangents.

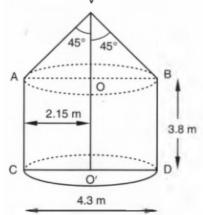
9. We have,

Class Interval	Frequency f _i	Mid- value x _i	f _i x _i
0 - 10	16	5	80
10 - 20	р	15	15p
20 - 30	30	25	750
30 - 40	32	35	1120
40 - 50	14	45	630
	$\Sigma f_i = 92 + p$		$\sum f_i x_i = 2580 + 15p$

Now, mean =
$$\frac{\sum f_i x_i}{\sum f_i}$$

 $\Rightarrow 25 = \frac{2580+15p}{92+p}$
 $\Rightarrow 25(92 + p) = 2580 + 15p$
 $\Rightarrow 2300 + 25p = 2580 + 15p$
 $\Rightarrow 10p = 280$
 $\Rightarrow p = 28$

Let A be the window and CE be the opposite house CD = AB = 60 m....(i)In rt. $\triangle ABC$, $\tan 45^\circ = \frac{60}{BC}$ $\Rightarrow 1 = \frac{60}{BC}$ $\Rightarrow BC = 60 \text{ m.....(ii)}$ AD = BC $\therefore AD = 60 \text{ m [From(ii)](iii)}$ In rt. $\triangle ADE$, $\tan 60^\circ = \frac{DE}{AD}$ $\Rightarrow \sqrt{3} = \frac{DE}{60}$ [From (iii)]


 $DE = 60\sqrt{3}$ m \Rightarrow . Height of the opposite house $CE = CD + DE = 60 + 60\sqrt{3}$ $= 60(1 + \sqrt{3})m$ In right \triangle ADB, h = x $rac{h}{r}= an 45^\circ$...(i) 100 – x 100 m Now in rt. $\triangle ADC$ $rac{h}{100-x}= an 30^\circ$ Solve for h and x. $\Rightarrow rac{h}{100-x} = rac{1}{\sqrt{3}} \Rightarrow \sqrt{3}h = 100-x$ $\Rightarrow \sqrt{3}x = 100 - x$ [Using eq.(i)] $\Rightarrow (\sqrt{3}+1)x = 100 \Rightarrow x = rac{100}{\sqrt{3}+1}$ $\Rightarrow \quad x = rac{100(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)} \ \Rightarrow \quad x = rac{100(\sqrt{3}-1)}{2} = 50(\sqrt{3}-1) \mathrm{m}$

$$\therefore$$
 h = height of lighthouse = $50(\sqrt{3}-1){
m m}$

Section C

11. r_1 = Radius of the base of the cylinder = $\frac{4.3}{2}$ m = 2.15 m

 \therefore r₂ = Radius of the base of the cone = 2.15 m, h₁ = Height of the cylinder = 3.8 m

In riangle VOA, we have

 $\sin 45^{\circ} = \frac{OA}{VA} \Rightarrow \frac{1}{\sqrt{2}} = \frac{2.15}{VA} \Rightarrow VA = (\sqrt{2} \times 2.15) \text{m} = (1.414 \times 2.15) \text{m} = 3.04 \text{m}$ Clearly, \triangle VOA is an isosceles triangle. Therefore, VO = OA = 2.15 m Thus, we have

 h_2 = Height of the cone = VO = 2.15 m, l_2 = Slant height of the cone = VA = 3.04 m

Let S be the Surface area of the building. Then,

 \Rightarrow S = Surface area of the cylinder + Surface area of cone

$$\Rightarrow$$
 S = (2 π r₁h₁ + π r₂l₂) m²

$$\Rightarrow$$
 S = (2 π r₁h₁ + π r₁l₂) m² [:: r₁ = r₂ - 2.15 m]

$$\Rightarrow$$
 S = π r₁(2h₁ + l₂) m²

 \Rightarrow S = 3.14 \times 2.15 \times (2 \times 3.8 + 3.04) m^2 = 3.14 \times 2.15 \times 10.64 m^2 = 71.83 m^2

OR

Let U be the volume of the building. Then,

V = Volume of the cylinder + Volume of the cone $V = (-m^2 h + \frac{1}{2} - m^2 h) m^3$

$$egin{array}{lll} \Rightarrow & V = \left(\pi r_1^2 h_1 + rac{1}{3} \pi r_2^2 h_2
ight) {
m m}^3 \ \Rightarrow & V = \left(\pi r_1^2 h_1 + rac{1}{3} \pi r_1^2 h_2
ight) {
m m}^3 \quad \left[\because r_2 = r_1
ight] \end{array}$$

$$\Rightarrow \quad V = \pi r_1^2 \left(h_1 + rac{1}{3}h_2
ight) \mathrm{m}^3$$

$$\Rightarrow \quad V = 3.14 imes 2.15 imes 2.15 imes ig(3.8 + rac{2.15}{3} ig) \, {
m m}^3 \; .$$

$$\Rightarrow \quad V = [3.14 imes 2.15 imes 2.15 imes (3.8 + 0.7166)] \mathrm{m}^3$$

$$\Rightarrow \quad V = (3.14 imes 2.15 imes 2.15 imes 4.5166) \mathrm{m}^3 = 65.55 \mathrm{m}^3$$

12.

R

Since lengths of the tangents from an exterior point to a circle are equal. Therefore,

AF = AE [From A] ...(i)

D

BD = BF [From B] ...(ii)

and, CE = CD [From C] ...(iii)

Therefore, Adding equations (i), (ii) and (iii), we get,

AF + BD + CE = AE + BF + CD

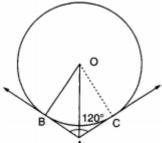
Now,

Perimeter of ΔABC = AB + BC + AC

Е

 \Rightarrow Perimeter of ΔABC = (AF + FB)+(BD + CD)+(AE + EC)

 \Rightarrow Perimeter of ΔABC = (AF + AE)+(BF + BD)+(CD + CE)


 \Rightarrow Perimeter of ΔABC = 2 AF + 2 BD + 2 CE

 \Rightarrow Perimeter of ΔABC = 2(AF + BD + CE) [From (i), (ii) and (iii), we get AE = AF, BD = BF and CD = CE]

 $\Rightarrow AF + BD + CE = \frac{1}{2}$ (Perimeter of $\triangle ABC$)

Hence, AF + BD + CE = $AE + BF + CD = \frac{1}{2}$ (Perimeter of ΔABC)

OR

In Δ 's OAB and OAC, we have, $\angle OBA = \angle OCA = 90^{\circ}$ OA = OA [Common] AB = AC [\because Tangents from an external point are equal in length] Therefore, by RHS congruence criterion, we have, $\Delta OBA \cong \Delta OCA$ $\Rightarrow \angle OAB = \angle OAC$ [By c.p.c.t.] $\therefore \angle OAB = \angle OAC = \frac{1}{2} \angle BAC$ $= \frac{1}{2} \times 120^{\circ} = 60^{\circ}$ $\Rightarrow \angle OAB = \angle OAC = 60^{\circ}$ In Δ OBA, we have, $\cos B = \frac{AB}{OA}$ $\Rightarrow \cos 60^{\circ} = \frac{AB}{OA}$ $\Rightarrow \frac{1}{2} = \frac{AB}{OA}$ $\Rightarrow OA = 2AB$ Hence proved.

Let 'h' (AB) be the height of tower and x be the width of the river In $\triangle ABC$, $\frac{h}{x} = \tan 60^{\circ}$ $\Rightarrow h = \sqrt{3}x$ (i) In $\triangle ABD$, $\frac{h}{x+20} = \tan 30^{\circ}$ $\Rightarrow h = \frac{x+20}{\sqrt{3}}$ (ii) Equating (i) and (ii), $\sqrt{3}x = \frac{x+20}{\sqrt{3}}$ \Rightarrow 3x = x + 20 $\Rightarrow 2x = 20$ \Rightarrow x = 10 m Put x = 10 in (i), $h = \sqrt{3}x$ $\Rightarrow h = 10\sqrt{3}$ m 14. i. 1st installment = Rs. 3425 2nd installment = Rs. 3225 3rd installment = Rs. 3025 and so on Now, 3425, 3225, 3025, ... are in AP, with a = 3425 , d = 3225 - 3425 = -200 Now 6th installment = a_n = a + 5d = 3425 + 5(-200) = Rs. 2425 ii. Total amount paid = $\frac{15}{2}$ (2a + 14d) $= \frac{15}{2} [2(3425) + 14(-200)] = \frac{15}{2} (6850 - 2800)$

$$=\frac{15}{2}(4050) = \text{Rs.}30375$$