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3.2 CONDUCTORS AND DIELECTRICS IN AN ELECTRIC FIELD
3.54 When the ball is charged, for the equilibrium

A58

31.56

of ball, electric force on it must counter balance
the excess spring force, exerted, on the ball
due to the extension in the spring.
Thus F,; = FSP,

2

ol = ¥ x, (The force on the charge

p —4
dmey (2]

g might be considered as arised from attraction
by the electrical image)

org= HVrexx,

sought charge on the sphere.

By definition, the work of this force done upon an elementry displacement dx (Fig.) is

given by
dA = F,dx= _—92—2
4me,(2x)

where the expression for the force is obtained
with the help of the image method. Integrating
this equation over x between [ and o, we find

A= _‘L.fﬂ= T
© 16 mg,
i

¥

T16me, !

T ot
/777’7717WW
2 Tmagz
©-q
7
7
/
,4 5 q> > X
A x
/
/]
%

(a) Using the concept of electrical image, it is clear that the magnitude of the force acting

on each charge,

- 2
|F|=v2 —2

q2
dmeyl? dme, (V21

2
8meyl

(b) Also, from the figure, magnitude of
electrical field strength at P

1 Y\_g
E=2|1-—F
[ 5\/5)3‘[80[2

3.57 Using the conceptof electrical image, itis easily

seen that the force on the charge q is,

__ V2@ 9
Ame, 27 4me,QV2 I

L evV2-ng

~————=— (It is attractive)
32me,y!l a

~§r—i5
/] ’
/]
/]
Z

1

; P/
' rd
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-4 IIL/_.___._____J q
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3.58 Using the concept of electrical image, force on the dipole p,

3.59

.60

—» oFE -
F=p TR where E is field at the location of
pdueto (-p7)

F 7 =] |
Llp- 2 P w3
al 2neylt l
as, |E. |= —La

4 ey (2

To find the surface charge density, we must know the clectric field at the point P (Fig.)
which is at a distance r from the point O .
Using the image mirror method, the field at P,

—
or, |F|=

!
] ) —>»

+9

i ql
E=2FEcosa=2—3 ‘=
dnegx’x 2:1130(1’2-”2)3/2
Now from Gauss’ theorem the surface charge l

density on conductor is connected with the
electric field near its surface (in vaccum)
through therclgtiono = g, E , where E isthe
projection of E onto the outward normal 7 (with
respect to the conductor).

As our field strength ETl 7. so --Q

o E= - q!
*o 2202+

7o

(a) The force F, on unit length of the thread is given by
F, = AE,

where E, is the field at the thread due to image

charge :

1
"y /‘
By = Smey ) il
-2
Thus F1 = e X M
4me, ! >
minus singn means that the force is one of —A 1A ¢
attraction. i
(b) There is an image thread with charge I//L/
density- A behind the conduycting plane. We

calculate the electric field on the conductor. Itis

M
E)=E (x)= — =
©= £, ) ney (F +1%)
oa considering the thread and its image.
Thus
M

ox)= ¢, £, = m
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361 (a) AtO,

Adx A
£ -2 [ B
a( ) 4 41;50_{2 21‘!801

A
So C(O)= g, E, = Ixl

h dr X A xdx
® £.0) 2f4n£0(x2+r2) (x2+r2)1/2- 2"‘Eo-f(xzﬂ'z)a/2

! 1

o

- 4:% f ;dé%,on putting y = x° + 77, de.?\
Par x
) A 1 /
2me,VI24 2 / oi n /
Hence o(r)= e £, = _—r i
2aVite l_?\

3.62 It can be easily seen that in accordance with the image method, 2 charge —¢ must be
located on a similar ring but on the other side of the conducting plane. (Fig.) at the same
perpendicular distance. From the solution of 3.9 net electric ficld at O,

Fe2—O (7 where
- -n) where n'is
dmey (R2+1%*72 j q
outward normal with respect to the condycting
plane.
o L
Now E = E; | )
Hence o= 2
2n (P +1 :)ac 2
where minus sign indicates that the induced
carge is opposite in sign to that of charge 4
g>0.

3.63 Petential @ is the same for all the points of the sphere. Thus we calculate its value at the
centre O of the sphere. Thus we can calculate its value at the centre O of the sphere,

because only for this point, it can be calculated in the most simple way.

q )
4neul+(p (1)

ma:
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.64

3.65

3.66

where the first term is the potential of the charge

g, while the second is the potential due to the
charges induced on the surface of the sphere.

But since all induced charges are at the same o
distance equal to the radius of the circle from +Cl
the point C and the total induced charge is

equal to zero, @' = 0, as well. Thus equation
(1) is reduced to the form,
1 g

= 4me, !l

P

As the sphere has conducting layers, charge
—g is induced on the inner surface of the sphere
q and consequently charge + g is induced on
the outer layer as the sphere as a whole is
uncharged.

Hence, the potential at O is given by,

oom—1 4 (~9) q
O 4meyr 4me R, 4meyR,

It should be noticed that the potential can be
found in such a simple way only at O, since
all the induced charges are at the same distance
from this point, and their distribution, (which
is unknown to us), does not play any role.

Potential at the inside sphere,

- 4 . 5
a dnegya 4dnmeyb
' b
Obviously g,=0 for g, = -— 4 )
When rz b,
q 4> qy b ]
= 4neor+4ne0r_ 4:;30(1—“)/ r, using Eq. (1).
And when r< b
% 42 (11
@, = + = o=
dmeyr dme b 4dme (r a)

(a) As the metallic plates | and 4 are isolated and conncted by means of a conductor,
¢; = @, Plates 2 and 3 have the same amount of positive and negative charges and due
to induction, plates 1 and 4 are respectively negatively and positively charged and in

addition to it all the four plates are Jocated a small but at equal distance & relative to each
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other, the magnitude of electric field strength between 1 - 2 and 3 - 4 are both equal in
—n —
magnitude and direction (say E ). Let E" be the field strength between the plates 2 and 3,

which is directed form 2 to 3. Hence E t E (Fig.).
According to the problem

E'd= Ap= 9, - ¢, 1 o
In addition to ™ 1 N
Pr-9= 0= (@ - o)+ (@3 - @) + (3 - ®y) TS Y
or, 0= —Ed+A(p—Ed 4{},\ "‘-—-—"v--TS
Ap . 4
or, Ap= 2Ed or E= 2 ‘s.ﬂ
Hence E = §2—= %3 (2)

(b) Since Ea o, we can state that according to equation (2) for part (a) the charge on

the plate 2 is divided into two parts; such that 1/3 rd of it lies on the upper side and

2/31d on its lower face.

Thus charge density of upper face of plate 2 or of plate 1 or plate 4 and lower face of

gy A
2d

3= gy E= and charge density of lower face of 2 or upper face of 3

o'= g, E = 80%)'

3g,A
Hence the net charge density of plate 2 or 3 becomes 0 + g’ = —02—;3-, which is obvious

from the argument.

The problem of point charge between two conducting planes is more easily tackled (if we
want only the total charge induced on the planes) if we replace the point charge by a
uniformly charged plane sheet.

Let o be the charge density on this sheet and E,, E, outward electric field on the two

sides of this sheet.

Then E +E,= g r
£y

The conducting planes will be assumed to be
grounded. Then E, x = E, {l - x).

g o
H E = —(l-x), E;= —
ence 1= Tey (t-x), E, [on
This means that the induced charge density on
the plane conductors are

|

i

i
01=—£;-(I-x), 02=—2x l( ‘ vy

!

Hence g, = —%(I-x), g, = —%x
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3.63

3.69

3.70

Near the conductor £ = E = g

€y

This ficld can be written as the sum of two parts E, and E,. E| is the electric ficld due

to an infinitesimal area dS.

. o
Very near it £, = = ——
2¢g

v . g
The remaining part contributes E, = 3o on
0
both sides. In calculating the force «on the
element dS we drop E, (because it is a

self-force.) Thus
dF o o

P PR

The total force on the hemisphere is

w2
o
F= —cos0-2aRsinORJ0O
2¢g,
0

2
2 2
= M—fcosﬁsiuedﬁ
2¢g, A

2xR? 1 q 2 7
= ¥ —X 2 -
2¢p 2 |4aR 32meyR

We know that the force acting on the area element 45 of a conductor is,

- 1 —»
dF = SoE dS 1)

It follows from symmetry considerations that
the resultant force F is directed along the z-axis,
and hence it can be represented as the sum
{integral) of the projection of elementary forces
(1) onto the z-axis :

dF,= dF cos § 2)

For simplicity let us consider an element area
dS = 2 1t R sin 8 R d 6(Fig.). Now considering
that E = a/g, Equation (2) takes the from

2 p2

dF,= na R
£p

sinBcosB8d0

(Jt 0‘3 R?

) cos’0dcos O
Ep
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Integrating this expression over the half sphere (i.e. with respect to cos 0 between 1 and 0),

. nos R?
we obtain F=F =
4,
T . By P . .
The total polarizationis P = (e — 1) £, E. This mustequals N where ngis the concerntation

of water molecules. Thus

mp

N= ek

= 2:93 x 10° on putting the values

From the general formula

7. 1 2p
E- dmey 13’

where r= [ and 7 11 p~

This will cause the induction of a dipole moment.

Pina ™ B4:rt£0 13 X fo

Thus the force,

The electric field £ at distance x from the centre of the ring is,

gx .
E@x)= iy on
) 4me, (R + X7

. . . gpx
The induced dipole moment is p= Be, F =
ol . 32
p P=Peg AR

The force on this molecule is

F'P'Q—E" 9Bx 1 9.2 x v ™ qzzﬁ X(R;_?;tj)
dx 4?:(R2+x2) 4:teuax(R2+x2 167°e;, (R*+x%)

This vanishes for x = % (apart from x = 0, x = o)

It is maximum when

B3 xR-¥x2)
x (R +x)
or, RP-2) R+ ) -4 2R+ D) -8R 24D = 0
2z
or, R-132R*+10x*= 0 or, x*= ’;—0(131 Vidy )

orx = % V13 \/ﬁg (on either side), Plot of F, (x) is as shown in the answersheet.
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374

375

3.76

3.77

Inside the ball

—_—
D .
) an 5 ey E
Also 80_)+_)=BOI' _‘=E;11_)’=£;1:1%L3
¥
Also ! —§F—d—. Swl—q—fa’g- e-1
’ 1 e 4x - e 7
o
Dy = €Ly = Deppguir = & OF, Ediel'a
£-1
P =(-Ve Ly, = o
0,-_Pn__£—10

3
This is the surface density of bound charges.

From the solution of the previous problem g, = charge on the interior surface of the
conductor
£~1

3

--—(e-—l)/afcdS-- q

Since the dielectric as a whole is neutral there must be a total charge equal to

£ . .
o= * . don the outer surface of the dielectric.

(a) Positive extrancous charge is distributed uniformly over the internal surface layer. Let
o, be 1be surface density of the charge.

Clearly, E=0 for r<a
Fora<r

g,Exanr’=4n a* o, by Gauss theorem.

€&

2
G fa
or, E-~—-;— ,a<r<b

For r > b, similarly

o
E= =2 (9—] ,r>b
g 7

Now, E= -~ EE.

or
So by integration from infinity where ¢ () = 0,

o, a°
¢= r>b

ET
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(!'tl:z

a<r<b g= + B, B is a constant

ET

or by continuity, ¢ = a<r<b

(:roa2 1 1 00a2
73

- ]
€€ g d

For r<a. ¢= A= Constant

By continuity, ¢ = =—-=14
ye »e g€ (a b] egb
{b) Positive extrancous charge is distributed uniformly over the internal volume of the
dielectric
Let py = Volume density of the charge in the diclectric, for a <r < b.

E=0, r<a

ooaz(l 1) aoa2

80£4Jtr2E= g—“(r3~a3)po,(a<r<b)

Po a
or, E= 3505(r—r2]

E= ‘g—u(bs-—as)pn/eoétnrz, r>b

b -a
or, E-w for r>b
Jeg,r
By integration,
b -a
=S—l£9- for r>b
Jeyr
b (7, d
or, ¢=B~380E(2+r),a<r<b
By continuity
b-a Po (B> &
3e,b PO 3gael2 b
P {ep’-d) (v &
on B 35,,5{ b 127%
2
. Po 0_2 2 Po @
Finally q)-B_3eua(2+a) B 2608,r<a

On the basis of obtained expressions E (r) and () (r) can be plotted as shown in the
answer-shect.
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378 Let the field in the dielectric be E making an angle o with 7. Then we have the boundary
conditions,

Eicosog=eEcosa and Egsincy= Esina

. 1
So E= E, Vsz oyt =5 cos? o and tan o = £tan o,
€

In the dielectric the normal component of the
induction vector is d / ;I-)
D, =g eE, = geEcosa= ggEycos o Lo
, 1 / >£o
=P =D -¢F = (1‘;’)505()“05‘10 56’
ey
or, o'= E—IEOEOCOS(IO

. ) -1 /
3.7% From the previous problem,a’ = g, - Eycos @

Eo
;; & 1'\ ﬁlfﬂgfhl
I T
R il
i

a) Then E-d?:lQ=nR2E cos 0 =1
E ¢ 3
0

(b) § 1_)“31‘"- (D, -Dy}l= (ggEysin @ ~g e, E;sinB)= — (g - 1) g, K Isin 0

—~ 3D,
3.80 (a) divD= i pand D= p!

E = —Ll, l<d and E_= pd constant for !> d
€ £ £g

—

2
- P -A-PH _pd(, d_
@ (x) 2860,1«1 and @ (x)= A - , {>dthen g (x) ” d S I,

by continuity.
On the basis of obtained expressions E, (x) and g (x) can be plotied as shown in the figure
of answersheet.
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3.82

M) p'= —div P= —div (e ~1) ¢, E = -pL“—;—I—)

o'= P, - P, where n is the normal from 1 to 2.

-
= P,, (P,=0 as 2 is vacuum.)
*

= (pd-pd/e)= pa =2

= B
divD = r—zﬂr D=p

A
+5,

r<R

A=0as D = » at r= 0 ,Thus, E, = 3pr

EED
B
For r>R, D = 7z
R3
By continuity of D, at r= R ; B= %—
R
s, E = —L, r>R
33012
R 2
p= -&—, r>R and p= -—P——+C,r<R
Jgyr 6t g

2 2
C= +%€4+%,bymntmuityofqn.
0 0

See answer sheet for graphs of E (r) and @ (7)

3
g . 38 _h o _ple-1
(b) o= div P= rzar{s"(l E]} €

o'= P,-P,=P, = %;;3(1_%)

299

Because there is a discontinuity in polarization at the boundary of the dielectric disc, a
bound surface charge appears, which is the source of the cleciric field inside and outside

the disc.
‘We have for the clectric fieid at the origin.

E’_ _J. odSs;;.
dmeyr

where 7= radius vector to the origin from the element dS.
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o' = P, = Pcos @ on the curved surface
{P,= 0 on the flat surface.)
Here 0 = angle between 7 and P

By symmetry, E. will be parallel to P. Thus
2

Fa __chosBRdB;cosB_d
4me,R

0

where, r= R if d<<R.

—

Pd — d
d5,R ™ E" TR

So, Ew -

3.83. Since there are no free extrancous charges anywhere

— oD,
divD = = 0 or, D = Constant

But D, =0 at =, s0, D = 0, every where.
Pl 2 Pyf
TP AP <1 4
€y d g d
Pyx Poxj
So, Q= — + constant

Hence,

384 (a) Wehave D\ = D,, or, e £;,= E;

Also, E1§+Ezg"' Eyd or, E\+E,= 2E,
ences T PR Rt St P

() D,= D, of, £E,=E, = :’—O-E0

E
Thus, E =Ey, E,= ?" and D= D,~ ¢,E,
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3.85 (a) Constant voltage acros the plates;

.36

387

388

(b) Constant charge across the plates;
E =E), D=¢FE,Dy=ceeyfy=eD

2E,

E,{l1+e)= 2E, or E,= E, =

e+1

At the interface of the diclectric and vacuum,

Ey=Ey
The clectric field must be radial and
E\m Eym ——, a<r<b
EgET
A 2 A 2
Now, g= F(MR)*S«?(Z“R)
-A(1+l)2:r
€
of, E =E,= —q
! z 2ueorz(1+e)

In air the forces are as shown. In K-oil,

F— F = F/¢ and mg—*mg(l—%).

Since the inclinations do not change

1, P
£ P
or, &-1——1”- e-1
£ £ )
. mg mg
P=PorT

where py is the density of K-oil and p that of the material of which the balls are made.

Within the ball the electric field can be resolved into normal and tangential components.

E = Ecos0,E, = Esin® 7?
Then, D, = cg,Ecosf
and P, =(e-1) g,Ecos ] . £
oz, o'=(e-1)eg,Ecos@ ,E -

80, Op.=(e~1)¢E,

and total charge of one sign,
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339

3.90

i

q’:-f(e—l)ﬁoEcosB2nR2d(cos9)- :tsto(s-l)E
0

(Since we are interested in the total charge of one sign we must intergrate cos @ from 0
to 1 only).

The charge is at A in the medium 1 and has an image point at A’ in the medium 2. The
electric field in the medium 1 is due to the actual charge g at A and the image charge
g’ at A", The electric field in 2 is due to a corrected charge ¢’ at A. Thus on the boundary
between 1 and 2,

L}

E, = — —cos0-—T—cos®
dne,r? dme,r

E =__L s 0
2 4neorzm
Eu= —-—q——sin9+——q—sin6

2
4regr 4ne,

B, —9 _sine
2' 4:1&0:‘2

The boundary conditions are
D, =D, and E,, = E,

sqﬂ-q_qf
q'=q+q
wo 2q o, _ _e-1
So, 9 e+1’q E+1q

(a) The surface density of the bound charge on the surface of the dielectric
0’=P2n= D?.ﬂ_-EUEZn- (8_1).£0E2A
e-1 ¢ te-1 gl
—s+12,”2€089 e+l gy

-1 ] £-1
e q{ 2uuz+x2)m2:txdx= Tevt?

The force on the peint charge g is due to the bound charges. This can be calculated from
the field at this charge after extracting out the self field. This image field is

izl g
image c+1 4n £y (202

(b) Total bound charge is,-

e-1 q"2
Thus, F = —_—y
E+1 16 eyl
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393

303

qr_' q’?'
1 2 .
st~ 3 ' Pin 1
dneyry dnr, g
—_—
qilrl .

Ep' 3, Pin2

dne,r,

where ¢’ = 29

! "
.10 9794
In the limit I — 0
— =P —»
E_(q+q)r_ qr 3» i0 either part.

dne,r  2mey(l+e)r

q
Thus, E = — ——
? 2150(1+e)r2

(p-___‘I__
Zrea(l+e)r

q 1 in vacuum
¢ in diclectric

D=
2nea(1+e)rzx

—» —

— qr; qr _
~ 3 33 Pin 2
dneger, 4dner

—> q”?
2 .
Ep' ——; Pinl
4:':enr2

Using the boundary conditions,
E,=¢eEy, Ey=Ey

This implies

g-tq=q" and g+eqg' = £q"

So, g¢'= 24_ e-1g

e+1’ e+1¢e

q =

Then, as earlier,

2xr le+l] &

oa__?L.(ﬂ].l

To calculate the electric field, first we note that an image charge will be needed 1o ensure
that the electric field on the metal boundary is normal to the surface.
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394

395

196

The image charge must have magnitude —g

so that the tangential component of the electric
field may vanish. Now,

E m [—q—)2cosB-———q-l—

4,

£r 2:rceosr‘3

e-1)gl ,
Then P, = D, - ¢yE, = iz—;%;t- o

This is the density of bound charge on the
surface.

Since the condenser plates are connected,
E h+E,(d-h)= 0

and PreyE = g, FE, A EZ

Ph Ph
Thus, Ezd-—s—n‘z 0, or, EZ- (-;od A

P{, h
E = 'eo(l'd)

Given P= o r, where r = distance from the axis. The space density of charges is given
by, p'= -div P= -2a

- T &
ol | i
1>

On using. div r= % -g;(?t_j- 2

In a uniformly charged sphere,

The total electric field is

- 1 - 1
E= 3¢, Por = 380(’.__6_.;5 Pa
- P
= 3 P07 T3
where p & r= -P (dipole moment is defined
with its direction being from the -ve charge
to +ve charge.)

The potential outside is

-
-1 (2 :’_Q_‘T Pl
(P-4n€0(r lr—ﬁr )’ 4EEOr3’r>R

4x
3

where ;7; = - R Po ar " is the total dipole moment.
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3.98

399

3100

308

The electric field E0 in a spherical cavity in a uniform dielectric of permittivity € is related
to the far away field E in the following manner. Imagine the cavity to be filled up with
the dielectric. Then there will be a uniform field E everywhere and a polarization P, given
by,

}_; = (e-1)¢, E.
Now take out the sphere making the cavity,

the_glectric field inside the sphere will be
P

3¢,

By superposition. E_I; E
3¢

or,E(',s E+-13-(£—1)E= %(£+2)E.

By superposition the field E inside the ball is given by
P~ P
E=E,- 380

Ou the other hand if the sphere is not too small, the macroscopic equation
={e-1) SBE must hold. Thus,

E|1 1 E E 3E:'

( +>(e-1)|= E; or P
— s_kl—b

Also P= 3£D;+_2'E0

This is to be handled by the same trick as in 3.96. We have effectively a two dimensional
situation. For a uniform cylinder full of charge with charge deasity p, {charge per unit
volume), the electric field E at an inside point is along the (cylindrical) radius vector r
and equal to,
= 1
280 2¢, P r
dwE- -—(rE)- B—, hence, E, = ER—
£y

Therefore the polarized cylinder can bc thought of as two equal and opposite charge dis-

tributions displaced with r%pect to each 'othcr
7

E=-2;v—pr--~—~p(r or) = p6r--~2-£—;
Since I—; = -pbr (dlrectmn of clectric dipole moment vector being from the negative
charge to positive charge .)
-~ > F
As in 3.98 we write E= £y~ —
2,
using here the result of the forfgoing problem.

Also P=(e-1)g,E

_—D —_— —_ ZE — - —
So, E[E—i;i)-f‘,, o, E= =% and F= 250,



