

Total No. of Questions - 24
Total No. of Printed Pages - 4

Regd.						
No.			1			

Part - III

MATHEMATICS, Paper - II (B)

(Coordinate Geometry and Calculus)

(English Version)

Time: 3 Hours

Max. Marks: 75

Note: This question paper consists of three sections A, B and C.

SECTION A

 $10 \times 2 = 20$

- I. Very Short Answer Type Questions.
 - i) Attempt all questions.
 - ii) Each question carries two marks.
 - 1. If $x^2 + y^2 + 2gx + 2fy = 0$ represents a circle with centre (-4, -3), then find g, f and the radius of the circle.
 - 2. If the length of the tangent from (2, 5) to the circle $x^2 + y^2 5x + 4y + k = 0$ is $\sqrt{37}$, then find the value of k.
 - 3. Find the angle between the circles $x^2 + y^2 + 4x 14y + 28 = 0$, $x^2 + y^2 + 4x 5 = 0$.
 - 4. Find the equation of the parabola whose vertex is (3, -2) and focus is (3, 1).
 - If the angle between the asymtotes is 30°, then find the eccentricity of the hyperbola.

- 6. Evaluate $\int Sec^2x \cdot Cosec^2x \ dx$.
- 7. Evaluate $\int \frac{e^x (1+x)}{\cos^2(xe^x)} dx$.
- 8. Evaluate $\int_{0}^{4} |2-x| dx$.
- 9. Find the value of $\int_{0}^{2\pi} Sin^{4}x \cdot Cos^{6}x \, dx$
- 10. Form the differential equation of the curve $y=a\cos(nx+b)$ (where a, b are parameters).

SECTION B

 $5 \times 4 = 20$

- II. Short Answer Type Questions.
 - i) Attempt any five questions.
 - ii) Each question carries four marks.
 - 11. Show that x + y + 1 = 0 touches the circle $x^2 + y^2 3x + 7y + 14 = 0$ and find its point of contact.
 - 12. If x+y=3 is the equation of the chord AB of the circle $x^2+y^2-2x+4y-8=0$. Find the equation of the circle having AB as diameter.

- 13. Find the equation of the ellipse in the standard form such that distance between foci is 8 and distance between directrices is 32.
- 14. Find the equation of the tangents to the ellipse $2x^2 + y^2 = 8$, which are (i) Parallel to x-2y-4=0 and (ii) Perpendicular to x+y+2=0.
- 15. Find the centre, foci, eccentricity and length of the latus rectum of the hyperbola $16y^2 9x^2 = 144$.
- 16. Evaluate $\int_{0}^{\pi/2} \frac{a \sin x + b \cos x}{\sin x + \cos x} dx$.
- 17. Solve the differential equation $\frac{dy}{dx} + \frac{4x}{1+x^2}y = \frac{1}{\left(1+x^2\right)^2}.$

SECTION C

 $5 \times 7 = 35$

III. Long Answer Type Questions.

- i) Attempt any five questions.
- ii) Each question carries seven marks.
- Show that the four points (1,1), (-6,0), (-2,2), (-2,-8) are concyclic and find the equation of the circle on which they lie.
- 19. Show that the circles $x^2 + y^2 6x 2y + 1 = 0$, $x^2 + y^2 + 2x 8y + 13 = 0$ touch each other. Find the point of contact and the equation of common tangent at their point of contact.

- 20. Show that the equation of common tangents to the circle $x^2 + y^2 = 2a^2$ and the parabola $y^2 = 8ax$ are $y = \pm(x+2a)$.
- 21. Evaluate $\int \frac{2x+5}{\sqrt{x^2-2x+10}} dx$.
- 22. Obtain the reduction formula for $I_n=\int Sec^nx\,dx$, n is a positive integer, $n\geq 2$ and deduce the value of $\int Sec^5x\,dx$.
- 23. Show that the area of the region bounded by $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (ellipse) is πab . Also deduce the area of the circle $x^2 + y^2 = a^2$.
- 24. Solve the differential equation $(x^2 y^2)dx xy dy = 0$.

· ..