Metals and Non-Metals

Introduction

There are 18 chemical element known at present. On the basis of their properties, all these elements can be broadly divided into two main group: Metals and Non-Metals. A majority of the known elements are metals. All the metals are solids, except **mercury**, which is a liquid metal. There are 22 non-metals, out of which, 10 non-metals are solids, one non-metal (bromine) is a liquid and the remaining 11 non-metals are gases.

Occurrence

Metals and non-metals occur in nature in Free State as well as in combined state. The metals like gold, platinum, copper, silver are not affected by water and air and so these are found in Free State. Most of the metals and non-metals are found in the form of compounds. These are associated with different types of impurities. The metals occur as oxides, sulphides, carbonates, halides, sulphates, silicates and phosphates.

Occurrence of Metals

S. No.	Compounds	Minerals	
1.	Oxides	Bauxite (Al ₂ O ₃ .2H ₂ O), Magnetite	
		(Fe_3O_4)	
2.	Sulphides	Copper Pyrites (CuFeS ₂),	
		Cinnabar (HgS)	
3.	Carbonates	Magnesite (MgCO ₃), Limestone	
		(CaCO ₃), Calamine (ZnCO ₃)	
4.	Halides	Common salt (NaCl), Horn silver	
		(AgCl)	
5.	Sulphates	Gypsum (CaSO ₄ .2H ₂ O), Epsom	
		salt (MgSO ₄ .7H ₂ O)	
6.	Phosphates	Rock Phosphate [Ca ₃ (PO ₄) ₂]	
7.	Silicates	China clay (Al ₂ O ₃ .2SiO ₂ .2H ₂ O)	

S. No.	Non-metals	Free State	Combined state
1.	Oxygen	Air (21%)	Water, earth's crust
2.	Nitrogen	Air (78%)	Animal kingdom,
			nitre, Chile salt petre.
3.	Hydrogen	Coal gas	Water, cells of plants
			and animals, natural
			gas, petroleum, coal
4.	Phosphorus	-	Rocks, bones, teeth,
			blood
5.	Carbon	Diamond,	Air (0.03%), natural
		graphite, coal	gas, marsh gas, rocks.
6.	Sulphur	Rocks near active	Metallic ores
		and dormant	
		volcanoes	
7.	Silicon	-	Sand, flint, quartz,
			opal, mica, feldspar

Physical properties of Metals

The important physical properties of metals are discussed below:

(i) **Physical State:** All metals (except mercury) are solids at room temperature. Mercury, gallium (at 30°C), caesium and francium occur in liquid state in nature.

(ii) Metals are malleable: Metals are generally malleable. This means that the metals can be beaten with a hammer into very thin sheets without breaking.

(iii) Metals are ductile: It means that metals can be drawn (stretched) into thin wires. This property of metals is called ductility.

(iv) Metals are good conductors of heat and electricity

(v) Metals are lustrous and can be polished

(vi) Metals have high densities: Most of the metals are heavy and have high densities.

For example, the density of mercury metal is very high (13.6 g cm⁻³). However, there are some exception. Sodium, potassium, magnesium and aluminium have low densities. Densities of metals are generally proportional to their atomic masses.

(vii) Most of the metals are rigid hard

(viii) Metals have high melting and boiling points

(ix) Metals are sonorous

Chemical properties of Metals

The atoms of the metals have usually 1,2 or 3 electrons in their outermost shells.

$$\begin{array}{cccc} Na & \longrightarrow & Na^{+} + e^{-} \\ Mg & \longrightarrow & Mg^{2+} + 2e^{-} \\ (2,8,2) & & (2,8) \\ Al & \longrightarrow & Al^{3+} + 3e^{-} \\ (2,8,3) & & (2,8) \end{array}$$

Since the metal atoms lose electrons and form positively charged ions, therefore, the metals are called electropositive elements.

Some of the important chemical properties of metal are discussed below:

Reaction with Oxygen

Metals react with oxygen to form oxide. These oxides are basic in nature.

$$4Na + O_2 \longrightarrow 2Na_2O$$

Sodiumoxide
$$2Mg + O_2 \longrightarrow 2MgO$$

Magnesium oxide

Reaction with Water

Different metals behave differently in their chemical reaction with water.

(i)
$$2Na + 2H_2O \longrightarrow 2NaOH + H_2 \\ Sodium \\ Cold water \longrightarrow 2NaOH + H_2 \\ Hydrogen \\ hydroxide \\ hydroxide \\ Hydrogen \\ Hydro$$

(ii)
$$2K_{Potassium} + 2H_2O \longrightarrow 2KOH + H_2_{Hydrogen}$$

(iii)
$$\begin{array}{c} Ca + 2H_2O \longrightarrow Ca(OH)_2 + H_2\\ Calcium & Water & Calcium \\ hydroxide & Hydrogen \end{array}$$

(iv)
$$Mg + 2H_2O \longrightarrow Mg(OH)_2 + H_2$$

Magnesium boiling water Magnesium Hydrogen
hydroxide

(v)
$$Zn + H_2O \xrightarrow{Heat} ZnO + H_2 \xrightarrow{Iinc oxide} H_2 + H_2 \xrightarrow{Hydrogen}$$

(vi) $3Fe + 4H_2O \xrightarrow{Heat} Ferro-ferric Given Original Hydrogen Ferro-ferric Oxide Original Hydrogen H$

Reaction with Dilute acids

Reaction with Dilute acids (Displacement reactions0: Sulphuric acid, hydrochloric acid and nitric acid are called mineral acids. These acids in dilute form react with metals to form their respective salts and hydrogen gas. Many metals react with dilute acids and liberate hydrogen gas. Only less reactive metals such as copper, silver, gold etc. do no liberate hydrogen from dilute acids. For example: (i) Sodium, magnesium and calcium react violently with dilute hydrochloric acid (HCl) or dilute sulphuric acid liberating hydrogen gas corresponding metal salt.

$$2Na(s) + 2HCl(aq) \longrightarrow 2NaCl(aq) + H_{2}(g)$$
Sodium
$$2Na(s) + H_{2}SO_{4}(aq) \longrightarrow 2Na_{2}SO_{4}(aq) + H_{2}(g)$$
Sodium
Similarty
$$Mg(s) + 2HCl(aq) \longrightarrow MgCl_{2}(aq) + H_{2}(g)$$
Magnesium
$$Mg(s) + H_{2}SO_{4}(aq) \longrightarrow MgSO_{4}(aq) + H_{2}(g)$$
Magnesium
$$Zn(s) + 2HCl(aq) \longrightarrow ZnCl_{2}(aq) + H_{2}(g)$$
Zinc
$$Zn(s) + H_{2}SO_{4}(aq) \longrightarrow ZnCl_{2}(aq) + H_{2}(g)$$
Zinc
$$Zn(s) + H_{2}SO_{4}(aq) \longrightarrow ZnSO_{4}(aq) + H$$

$$2Al(s) + 3H_2SO_4(aq) \longrightarrow Al_2(SO_4)_3(aq) + 3H_2(g)$$
Alu min ium
sulphate

chloride

(ii) Iron reacts slowly with dilute HCl or dil. H_2SO_4 and therefore, it is less reactive that zinc and aluminium.

$$Fe(s) + 2HCl(aq) \longrightarrow FeCl_2(aq) + H_2(g)$$
Ferrouschloride

$$Fe(s) + H_2SO_4(aq) \longrightarrow FeSO_4(aq) + H_2(g)$$

$$Ferrous sulphate$$

$$Cu(s) + HCl(aq) \longrightarrow No \ reaction$$

$$Cu(s) + H_2SO_4(aq) \longrightarrow No \ reaction$$

 $Cu(s) + H_2SO_4(aq) \longrightarrow No reaction$

e Dilute nitric acid (HNO₂) is an oxidising age

Note: Dilute nitric acid (HNO₃) is an oxidising agent. Although it oxidizes metals, but does not produce hydrogen gas.

Reactions of Metals with Bases

Some metals react with alkalies;

$$2Al + 2NaOH + 2H_2O \longrightarrow 2NaAlO_2 + 3H_2$$
Alu min ium Sodium Mater Sodiumneta
Alu min ate
Alu min ate

$$Zn+2NaOH \longrightarrow Na_2ZnO_2 + H_2$$

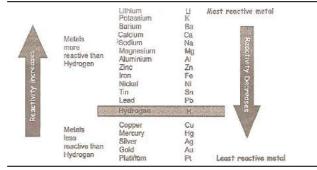
$$Zinc \qquad Sodium \qquad Sodium \qquad Sodium \qquad Sodium \qquad Sodium \qquad Sodium \qquad Hydrogen$$

 $Sn + 2NaOH + H_2O \longrightarrow Na_2SnO_3 + 2H_2$ Sodium Sodium Sodium Sodium Sodium Stannate

Reactions of Metals with Salt Solutions

When a more reactive metal is placed in a salt solution of less reactive metals, then the more reactive metal displaces the less reactive metal from its salt solution.

$$Zn(s) + CuSO_4(aq) \longrightarrow ZnSO_4(aq) + Cu(s)$$


$$Coppersulphate (Blue solution) ZnSO_4(aq) + Cu(s)$$

$$Coppersulphate (Colourlesssolution)$$

In the above reaction zinc displaces copper form its solution therefore zinc is more reactive than copper.

Reactivity series of Metals

The arrangement of metals in the order of decreasing reactivity is called the reactivity series or activity of metals.

Utility of Activity Series

The activity series is very useful as it gives the following informations:

(i) The metal which is higher in the activity series is more reactive than the other. Lithium is the most reactive an platinum is the least reactive metal.

(ii) The metals which have been placed above hydrogen are more reactive than hydrogen and can displace hydrogen from its compounds like water and acids to liberate hydrogen gas.

(iii) The metals which are placed below hydrogen are less reactive than hydrogen and cannot displace hydrogen from its compounds like water and acids.

(iv) A more reactive metal (placed higher in the activity series) can displace the less reactive metal from the solution of its salt.

(v) Metals at the top of the series are very reactive and, therefore, they do not occur free in nature, while the metals at the bottom of the series are least reactive and, therefore, they normally occur free in nature.

Use of common Metals

(i) Mercury is used in thermometers, barometers and to prepare amalgams.

(ii) Gold, platinum and silver are used in making jewellery.

(iii) Zinc is used for galvanization of iron to protect it from rusting and for making alloys.

(iv) Platinum is use to make electrodes and crucibles. It is also used in making jewellery.

(v) Iron is used in making machines, heavy duty parts, factory equipments, utensils and for construction purposes.

(vi) Copper is used in making electric wires, cables, utensils, boilers, calorimeters, coins, statues, electroplating and in alloys.

(vii) Aluminiumis used in making electric wires, cables, utensils, wrapping material, aeroplanes, ships, cars, buses, trains and in thermite process.

(viii) Some metals play an important role in the functioning of living systems in animals and human beings. Iron is a constituent of hemoglobin in blood which carries oxygen in nerves and in contraction of muscles.

(ix) Zinc in used in making dry cells.

(x) Lead is used in making automobile batteries, type metal, bullets, protective screens for X-rays and sanitary fittings.

Minerals and Ores

The natural substances in which metals or their compounds occur either in native state or combined stat are called minerals.

The minerals are not pure and contain different types of other impurities. The impurities associated with minerals are collectively known as gangue or matix.

The mineral from which the metal can be

conveniently and profitably extracted, is called an ore.

e.g. Aluminium occurs in the earth's curst in the form of two minerals, bauxite $(Al_2O_3.2H_2O)$ and clay $(Al_2O_3.2SiO_2.2H_2O)$. Out of these two, aluminium can be conveniently and profitably extracted from bauxite. So, bauxite is an are of aluminium.

Metallurgy

The process of extracting metals from their ores and then refining them for use is called metallurgy. The process of metallurgy depends upon the nature of the ore, nature of the metal and the types of impurities present. Therefore, there is not a single method for the extraction of all metals. However, most of the metals can be extracted by a general procedure which involves the following steps.

(a) Crushing are grinding of the ore.

(b) Concentration of the ore or enrichment of the ore.

b Extraction of metal from the concentrated ore.

(d) Refining or purification of the impure metal.

These steps are briefly discussed below-

(a) Crushing and Grinding or Ore:

Most of the ores occur as big rock in nature. They are broken into small pieces with the help of crushers. These pieces are then reduced to fine powder with the help of a ball mill or a stamp mill.

(b) Concentration of Ore or Enrichment or Ore:

The process of removal of unwanted impurities (gangue) from the ore is called ore concentration or ore enrichment.

Various methods used for concentration of an ore are:-

(i) Hydraulic washing (washing with water):

Principle: This method is based upon the difference in the densities of the ore particles and the impurities (gangue).

Ores or iron, tin and lead are very heavy and, therefore, they are concentrated by this method.

(ii) Forth floatation process:

Principle: This method is based on the principle of difference in the wetting properties of the ore and gangue particles with water and oil.

The froth floatation process is commonly used for the sulphide ores of copper, zinc, lead etc.

(iii) Magnetic separation:

Principle: The method depends upon the difference in the magnetic properties of the ores and gangue.

This method is used for the concentration of oxides ores of iron, nickel and cobalt.

Calcinations

It is the process of heating the concentrated ore in the absence of air. The calcinations process is used to carbonate ores into metal oxide. e.g.

$$\begin{array}{c} ZnCO_{3}(s) & \xrightarrow{Calcination} ZnO(s) + CO_{2}(g) \\ Zinc carbonate & Zinc oxide & Carbon \\ dioxide & \\ FeCO_{3}(s) & \xrightarrow{Calcination} FeO(s) + CO_{2}(g) \\ Siderite & Oxide & Carbon \\ dioxide & Carbon$$

Roasting

It is the process of heating the concentrated ore strongly in the presence of excess air.

This process is used for converting sulphide ores to metal oxide

e.g.

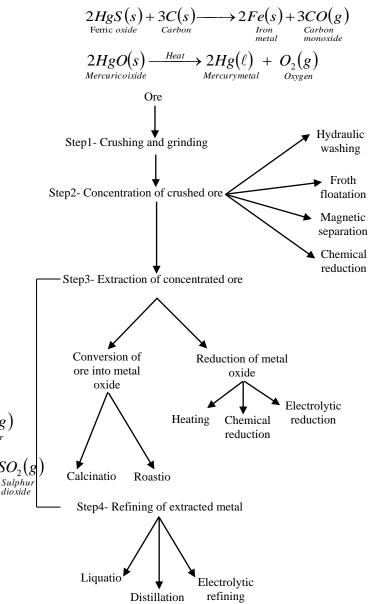
$$2ZnS + 3O_2 \xrightarrow{Roasting} 2ZnO(s) + 2SO_2(g)$$

$$Zinc sulphide (Zinc blendeore) Oxygen Zinc oxide Sulphur dioxide$$

$$4FeS_2(s) + 11O_2(g) \xrightarrow{Roasting} 2Fe_2O_3(s) + 8SO_2$$
Iron pyrites Oxygen Ferric oxide Sulph

Smelting

The metal oxide formed after calcinations or roasting is converted into metal by reduction. The method used for reduction of metal oxide depends upon the nature and chemical reactivity of metals. Smelting is done in ballast furnace. During smelting either the metal oxide is smelted or reduce in to metal.


Reduction with carbon: The oxides of moderately reactive metals (occurring in the middle of reactivity series) like zinc, copper, nickel, tin, lead etc. can be reduced by using carbon as reducing agent.

$$ZnO(s) + C(s) \xrightarrow{Heat} Zn(s) + CO(g)$$

$$Zinc \ oxide \ Carbon \ metal \ monoxide$$

$$Fe_2O_3(s) + 3C(s) \xrightarrow{Carbon} 2Fe(s) + 3CO(g)$$
Ferric oxide \ Carbon \ metal \ monoxide

Reduction by heating: Metals placed low in the reactivity series are very less reactive. They can be obtained from their oxides by simply heating in air.

Purification or refining of Metal

The metal obtained by any of the above methods is usually impure and is known as crude metal. The process of purifying the crude metal is called refining. Following methods are used to refine the metal.

(a) Liquation: (tin, lead, bismuth)

(b) Distillation: (mercury, zinc)

(c) Electrolytic Refining: (copper, silver, aluminium)

Alloys

An alloy is a homogeneous mixture of two or more metals or a metal and a non-metal.

Objects of Alloy Making: Alloy are generally prepared to have certain specific properties which are not possessed by the constituent metals. The main object of alloy-making are:

- (i) to increase resistance to corrosion.
- (ii) to modify chemical reactivity.
- (iii) to increase the hardness.
- (iv) to increase tensile strength.
- (v) to produce good casting
- (vi) to lower the melting point

Corrosion of Metals

Corrosion is a process of deterioration of metal as a result of its reaction with air or water (present in environment) surrounding it.

Rusting: The slow conversion of iron into its hydrated oxide, in the presence of moisture and air is called rusting, whereas the hydrated oxide of iron is called rust.

$$\begin{array}{rcl} 4Fe & + & 3O_2 & \longrightarrow 2Fe_2O_3 \\ Ferric \ oxide & & Fe_2O_3 & + & xH_2O & \longrightarrow Fe_2O_3.xH_2O \\ Ferric \ oxide & & & Water & & Ferric \ oxide & & & Ferric \ oxide & & & & Ferric \ oxide & & & & & \\ \end{array}$$

The brownish residue (Fe₂O₃. xH_2O) is commonly called rust and the phenomenon is called rusting. The rust so formed is flaky and easily crumbles from the surface of metal. Thus, fresh iron is exposed to the attack of moist air, to form more rust.

Amalgam

Amalgams are homogeneous mixtures of a metal and mercury.

e.g. Sodium amalgam contains sodium and mercury.

Different amalgams are prepared according to their uses. For example,

(i) Sodium amalgam is produced to decrease the chemical reactivity of sodium metal. It is also used as a good reducing agent.

(ii) Tin amalgam is used for silvering cheap mirrors.

Non-metals and their general properties

Non-metals except hydrogen, are present on the right hand side of the periodic table.

Physical Properties of Non-Metals:

The important physical properties of non-metals are listed below:

(i) Non-metals are brittle

(ii) Non-meals are not ductile

(iii) Non-metals are bad conductor of head and electricity.

Exception: Graphite is a good conductor because of the presence of free electron. It is used as positive electrode in dry cells.

(iv) Non-metals are not lustrous and cannot be polished.

Exception: Graphite and Iodine are lustrous non-metals.

(v) Non-metals may be solid, liquid, or gases at room temperature.

Solid: Carbon, sulphur and iodine.

Gases: Oxygen, hydrogen, nitrogen etc.

Bromine is the only non-metal which exists as a liquid at room temperature.

(vi) Non-metals are generally soft.

(vii) Non-metals have generally low melting and boiling points.

Exception: Graphite, another allotropic form of carbon, has a melting point of about 3730°C. Other exceptions are C,B, Si which have high melting and boiling points.

(viii) Non-metals have low densities.

Exception: Iodine ahs high density and diamond which is almost as heavy as Al.

(ix) Non-metals are not malleable i.e. sheets cannot be made from non-metals.

(x) Non-metals do not have the property of tensile strength.

Exception: Carbon fibre is as tensile as steel.

(xi) Non-metals are non-sonorous, i.e., when struck with a hammer they do not produce sound.

Chemical properties of Non-metals

Reaction with oxygen:

Non-metals react with oxygen to form acidic or neutral oxides. The acidic oxides dissolve in water to give acids.

(i) Acidic Oxides: The oxides of Carbon, Sulphur, Phosphorus etc. are acidic and they turn blue litmus solution red.

e.g.

(A) Carbon reacts with oxygen or air to form carbon dioxide gas which dissolves in water to form an acid called carbonic acid

$$C(s) + O_2(g) \rightarrow Ca_2(g)$$

Carbon Oxygen Carbondioxide

$$CO_{2}(g) + H_{2}O(\ell) \rightarrow H_{2}CO_{3}(aq)$$
Carbon
Carbon Water Carbonicacid

(B) Sulphur burns in air to form sulphur dioxide gas which dissolves in water to form an acid called sulphurous acid.

$$S(s) + O_2(g) \longrightarrow SO_2(g)$$
Sulphur Oxygen Sulphurdioxide
$$SO_2(g) + H_2O(\ell) \longrightarrow H_2SO_3(aq)$$
Sulphur Water Sulphurouscid

(C) When phosphorus is burnt in air, it reacts with oxygen of air to form phosphorus pentoxide which dissolves in water to form phosphoric acid.

$$\begin{array}{c}P_4(s) + 5O_2(g) \longrightarrow 2P_2O_5(s)\\ Phosphorus & Oxygen & Phosphorus pentoxide\end{array}$$

$$2P_2O_5(s) + 6H_2O(\ell) \longrightarrow H_3PO_4(aq)$$
Phosphorus
pentoxide
Water
Phosphoriacid

(ii) Neutral oxides: Some oxides of non-metals are neutral. For example, carbon monoxide (CO), nitric oxide (NO), nitrous oxide (N₂O), water (H₂O), etc. These oxides do not turn blue litmus solution red.

Reaction with water:

Non-metals do not react with water or steam to give hydrogen gas. This is because non-metals cannot give electrons to reduce the hydrogen ions of water into hydrogen gas.

Reaction with dilute acids:

Non-metals do not react with dilute acids an so, hydrogen gas is not liberated when non-metals are treated with dilute acids.

Reaction with bases:

Some non-metals react with alkalies-

$$\begin{array}{l} P4 & + 3NaOH + 3H_2O \rightarrow 3NaH_2PO_2 + PH_3 \uparrow \\ {}^{Phosphorus} & {}^{Sodium}_{hydroxide} & {}^{Water} & {}^{Sodium}_{hypophosphe} & {}^{Phosphine} \end{array}$$

$$\begin{array}{l} 4S & + 6NaOH \rightarrow Na_2S_2O_3 + 2Na_2S + 3H_2O \\ {}^{Sulphur} & {}^{Sodium}_{hydroxide} & {}^{Sodium}_{thiosulphae} & {}^{Sodium}_{sulphide} & {}^{Water} \end{array}$$

$$\begin{array}{l} Cl_2 & + 2NaOH \rightarrow NaCl + NaClO + H_2O \\ {}^{Sodium}_{chlorine} & {}^{Sodium}_{hydroxide} & {}^{Sodium}_{chloride} & {}^{Sodium}_{hydroxide} \end{array}$$

Uses of Non-metals:

(i) Silicon is used in making semi-conductors,

different alloys, glass, cement etc. It is also used in the ceramic industry as binder.

(ii) Silicon carbide is used in cutting and grinding of hard substances like diamond.

(iii) Phosphorus is used in the manufacture of safety matches, fertilizers, rat poison, smoke screens and fire works.

(iv) Sulphur is used in the manufacture of sulphuric acid.

(v) Sulphur is used a an antiseptic in making skin ointments and in a number of medicines. It is also used in the rubber industry for the vulcanization of rubber.

(vi) Graphite is used as a dry lubricant.

(vii) Hydrogen and oxygen can be used as oxyhydrogen flame for cutting and welding metals. (viii) Oxygen is used for artificial respiration. (**x**) The silicones are used in making water proof clothes, greases, polishes, electrical appliances and insulating material.

Important Minerals/Ores of Underlined elements

	Name	Formula
1.	Alumina	Al_2O_3
2.	Alunite	$K_2SO_4.Al_2(SO_4)_3.4Al(OH)_3$
<u>-</u> . 3.	Apatite	$3Ca_3(PO_4)_2CaF_2$
4 .	Azurite	$2CuCO_3.Cu(OH)_2$
5.	Anhydrite	CaSO ₄
6.	Argentite	Ag ₂ S
о. 7.	Anglesite	PbSO ₄
8.	Bauxite	$Al_2O_3.2H_2O$
9.	Borax	$Na_2B_4O_7.10H_2O$
10.	Calaverite	AuTe ₂
11.	Chile salt petre	NaNO ₃
12.	Cinnabar	HgS
13.	Calcia	CaO
14.	Chlorapatite	Ca ₅ (PO ₄)Cl
	emorapante	$3Ca_3(PO_4)_2CaCl_2$
15.	Carnallite	KCl.MgCl ₂ 6H ₂ O
16.	Calamine	ZnCO ₃
17.	Cassiterite	SnO ₂
18.	Copper pyrites	CuFeS ₂
	(Chalcopyrite)	-
19.	Copper glance	Cu ₂ S
20.	Cuprite (Ruby	Cu ₂ O
	copper)	
21.	Corundum	Al ₂ O ₃
22.	Cryolite	Na ₃ AIF ₆
23.	Zinc blende	ZnS
24.	Chalk (marble,	CaCO ₃
	Aragonite)	
25.	Cerussite	PbCO ₃
26.	Diaspore	Al ₂ O ₃ .H ₂ O
27.	Dolomite	MgSO ₄ .7H ₂ O
28.	Epsom Salt	MgSO ₄ .7H ₂ O
	(Epsomite)	
29.	Fluorspar	CaF ₂
30.	Fluorapatite	$3Ca_3(PO_4)_2CaF_2$
31.	Greenockite	CdS
32.	Gypsum	CaSO ₄ .2H ₂ O
33.	Galena	PbS
34.	Heavy spar	$BaSO_4$
35.	Horn silver	AlCl
	(Chlorargyrite)	
36.	Haematite (Red)	Fe_2O_3
37.	Iron pyrite	FeS ₂
38.	Kieserite	MgSO ₄ .H ₂ O
39.	Limonite (Brown)	$Fe_2O_3.3H_2O$
40.	Magnesite	MgCO ₃

or

41.	Malachite	CuCO ₃ .Cu(OH) ₂
42.	Magnetite	Fe ₃ O ₄
43.	Pyrargyrite or Ruby	Ag ₃ SbS ₃
	silver	
44.	Pyrolusite	MnO ₂
45.	Phosphorite	$Ca_{3}(PO_{4})_{2}$
46.	Sylvine	KCl
47.	Schonite	K2SO4.MgSO4.6H2O
		(AgAu)T ₄
48.	Sylvanite	KNO ₃
49.	Salt peter (Indian)	FeCO ₃
50.	Siderite	BaCO ₃
51.	Witherite	ZnO
52.	zincite	

Important facts of remember

1	Lowest electro negativity	Cs
2	Highest electronegativity	F
3	Highest ionization potential	Не
4	Lowest ionization potential	Cs
5	Highest electron affinity	Chlorine (Cl)
6	Lowest electron affinity	Noble gas (zero)
7	Least electropositive	Fluorine (F)
	element	
8	Lowest m.pt. (metal)	Mercury (Hg)
		(m.pt)=38.9°C
9	Highest m.pt. (metal)	Tungsten (W)
		(m.pt)=3410°C
10	Lowest m.pt. and b.pt (non-	He (b.pt-268.9°C)
	metal)	
11	Most reactive solid element	U
12	Most reactive liquid	Cs
12	element	F
13	Most reactive gaseous	F
14	element Most stable element	Te (Tellurium) Half life
14	Wost stable element	$= 2 \times 10^{21}$ year
15	Smallest atomic size	He
16	Largest anion	Cs
17	Largest anion	At ⁻¹
18	Smallest anion	Н
19	Most electropositive	Cs Fr (In stable
	element	element) (In all
		element)
20	Element with electro	Oxygen next of fluorine
	negativity	
21	Group containing	Zero group
	maximum no of gaseous	
	element in periodic table	44/00 VI NO
22	Total number of gaseous	$11(H_2, He, N_2, F_2, Ne, Cl + K_2, K_2)$
	elements	02, Cl ₂ , Ar, Kr, Xe, Rn)
	Total much of the literation	in periodic table
23	Total number of liquid	4(Ga, Br, Cs, Hg) (Fr

	elements	and Uub are also liquid)
24	Total number of solid	89 in periodic table
	elements	os in periodie diele
25	Liquid element of	Francium (Fr)
	radioactive nature	
26	Total number of	42
	radioactive elements In	
	periodic table	
27	Volatie d-block elements	Zn,Cd,Hg
28	Element containing neutron	1H ¹
29	Most abundant element on	Oxygen (O) followed
	earth	with Si
30	Rarest element on earth	Astatine (At)
31	Most abundant metal on	Al followed with Fe
	earth	
32	Element having maximum	Carbon
22	tendency for catenation	Diamond
33	Non-metal having highest m.pt. b.pt.	Diamond
34	Metal showing highest	Ru, Os
54	tensile strength	
35	Element having highest	Boron
	tensile strength	
36	Most electrovalent	CsF
	compound	
37	Most stable carbonate	Cs ₂ CO ₃
38	Liquid silver	Hg
<u>39</u>	Strongest alkali	CsOH
40 41	Strongest basic oxide Best electricity conductor	Cs_2O Ag followed with Cu,
41	among metals	Au, Al
42	Best electricity conductor	Graphite
	among non-metal	r
43	Most poisonous element	Pu
44	Liquid non-metal	Br ₂
45	Liquid metals	Hg, Ga, Cs, Fr
46	Element kept in water	P
47	Element kept in kerosene	Na, K
48	Elements sublime on heating	Ι
49	Bridge metals	Na, Mg
50	Noble metals	Au, Pt
51	White gold	Pt
52	Mosaic gold	SnS ₂
53	Elements showing diagonal	Li-Mg, Be-Al, B-Si
	relationship	
54	Metalloids elements	B, Si, Ge, As, Sb, Te
55	Non-metals having metallic	Iodine, graphite, diamond
51	lusture	Н
56 57	Lightest elements Heaviest naturally occurring	H U ²³⁶
51	element	
58	Poorest conductor of current	Pb (metal), S (non-metal)
59	Hardest naturally occurring	Diamond
	element	
60	Most abundant gas	N ₂
61	Lightest solid metal	Li
62	Lightest liquid metal	Cs

63	Heaviest solid metal	Os (highest density 22.6
		g/cm ₃)
64	Lightest solid non-metal	Boron
65	Heaviest solid non-metal	Astatine
66	Lightest gaseous non-metal	Н
67	Lightest metalloid	Rn
68	Lowest refractive index	В
69	Heaviest metalloid	Те
70	Lowest refractive index	Vacuum (1)
71	Highest refractive index	Diamond (2.4)
72	90% of sun mass	H ₂
73	Coolant in nuclear reactors	D ₂ O
74	Fool's gold	FeS ₂
75	Amphitricha oxides	ZnO, PbO, Al ₂ O ₃ , SnO,
	-	BeO, As ₂ O ₃ , Sb ₂ O ₃
76	Neutral oxides of non-metals	CO, N ₂ O, NO, H ₂ O
77	Dry bleacher	O ₃
78	Natural explosive	NCl ₃
79	Dry ice	CO ₂ (Solid)
80	Artificial explosive	Dynamite
81	Oldest known organic acid	Acetic acid
82	First nobel prize of chemistry	Vant Hoff
	was given to	
83	Feron (a refrigerant)	CF ₂ Cl ₂
84	Tincture iodine (antiseptic)	I ₂ in alcohol
85	Some polymorphic elements	O, S, P
86	Some isomorphism substances	FeSO ₄ .7H ₂ O,
		MgSO ₄ .7H ₂ O,
		ZnSO ₄ .7H ₂ O
87	Some efflorescent substances	Na ₂ CO ₃ .10H ₂ O,
		Na ₂ SO ₄ .10H ₂ O,
		MgSO ₄ .7H ₂ O,
00		Na ₂ S ₂ O ₃ .5H ₂ O
88	Some commonly used	H_2O_2 , SO_2 , SO_3 , Cl_2 ,
00	oxidants	H ₂ SO ₄ , HNO ₃
89	Some commonly used	SO ₂ , H ₂ S, Cl ₂ Bleaching
90	reductants Three most abundant elements	powder O, Si, Al
90 91		
	Rolled gold	Alloy of Cu and Al
92	Gold fulminate	H ₂ N-Au=NH

Industrially important process

Ammonia soda	Manufacture of NaHCO3
Bosch	Manufacture of H ₂
Baeyer's process	Manufacture of Al
Birkeland-Eyde process	Manufacture of HNO ₃
Castner process	Manufacture of NaOH
Solvay process	Manufacture of Na ₂ CO ₃
Cyanide process or Mac Arthur	Manufacture of Ag
forrest process	
Cupellation process	Purification of Ag
Cartner process	Manufacture of basic lead
	carbonate (white lead)
Contact process	Manufacture of H ₂ SO ₄
Down process	Manufacture of Na
Dow's process	Manufacture of phenol

Deacon's process	Manufacture of Cl ₂
Frecht (Magnesia) process	Manufacture of K ₂ CO ₃
Gold smidt process	Thermite welding, extraction
	of metals
Hoope's process	Purification of Al
Haber process	Manufacture of NH ₃
Hasenclever process	Manufacture of bleaching
	powder
L.D. process	Manufacture of steel
Lead chamber process	Manufacture of H ₂ SO ₄
Merch process	H ₂ O ₂
Nelson cell process	Manufacture of Ag
Ostwald process	Manufacture of HNO ₃
Parke process	Manufacture of Ag
Pattinson process	Manufacture of Ag
Serpeck's process	Manufacture of Al

Common Absorbent for Gases

Solution	Gas Absorbed
NaOH or KOH	CO ₂ .SO ₂
Solution	
FeSO ₄ Solution	NO
Alkaline pyragallol	O ₂
Heated palladium	N2,O2
Heated magnesium	Moisture, NH ₃
Conc. H ₂ SO ₄	Moisture, NH ₃
Terpentine oil	Ozone

Some important Alloys

	Alloy	Compounds
1	Aluminium bronze	Cu + Al
2	Brass	Cu + Zn
3	Bronze	Cu + Sn
4	Bell metal	Cu + Sn
5	Coin alloy (Red)	Cu + Zn + Sn
6	Coin alloys (White)	Cu + Ag + Zn + Ni
7	Duralumin	Al + Cu + Mg + Mn
8	Electron	Mg + Zn (95.5%)
9	German silver	Cu + Zn + Ni
10	Gun metal	Cu + Zn + Zn
11	Muntz metal	Cu + Zn
12	Magnalium	Al + Mg
13	Pewter	Pb + Sn
14	Solder	Pb + Sn

15	Type metal	Pb + Sb + Sn
16	Wood metal	Bi + Pb + Sn + Cd (Low
		m.pt 71°C)
17	Y-alloy	Cu + Al

Important compounds and their formula

1	Active nitrogen	N (atomic nitrogen)(
2	Alums						
3	Asbestos	CaMg ₃ (SiO ₃) ₄					
4	Arsine	AsH ₃ s					
5	Aqua-regia Conc. HNO ₃ + Conc. HCl (1:						
6	Anhydrone	Mg(CIO ₄) ₂					
7	Argentoferrous	$PbS + Ag_2S$					
	galena						
8	Borax	Na ₂ B ₄ O ₇ .10H ₂ O					
9	Blue vitriol	CuSO ₄ .5H ₂ O					
10	Barites	Ba(OH) ₂					
10	Barites water	Ba(OH) ₂ Ba(OH) ₂ Solution					
12	Brimstone	S ₈					
13	Baryta BaO						
14	Baking powder NaHCO ₃						
15	Bleaching powder	CaOCl ₂					
16	Boranes	Hydride of borone					
17	Brine	NaCl solution					
18	Calgon	Na ₂ [Na ₄ (PO ₃) ₆]					
19	Crystal carbonate	Na ₂ CO ₃ .H ₂ O					
20	Coinage metals	Cu, Ag and Au					
21	Carborundum	SiC					
22	Cementite	FeC					
23	Chinese white	ZnO					
24	Caliche	$NaNO_3 + NaIO_3$					
25	Caustic soda	NaOH					
26	Caustic potash	КОН					
27	Calomel	Hg ₂ Cl ₂					
28	Corrosive	HgCl ₂					
	sublimate						
29	Deuterium	H ₂ or D					
30	D.D.T.	p-Dichloro dipheny					
		trichloroethane					
31	Zinc white	ZnO					
32	Freon	CF ₂ Cl ₂					
33	Ferric Alum	K ₂ SO ₄ .Fe ₂ (SO ₄) ₃ .24H ₂ O					
34	Fenton's reagent	H_2O_2 + few drops of FeSO ₄					
35	Fusion mixture	$Na_2CO_3 + K_2CO_3$					
36	Fluid magnesia	12% solution of Mg (HCO ₃) ₂					

37	Fehling solution	$CuSO_{4.}4H_{2}O + NaOH + Na, K$					
		tartarate					
38	Green vitriol	FeSO ₄ .7H ₂ O					
39	Graphite	An allotrope of carbon					
40	Gun powder	75% KNO ₃ + $12%$ + $13%$					
		charcoal (explosive)					
41	Glauber salt	Na ₂ SO ₄ .10H ₂ O					
42	Hydrolith	CaH ₂					
43	Heavy water	D ₂ O					
44	Нуро	Na ₂ S ₂ O ₃ .5H ₂ O					
45	Heavy hydrogen	D ₂					
46	King of chemicals	H ₂ SO ₄					
47	Killed spirits	$ZnCl_2 + ZnO$					
48	Kainite	KC1.MgSO ₄ .3H ₂ O					
49	Kaolinite	Al ₂ O ₃ .2SiO ₂ .2H ₂ O					
50	Lime (or quick	CaO					
	lime or burnt lime)						
51	Pencil lead	graphite					
52	Lime water	Ca(OH) ₂					
53	Laughing gas	N ₂ O					
54	Lunar caustic	AgNO ₃					
55	Litharge (Messote)	РЬО					
56	Lithopone	(ZnS + BaSO ₄), apigment					
57	Leuna salt petre	$[NH_4NO_3 + (NH_4)_2SO_4] a$					
		fertilizer					
58	Lanakite	PbO.PbSO ₄					
59	Martar	Slaked lime + Silica (1:3 in					
		water)					
60	Magnesia alba	(MgCO ₃)×[Mg(OH) ₂ .ZH ₂ O]					
61	Yperite	Mustard gas					
62	Mohr salt	FeSO ₄ .(NH ₄) ₂ .SO ₄ .6H ₂ O					
63	Matte	$Cu_2S + FeS$					
64	Milk of lime	Ca(OH) ₂ in water					
65	Minium	Pb ₃ O ₄					
66	Mircro cosmic salt	NaNH ₄ .HPO ₄ (used in test of					
		silicates)					
67	Milk of magnesia	Paste of Mg(OH) ₂ in water					
		(Antacid)					
68	Magnesia	MgO					

69	Marsh gas	CH ₄					
70	Nitro chalk	$[NH_4NO_3 + (NH_4)_2(CO_3)]$ (a					
		fertilizer)					
71	Nitrolim	CaCN ₂ (a fertilizer)					
72	Nitrophos	$Ca(H_2PO_4)_2 + 2Ca(NO_3)_2$					
73	Nascent hydrogen	H at the moment of generation					
74	Nessler's reagent	(K ₂ HgI ₄ + KOH) aqueous					
		solution					
75	Nitre salt	NaHSO ₄					
76	Oil of vitriol	Conc.H ₂ SO ₄					
77	Ozone	O ₃					
78	Oleum	$H_2S_2O_7$					
79	Permutit (Zeolite)	Na ₂ Al ₂ SiO ₃ .×H ₂ O					
80	Tritium	$_{1}$ H ³ (an isotope of H)					
81	Plaster of pairs	$CaSO4.\frac{1}{2}H_2O$					
82	Washing soda	Na ₂ CO ₃ .10H ₂ O					
83	Phosgene	COCl ₂					
	Phosphene	PH ₃					
85	Pharaoh's serpents	Hg(CNS) ₂					
86	Pig-iron	Impure form of iron					
87	Producer gas	A mixture of $CO + N_2 + H_2$					
88	Quartz	SiO ₂					
89	Quick silver	Hg					
90	Refrigerants	CO_2 ,NH ₃ ,CF ₂ Cl ₂ etc.					
91	Red lead	Pb ₃ O ₄					
92	Rochelle salt	Sodium – potassium tartarate					
93	Rust	Fe ₂ O ₃ ×H ₂ O					
94	Sorel's cement	Mg(OH) Cl or					
	(magnesia cement)	MgCl ₂ .5MgO.×H ₂ O					
95	Soda-lime	NaOH + CaO					
96	Soda ash	Na ₂ CO ₂					
97	Slaked lime	Ca(OH) ₂					
98	Salammoniac	NH ₄ Cl					
99	Stainless steel	An alloy of Fe, Cr and C					
100	Salt cale	Na ₂ SO ₄ (anhydrous)					
101	Sal volatile	(NH ₄) ₂ .CO ₃					
102	Supper phosphate	Ca(HPO ₄) ₂ +2CaSO ₄					
103	TNT	Trinitrotoluene (an explosive)					

104	TNB	Trinitrobenzene (an explosive)				
105	Tincal	Na ₂ B ₄ O ₇ .10H ₂ O				
106	Tal	3MgO.4SiO ₃ .H ₂ O or				
		Mg ₂ (Si ₂ O ₃)7 Mg(OH) ₂				
107	Water glass	Na ₂ SiO ₃				
108	Water gas	$CO + H_2$				
109	White vitriol	ZnSO ₄ .7H ₂ O				
110	Wrought iron	Pure from of iron1				

Some Common Gases and their characteristics

Formula	Name	Characteristics			
HCN	Hydrogen	Very toxic, slight odour of			
	cyanide	bitter almonds			
HCl	Hydrogen	Toxic, corrosive, choking			
	chloride	odour			
H_2S	Hydrogen	Very toxic, odour of rotten			
	sulphide	egg			
CO	Carbon	Toxic, colourless, odourless			
	monoxide				
CO ₂	Carbon dioxide	Colourless, odourless			
CH ₄	Methane	Colourless, odourless,			
N ₂ O	Nitrous oxide	Colourless, odourless,			
		inflammable, marsh damp			
		laughing gas			
NO ₂	Nitrogen dioxide	Red brown, sweet odour,			
NH ₃	Ammonia	Colourless, irritating odour			
SO_2	Sulphur dioxide	Colourless, irritating odour			

EXERCISE

- 1.Rusting of iron can be prevented by
(A) alloying
(C) galvaning(B) painting
(D) all of these
- Which of the following is a good conductor of heat and electricity?
 (A) graphite
 (B) oxygen
 (C) chlorine
 (D) nitrogen
- 3. Metals are-(A) malleable (B) ductile (C) none (D) both
- 4. Metals can be obtained economically from (A) minerals (B) ores (C) earth's crust (D) none
- 5. Which of the following have low melting and boiling points?
 (A) phosphorus
 (B) sodium
 (C) iron
 (D) (a) and (b)

- Which of the following metals catch fire on 6. reaction waer? (A) sodium (B) potassium (C)magnesium (D) (a) and (b)
- 7. A metal, which forms a protective layer of its oxide on reactin with water, on its surface is-(A) sodium (B) aluminium (C) potassium (D) magnesium
- 8. Reactivity series gives-

(A) arrangement of metals in the order of decreasing reactivity.

(B) arrangement of non-metals in the order of decreasing reactivity

(C) arrangement of metals in the order of increasing reactivity (D) arrangement of non-metals in the order of

increasing reactivity

- 9. Metals like gold, platinum which do not easily react are called-(A) active metals (B) dull metals (C) noble metals (D) bright metals
- 10. When MgO is dissolved in water, Mg(OH)₂ is obtained. A rd litmus paper dipped in this solution turns blue, this shows that the solution is _____ in nature. (A) acidic (B) neutral (C) alkaline (D) reactive
- 11. Calgon is a substance which is used to remove the hardness of water. The formula of calgon is-(A) $Na_2[(Na_4(PO_3)_6)]$
 - (B) $Na_2Al_2Si_2O_8$
 - (C) $FeSO_4(NH_4)_2.SO_4.6H_2O$
 - (D) $Na_2S_2O_2.5H_2O$

12.	Type metal is an alloy of	-
	(A) Pb and Sn	(B) Pb, Sn and Sb
	(C) Cu and Zn	(D) Cu, Sn and Sb

- 13. Lightest liquid metal is-(B) Cs (A) Hg (C) Ga (D) none of these
- 14. 90% of sun's mass it-(A) He (B) H₂ (C) O₂ (D) Ar

- 15. Carnallite (KCl.MgCl₂.6H₂O) is an ore of-(A) chlorine (B) iodine (D) bromine (C) astatine 16. Magnetite is an oxide of metal X. The metal is-(A) Mn (B) Mg(D) Cu (C) Fe Hoope's process is used for the purification of-17. (B) Fe (A) Cu (C) Al (D) At 18. Mercury is also called-(A) liquid gold (B) liquid copper (C) liquid silver (D) none of these 19. Nitric acid can be prepared by which of the following method? (A) Birkeland -eyde process (B) Ostwald process (C) Contact process (D) (a) & (b) both 20. Which of the following is/are used as bleaching agent? (A) SO_2 $(B) H_2S$ (D) all $(C) Cl_2$ 21. Which of the following element is not found is free state in the nature? (NTSE-Stage-I/Raj/2007) (A) Silver (B) Copper (C) Sodium (D) Gold 22. When agma cools below the surface of the earth, the granite is formed which is used in buildings. It mainly consists of-(NTSE-Stage-II/2007) (A) quartz and haematite (B) quartz and felspar (C) bauxite and calcamine (D) felspar and silver glance 23. Minerals generally have the following characteristics (NTSE-Stage-I/Raj/2007) (a) They occur naturally (b) They have characteristics chemical composition (c) They do not have specific chemical properties (d) They do not have a specific chemical composition. Which of the following statements are correct? (A) a and b (B) a, c and d
 - (C) c and d (D) a and d

24.	The percentage of gold present in 20 carat gold			
		(NTSE-Stage-II/2008)		
	(A) 83.33	(B) 100		
	(C) 50	(D) 73.3		

25.	Which of th	e following elements is non-metal?
		(NTSE-Stage-I/Raj/2007)
	(A) Na	(B) Fe
	(C) Cu	(D) S

26. When a compound A is heated, a gas B is evolved which turns lime water milky. Compound A is used in the manufacture of glass. Gas B has a property of extinguishing fire and it does not support animal life. The compound A and B are respectively.

(NTSE-Stage-II/2007)

(A) NaHCO₃ and CO
(B) CaCO₃ and CO
(C) Na₂CO₃ and CO₂
(D)NaHCO₃ and CO₂

27. Which of the following non-metal is found is liquid state at room temperature?

(NTSE-Stage-I/Raj/2008)

(A) Sulphur	(B) Carbon
(C) Iodine	(D) Bromine

28. Match the following
(A) CH₄
(i) Neither combustible nor supports combustion
(B) CO₂
(ii) Combustible
(C) N₂
(iii) Supports combustion
(D) O=
(iv) Extinguishes fire
Which of the following indicates the correct matching?
(NTSE-Stage-II/2008)

(A) a,(i); b,(ii); c(iii); d,(iv) (B) a,(ii); b,(iv), c(i); d,(iii) (C) a,(ii); b,(iii); c(i); d,(iv) (D) a,(iii); b,(iv); c(ii); d,(i)

29. Which of the following displacement reactions is possible?

(NTSE-Stage-II/2009)

(A) Copper + Sodium chloride \longrightarrow Copper chloride + Sodium

(B) Lead + Potassium nitrate \longrightarrow Lead nitrate + Potassium

(C) lron + Lead nitrate \longrightarrow

lron nitrate+ Lead

(D) Silver + Copper nitrate \longrightarrow Silver nitrate + Copper

ANSWER – KEY

METALS AND NON - METALS

Q.	1	2	3	4	5	6	7	8	9	10
Α.	D	Α	D	В	D	D	В	Α	С	С
Q.	11	12	13	14	15	16	17	18	19	20
Α.	Α	В	В	В	D	С	С	С	D	D
Q.	21	22	23	24	25	26	27	28	29	
Α.	С	В	В	Α	D	С	D	В	С	