## Chapter 1. Units and Measurement

1. A physical quantity of the dimensions of length that can be formed out of c, G and  $\frac{e^2}{4\pi\epsilon_0}$  is [c is

velocity of light, G is the universal constant of gravitation and e is charge]

(a) 
$$c^2 \left[ G \frac{e^2}{4\pi\epsilon_0} \right]^{1/2}$$

(a) 
$$c^2 \left[ G \frac{e^2}{4\pi\epsilon_0} \right]^{1/2}$$
 (b)  $\frac{1}{c^2} \left[ \frac{e^2}{G 4\pi\epsilon_0} \right]^{1/2}$ 

(c) 
$$\frac{1}{c}G\frac{e^2}{4\pi\varepsilon_0}$$

(c) 
$$\frac{1}{c}G\frac{e^2}{4\pi\epsilon_0}$$
 (d)  $\frac{1}{c^2}\left[G\frac{e^2}{4\pi\epsilon_0}\right]^{1/2}$ 

(NEET 2017)

2. Planck's constant (h), speed of light in vacuum (c) and Newton's gravitational constant (G) are three fundamental constants. Which of the following combinations of these has the dimension of length?

(a) 
$$\frac{\sqrt{hG}}{c^{3/2}}$$
 (b)  $\frac{\sqrt{hG}}{c^{5/2}}$  (c)  $\sqrt{\frac{hc}{G}}$  (d)  $\sqrt{\frac{Gc}{h^{3/2}}}$ 

- 3. If dimensions of critical velocity v of a liquid flowing through a tube are expressed as  $[\eta^x \rho^y r^z]$ where  $\eta$ ,  $\rho$  and r are the coefficient of viscosity of liquid, density of liquid and radius of the tube respectively, then the values of x, y and zare given by
  - (a) -1, -1, -1

(b) 1, 1, 1

(c) 1,-1,-1

- (d) -1, -1, 1 (2015)
- **4.** If energy (E), velocity (V) and time (T) are chosen as the fundamental quantities, the dimensional formula of surface tension will be
  - (a)  $[EV^{-2}T^{-2}]$

(b)  $[E^{-2}V^{-1}T^{-3}]$ 

(c)  $[EV^{-2}T^{-1}]$ 

(d)  $[EV^{-1}T^{-2}]$ 

(2015 Cancelled)

- If force (F), velocity (V) and time (T) are taken 5. as fundamental units, then the dimensions of mass are
  - (a) [FVT<sup>-1</sup>]
- (b) [FVT<sup>-2</sup>]
- (c) [FV-1T-1]
- (d) [FV<sup>-1</sup>T] (2014)
- 6. In an experiment four quantities a, b, c and d are measured with percentage error 1%, 2%,

3% and 4% respectively. Quantity P is calculated as follows

$$P = \frac{a^3b^2}{cd}$$

% error in P is

- (a) 7%
- (b) 4%
- (c) 14% (d) 10%

(NEET 2013)

- The pair of quantities having same dimensions is
  - (a) Impulse and Surface Tension
  - (b) Angular momentum and Work

  - (c) Work and Torque(d) Young's modulus and Energy

(Karnataka NEET 2013)

- The damping force on an oscillator is directly proportional to the velocity. The units of the constant of proportionality are
  - (a)  $kg m s^{-1}$

(b) kg m s $^{-2}$ 

- (d) kg s (2012)
- (c) kg s<sup>-1</sup> (d) kg The dimensions of  $(\mu_0 \epsilon_0)^{-1/2}$  are
  - (a)  $[L^{1/2}T^{-1/2}]$
- (b) [L-1T]
- (c) [LT<sup>-1</sup>]
- (d)  $[L^{1/2}T^{1/2}]$

(Mains 2012, 2011)

- 10. The density of a material in CGS system of units is 4 g cm<sup>-3</sup>. In a system of units in which unit of length is 10 cm and unit of mass is 100 g, the value of density of material will be
  - (a) 0.04
- (b) 0.4
- (c) 40
- (d) 400

(Mains 2011)

11. The dimension of  $\frac{1}{2} \varepsilon_0 E^2$ , where  $\varepsilon_0$  is permittivity

of free space and E is electric field, is

- (a) ML<sup>2</sup>T<sup>-2</sup>
- (b) ML<sup>-1</sup>T<sup>-2</sup>
- (c) ML<sup>2</sup>T<sup>-1</sup>
- (d) MLT<sup>-1</sup> (2010)
- 12. A student measures the distance traversed in free fall of a body, initially at rest, in a given time. He uses this data to estimate g, the acceleration due to gravity. If the maximum percentage errors in measurement of the distance and the time are e, and e, respectively, the percentage error in the estimation of g is
  - (a)  $e_2 e_1$
- (b)  $e_1 + 2e_2$
- (c)  $e_1 + e_2$
- (d)  $e_1 2e_2$

(Mains 2010)

| 13. | If the dimensions of a physical quantity are given by M <sup>a</sup> L <sup>b</sup> T <sup>c</sup> , then the physical quantity will be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | (c) $[ML^2T^{-2}A^{-1}]$ (d) $[ML^2T^{-1}A^3]$ (1999)                                                                                   |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------|
|     | <ul> <li>(a) velocity if a = 1, b = 0, c = -1</li> <li>(b) acceleration if a = 1, b = 1, c = -2</li> <li>(c) force if a = 0, b = -1, c = -2</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24.    | An equation is given here $\left(P + \frac{a}{V^2}\right) = b\frac{\theta}{V}$<br>where $P = \text{Pressure}$ , $V = \text{Volume}$ and |
|     | (d) pressure if $a = 1$ , $b = -1$ , $c = -2$ (2009)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | $\theta$ = Absolute temperature. If a and b are                                                                                         |
| 14. | If the error in the measurement of radius of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | constants, the dimensions of a will be                                                                                                  |
|     | sphere is 2%, then the error in the determination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | (a) $[ML^{-5}T^{-1}]$ (b) $[ML^{5}T^{1}]$                                                                                               |
|     | of volume of the sphere will be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | (c) $[ML^5T^{-2}]$ (d) $[M^{-1}L^5T^2]$ . (1996)                                                                                        |
|     | (a) 8% (b) 2% (c) 4% (d) 6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25.    | The density of a cube is measured by measuring                                                                                          |
|     | (2008)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | its mass and length of its sides. If the maximum                                                                                        |
| 15. | Which two of the following five physical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | error in the measurement of mass and lengths                                                                                            |
|     | parameters have the same dimensions?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | are 3% and 2% respectively, the maximum error                                                                                           |
|     | <ol> <li>energy density</li> <li>refractive index</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | in the measurement of density would be                                                                                                  |
|     | 3. dielectric constant 4. Young's modulus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | (a) 12% (b) 14% (c) 7% (d) 9%.                                                                                                          |
|     | 5. magnetic field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | (1996)                                                                                                                                  |
|     | (a) 1 and 4 (b) 1 and 5 (c) 2 and 4 (d) 3 and 5 (2008)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 26.    | The dimensions of impulse are equal to that of                                                                                          |
| 16  | Dimensions of resistance in an electrical circuit,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | (a) pressure (b) linear momentum                                                                                                        |
| 10. | in terms of dimension of mass M, of length L,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | (c) force (d) angular momentum.                                                                                                         |
|     | of time T and of current I, would be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | (1996)                                                                                                                                  |
|     | (a) $[ML^2T^{-2}]$ (b) $[ML^2T^{-1}I^{-1}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 27.    | Which of the following dimensions will be the                                                                                           |
|     | (c) $[ML^2T^{-3}I^{-2}]$ (d) $[ML^2T^{-3}I^{-1}]$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | same as that of time?                                                                                                                   |
|     | (2007)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | L C R                                                                                                                                   |
| 17. | The velocity $v$ of a particle at time $t$ is given by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | (a) $\frac{L}{R}$ (b) $\frac{C}{L}$ (c) $LC$ (d) $\frac{R}{L}$                                                                          |
|     | b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | (1996)                                                                                                                                  |
|     | $v = at + \frac{b}{t+c}$ , where a, b and c are constants.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28.    | Which of the following is a dimensional                                                                                                 |
|     | The dimensions of $a$ , $b$ and $c$ are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | constant?                                                                                                                               |
|     | (a) [L], [LT] and [LT <sup>-2</sup> ] (b) [LT <sup>-2</sup> ], [L] and [T]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | (a) Relative density (b) Gravitational constant                                                                                         |
|     | (c) [L <sup>2</sup> ], [T] and [LT <sup>-2</sup> ] (d) [LT <sup>-2</sup> ], [LT] and [L].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | (c) Refractive index (d) Poisson ratio. (1995)                                                                                          |
|     | (2006)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 29.    | The dimensions of RC is                                                                                                                 |
| 18. | The ratio of the dimensions of Planck's constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | (a) square of time (b) square of inverse time                                                                                           |
|     | and that of moment of inertia is the dimensions of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 001001 | (c) time (d) inverse time. (1995)                                                                                                       |
|     | (a) time (b) frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30.    | Percentage errors in the measurement of mass                                                                                            |
|     | (c) angular momentum (d) velocity. (2005)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | and speed are 2% and 3% respectively. The                                                                                               |
| 19. | The dimensions of universal gravitational                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | error in the estimate of kinetic energy obtained                                                                                        |
|     | constant are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | by measuring mass and speed will be                                                                                                     |
|     | (a) $[M^{-1}L^3T^{-2}]$ (b) $[ML^2T^{-1}]$ (c) $[M^{-2}L^3T^{-2}]$ (d) $[M^{-2}L^2T^{-1}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | (a) 8% (b) 2% (c) 12% (d) 10%.                                                                                                          |
|     | (d) [W L 1 ]<br>(2004, 1992)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 31     | (1995) Which of the following has the dimensions of                                                                                     |
| 20. | The unit of permittivity of free space, $\varepsilon_0$ , is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 31.    | pressure?                                                                                                                               |
| 200 | (a) coulomb/newton-metre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | (a) [MI T-2] (b) [MI -1T-2]                                                                                                             |
|     | (b) newton-metre <sup>2</sup> /coulomb <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | (c) [ML-2T-2] (d) [M-1L-1].                                                                                                             |
|     | (c) coulomb <sup>2</sup> /newton-metre <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | (1994, 90)                                                                                                                              |
|     | (d) $coulomb^2/(newton-metre)^2$ (2004)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 32.    | Turpentine oil is flowing through a tube of                                                                                             |
| 21. | The dimensions of Planck's constant equals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | length $l$ and radius $r$ . The pressure difference                                                                                     |
|     | to that of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | between the two ends of the tube is $P$ . The                                                                                           |
|     | (a) energy (b) momentum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | between the two ends of the tube is 1. The                                                                                              |
| 22  | (c) angular momentum (d) power. (2001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | viscosity of oil is given by $\eta = \frac{P(r^2 - x^2)}{4vl}$                                                                          |
| 22. | Which pair do not have equal dimensions?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | 4vl                                                                                                                                     |
|     | <ul><li>(a) Energy and torque</li><li>(b) Force and impulse</li><li>(c) Angular momentum and Planck constant</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | where $v$ is the velocity of oil at a distance $x$ from                                                                                 |
|     | (d) Elastic modulus and pressure. (2000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | the axis of the tube. The dimensions of h are                                                                                           |
| 23. | The dimensional formula of magnetic flux is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | (a) $[M^0L^0T^0]$ (b) $[MLT^{-1}]$                                                                                                      |
|     | (a) $[M^0L^{-2}T^{-2}A^{-2}]$ (b) $ML^0T^{-2}A^{-2}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | (c) $[ML^2T^{-2}]$ (d) $[ML^{-1}T^{-1}]$ (1993)                                                                                         |
|     | - Market Market (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) |        | ACA (Proposition 3) (Activity for the Proposition)                                                                                      |

3 Units and Measurement

- 33. The time dependence of a physical quantity pis given by  $p = p_0 \exp(-at^2)$ , where a is a constant and t is the time. The constant a
  - (a) is dimensionless
  - (b) has dimensions [T<sup>-2</sup>]
  - (c) has dimensions [T<sup>2</sup>]
  - (d) has dimensions of p

(1993)

- **34.** P represents radiation pressure, c represents speed of light and S represents radiation energy striking per unit area per sec. The non zero integers x, y, z such that  $P^xS^yc^z$  is dimensionless are
  - (a) x = 1, y = 1, z = 1
- (b) x = -1, y = 1, z = 1
- (c) x = 1, y = -1, z = 1 (d) x = 1, y = 1, z = -1

(1992)

- 35. A certain body weighs 22.42 g and has a measured volume of 4.7cc. The possible error in the measurement of mass and volume are 0.01 g and 0.1 cc. Then maximum error in the densiy will be
  - (a) 22%
- (b) 2%
- (c) 0.2% (d) 0.02%.

(1991)

- 36. The dimensional formula of permeability of free space m<sub>o</sub> is
  - (a)  $[MLT^{-2}A^{-2}]$
- (b) [M<sup>0</sup>L<sup>1</sup>T]
- (c)  $[M^0L^2T^{-1}A^2]$
- (d) none of these.

(1991)

- 37. The frequency of vibration f of a mass msuspended from a spring of spring constant k is given by a relation  $f = am^{k}k$  where a is a dimensionless constant. The values of x and y are

  - (a)  $x = \frac{1}{2}$ ,  $y = \frac{1}{2}$  (b)  $x = -\frac{1}{2}$ ,  $y = -\frac{1}{2}$
  - (c)  $x = \frac{1}{2}$ ,  $y = -\frac{1}{2}$  (d)  $x = -\frac{1}{2}$ ,  $y = \frac{1}{2}$ .

(1990)

38. According to Newton, the viscous force acting between liquid layers of area A and velocity

gradient  $\Delta v/\Delta Z$  is given by  $F = -\eta A \frac{\Delta v}{\Delta Z}$ ,

where h is constant called coefficient of viscosity. The dimensional formula of h is

- (a)  $[ML^{-2}T^{-2}]$
- (b) [M<sup>0</sup>L<sup>0</sup>T<sup>0</sup>]
- (c)  $[ML^2T^{-2}]$
- (d)  $[ML^{-1}T^{-1}]$ .

(1990)

- **39.** If  $x = at + bt^2$ , where x is the distance travelled by the body in kilometers while t is the time in seconds, then the units of  $\overline{b}$  is
  - (a) km/s
- (b) km s
- (c) km/s<sup>2</sup> (d) km s<sup>2</sup>.

(1989)

- 40. Of the following quantities, which one has dimensions different from the remaining three?
  - (a) Energy per unit volume
  - (b) Force per unit area
  - (c) Product of voltage and charge per unit volume
  - (d) Angular momentum.

(1989)

- 41. Dimensional formula of self inductance is
  - (a)  $[MLT^{-2}A^{-2}]$
- (b)  $[ML^2T^{-1}A^{-2}]$
- (c)  $[ML^2T^{-2}A^{-2}]$
- (d)  $[ML^2T^{-2}A^{-1}]$ .

(1989)

- **12.** The dimensional formula of torque is
  - (a)  $[ML^2T^{-2}]$
- (b) [MLT<sup>-2</sup>]
- (c) [ML<sup>-1</sup>T<sup>-2</sup>]
- (d) [ML<sup>-2</sup>T<sup>-2</sup>]. (1989)
- **43.** If C and R denote capacitance and resistance, the dimensional formula of CR is
  - (a)  $[M^0L^0T^1]$
- (b) [M<sup>o</sup>L<sup>o</sup>T<sup>o</sup>]
- (c)  $[M^0L^0T^{-1}]$
- (d) not expressible in terms of MLT. (1988)
- 44. The dimensional formula of angular momentum
  - (a)  $[ML^2T^{-2}]$
- (b)  $[ML^{-2}T^{-1}]$
- (e) [MLT<sup>-1</sup>]
- (d) [ML<sup>2</sup>T<sup>-1</sup>]. (1988)

Answer Key

- 5. (d) 6. 7. (a) (c) 8. (c) (c) (a)
- 12. (b) 13. (d) **14**. (d) **15**. (a) **16.** (c) 17. (b) **18.** (b) **19.** (a)
- 21. (c) 22. (b) 23. (c) 24. (c) 25. (d) 26. (b) 27. (a) 28. (b) 29. (c) 34. 35. (b) 36. (a) 37. 32. (d) 33. (b) (d) **38.** (d) **39.** (c) **31.** (b) (c)
- 42. (a) **43**. (a) **44.** (d) **41.** (c)

## 

1. (d): Dimensions of

$$\frac{e^2}{4\pi\varepsilon_o} = [F \times d^2] = [ML^3T^{-2}]$$

Dimensions of  $G = [M^{-1}L^3T^{-2}],$ 

Dimensions of  $c = [LT^{-1}]$ 

$$l \propto \left(\frac{e^2}{4\pi\varepsilon_o}\right)^p G^q c^r$$

 $\therefore [L^{1}] = [ML^{3}T^{-2}]^{p} [M^{-1}L^{3}T^{-2}]^{q} [LT^{-1}]^{r}$ 

On comparing both sides and solving, we get

$$p = \frac{1}{2}$$
,  $q = \frac{1}{2}$  and  $r = -2$ 

$$\therefore l = \frac{1}{c^2} \left[ \frac{Ge^2}{4\pi \varepsilon_o} \right]^{1/2}$$

2. (a): According to question,

$$l \propto h^p c^q G^r$$
  

$$l = k h^p c^q G^r$$
 ...(i

Writting dimensions of physical quantities on both sides,

$$[M^0LT^0] = [ML^2T^{-1}]^p [LT^{-1}]^q [M^{-1}L^3T^{-2}]^r$$

Applying the principle of homogeneity of dimensions, we get

$$2p + q + 3r = 1 \tag{iii}$$

$$-p - q - 2r = 0$$
 ...(iv)

Solving eqns. (ii), (iii) and (iv), we get

$$p = r = \frac{1}{2}, \ q = -\frac{3}{2}$$

From eqn. (i)  $I = \frac{\sqrt{hG}}{c^{3/2}}$ 

3. (c) :  $[v] = [\eta^x \rho^y r^z]$  (given) ... (i)

Writing the dimensions of various quantities in eqn. (i), we get

$$[M^{0}LT^{-1}] = [ML^{-1}T^{-1}]^{x}[ML^{-3}T^{0}]^{y}[M^{0}LT^{0}]^{z}$$
$$= [M^{x+y}L^{-x-3y+z}T^{-x}]$$

Applying the principle of homogeneity of dimensions, we get

$$x + y = 0$$
;  $-x - 3y + z = 1$ ;  $-x = -1$ 

On solving, we get

$$x = 1, y = -1, z = -1$$

4. (a) : Let  $S = kE^aV^bT^c$ 

where k is a dimensionless constant.

Writing the dimensions on both sides, we get

$$[M^{1}L^{0}T^{-2}] = [ML^{2}T^{-2}]^{a}[LT^{-1}]^{b}[T]^{c}$$

$$= [\mathbf{M}^{a} \mathbf{L}^{2a+b} \mathbf{T}^{-2a-b+c}]$$

Applying principle of homogeneity of dimensions,

we get, 
$$a = 1$$
 ...(i)

$$-2a-b+c=-2 \qquad ...(iii)$$

Adding (ii) and (iii), we get

$$c = -2$$

From (ii), b = -2a = -2

$$S = kEV^{-2} T^{-2}$$
 or  $[S] = [EV^{-2}T^{-2}]$ 

5. (d): Let mass  $m \propto F^a V^b T^a$ 

or 
$$m = kF^n \Gamma^b T^a$$
 ...(i)

where k is a dimensionless constant and a, b and c are the exponents.

Writing dimensions on both sides, we get

$$[ML^{0}T^{0}] = [MLT^{-2}]^{a} \{LT^{-1}]^{b} [T]^{c}$$
$$[ML^{0}T^{0}] = [M^{a}L^{a+b}T^{-2a-b+c}]$$

Applying the principle of homogeneity of dimensions we get

$$a=1$$
 ... (ii)

$$-2a - b + c = 0$$
 ... (iv)

Solving eqns. (ii), (iii) and (iv), we get

$$a = 1, b = -1, c = 1$$

From eqn. (i),  $[m] = [FV^{-1}T]$ 

**6. (c)** : As 
$$P = \frac{a^3b^2}{cd}$$

% error in P is

$$\frac{\Delta P}{P} \times 100 = \left[ 3 \left( \frac{\Delta a}{a} \right) + 2 \left( \frac{\Delta b}{b} \right) + \frac{\Delta c}{c} + \frac{\Delta d}{d} \right] \times 100$$
$$= \left[ 3 \times 1\% + 2 \times 2\% + 3\% + 4\% \right] = 14\%$$

7. (c): Impulse = Force  $\times$  time

$$= [MLT^{-2}][T] = [MLT^{-1}]$$

Surface tension = 
$$\frac{\text{Force}}{\text{length}} = \frac{[\text{MLT}^{-2}]}{[\text{L}]} = [\text{ML}^{0}\text{T}^{-2}]$$

Angular momentum

= Moment of inertia × angular velocity

$$= [ML^2][T^{-1}] = [ML^2T^{-1}]$$

Work = Force  $\times$  distance = [MLT<sup>-2</sup>][L] = [ML<sup>2</sup>T<sup>-2</sup>]

Energy =  $[ML^2T^{-2}]$ 

Torque = Force  $\times$  distance = [MLT<sup>-2</sup>][L] = [ML<sup>2</sup>T<sup>-2</sup>] Young's modulus

$$= \frac{\text{Force / Area}}{\text{Change in length / original length}}$$
$$= \frac{[\text{MLT}^{-2}]/[\text{L}^2]}{[\text{L}]/[\text{L}]} = [\text{ML}^{-1}\text{T}^{-2}]$$

Hence, among the given pair of physical quantities work and torque have the same dimensions [ML<sup>2</sup>T<sup>-2</sup>].

**8.** (c) : Damping force,  $F \propto v$  or F = kv

where k is the constant of proportionality

$$k = \frac{F}{v} = \frac{N}{m s^{-1}} = \frac{kg m s^{-2}}{m s^{-1}} = kg s^{-1}$$

9. (c): The speed of the light in vacuum is

$$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} = (\mu_0 \varepsilon_0)^{-1/2}$$

:. 
$$[(\mu_0 \varepsilon_0)^{-1/2}] = [c] = [LT^{-1}]$$

**10.** (c) : As  $n_1 u_1 = n_2 u_2$ 

$$4\frac{g}{\text{cm}^3} = n_2 \frac{100g}{(10 \text{ cm})^3} \Rightarrow n_2 = 40$$

11. (b): Energy density of an electric field E is

$$u_E = \frac{1}{2} \varepsilon_0 E^2$$

where  $\varepsilon_0$  is permittivity of free space

$$u_E = \frac{\text{Energy}}{\text{Volume}} = \frac{\text{ML}^2 \text{T}^{-2}}{\text{L}^3} = \text{ML}^{-1} \text{T}^{-2}$$

Hence, the dimension of  $\frac{1}{2}\epsilon_0 E^2$  is ML<sup>-1</sup>T<sup>-2</sup>

12. (b): From the relation

$$h = ut + \frac{1}{2}gt^2$$

$$h = \frac{1}{2}gt^2 \implies g = \frac{2h}{t^2}$$
 (: body initially at rest)

Taking natural logarithm on both sides, we get

$$\ln g = \ln h - 2 \ln t$$

Differentiating, 
$$\frac{\Delta g}{g} = \frac{\Delta h}{h} - 2\frac{\Delta t}{t}$$

For maximum permissible error,

or 
$$\left(\frac{\Delta g}{g} \times 100\right)_{\text{max}} = \left(\frac{\Delta h}{h} \times 100\right) + 2 \times \left(\frac{\Delta t}{t} \times 100\right)$$

According to problem

$$\frac{\Delta h}{h} \times 100 = e_1$$
 and  $\frac{\Delta t}{t} \times 100 = e_2$ 

Therefore, 
$$\left(\frac{\Delta g}{g} \times 100\right)_{\text{max}} = e_1 + 2e_2$$

13. (d): Pressure, 
$$P = \frac{\text{force}}{\text{area}} = \frac{\text{mass} \times \text{acceleration}}{\text{area}}$$
  

$$\therefore [P] = \frac{\text{M}^{1}\text{LT}^{-2}}{\text{L}^{2}} = [\text{M}^{1}\text{L}^{-1}\text{T}^{-2}] = \text{M}^{a}\text{L}^{b}\text{T}^{c}.$$

$$a = 1, b = -1, c = -2.$$

**14.** (d): 
$$V = \frac{4}{3}\pi R^3$$
;  $\ln V = \ln\left(\frac{4}{3}\pi\right) + \ln R^3$ 

Differentiating, 
$$\frac{dV}{V} = 3\frac{dR}{R}$$

Error in the determination of the volume

$$= 3 \times 2\% = 6\%$$

5

15. (a):

[Energy density] = 
$$\left[\frac{\text{Work done}}{\text{Volume}}\right] = \frac{\text{MLT}^{-2} \cdot \text{L}}{\text{L}^{3}}$$
  
=  $\left[\text{ML}^{-1}\text{T}^{-2}\right]$ 

[Young's modulus] = 
$$[Y] = \left[\frac{\text{Force}}{\text{Area}}\right] \times \frac{[l]}{[\Delta l]}$$

$$=\frac{MLT^{-2}}{L}\cdot\frac{L}{L}=[ML^{-1}T^{-2}]$$

The dimensions of 1 and 4 are the same.

16. (c) : According to Ohm's law,

$$\overline{V} = \overline{R}I$$
 or  $R = \frac{V}{I}$ 

Dimensions of 
$$V = \frac{W}{q} = \frac{[ML^2T^{-2}]}{[IT]}$$

$$R = \frac{[ML^2T^{-2}/IT]}{[I]} = [ML^2T^{-3}I^{-2}].$$

17. **(b)**: 
$$v = at + \frac{b}{t+c}$$

As c is added to t,  $\therefore$  [c] = [T]

$$[at] = [LT^{-1}]$$
 or,  $[a] = \frac{[LT^{-1}]}{[T]} = [LT^{-2}]$ 

$$\frac{[b]}{[T]} = [LT^{-1}] \quad \therefore \quad [b] = [L].$$

18. **(b)**: 
$$\frac{h}{I} = \frac{E\lambda}{c \times I} = \frac{[ML^2T^{-2}][L]}{[LT^{-1}] \times [ML^2]}$$

$$\frac{h}{I} = [T^{-1}] = \text{frequency}.$$

19. (a): Gravitational constant G

$$= \frac{\text{force} \times (\text{distance})^2}{\text{mass} \times \text{mass}}$$

$$\therefore \quad \text{Dimensions of } G = \frac{[\mathbf{MLT}^{-2}][\mathbf{L}^2]}{[\mathbf{M}][\mathbf{M}]} = [\mathbf{M}^{-1}\mathbf{L}^3\mathbf{T}^{-2}]$$

20. (c): Force between two charges

$$F = \frac{1}{4\pi\epsilon_0} \frac{q^2}{r^2} \Rightarrow \epsilon_0 = \frac{1}{4\pi} \frac{q^2}{Fr^2} = C^2/N - m^2$$

21. (c): Dimensions of Planck constant

$$h = \frac{\text{Energy}}{\text{Frequency}} = \frac{[\text{ML}^2\text{T}^{-2}]}{[\text{T}^{-1}]} = [\text{ML}^2\text{T}^{-1}]$$

Dimensions of angular momentum L

= Moment of inertia  $I \times$  Angular velocity  $\omega$ =  $[ML^2][T^{-1}] = [ML^2T^{-1}]$ 

22. (b): Dimensions of force = [MLT<sup>-2</sup>]
Dimensions of impulse = [MLT<sup>-1</sup>].

23. (c) : Magnetic flux, 
$$\phi = BA = \left(\frac{F}{Il}\right)A$$

$$= \frac{[MLT^{-2}][L^2]}{[A][L]} = [ML^2T^{-2}A^{-1}].$$

24. (c): Equation 
$$\left(P + \frac{a}{V^2}\right) = b \frac{\theta}{V}$$
. Since  $\frac{a}{V^2}$  is

added to the pressure, therefore dimensions of  $\frac{a}{V^2}$  and pressure (P) will be the same. And dimensions

of 
$$\frac{a}{V^2} = \frac{a}{[L^3]^2} = [ML^{-1}T^{-2}]$$
  
or  $a = [ML^5T^{-2}].$ 

25. (d): Maximum error in mass  $\left(\frac{\Delta m}{m}\right) = 3 \% =$ 

$$\frac{3}{100}$$
 and maximum error in length  $\left(\frac{\Delta l}{l}\right) = 2\% = \frac{2}{100}$ 

Maximum error in the measurement of density,

$$\frac{\Delta \rho}{\rho} = \frac{\Delta m}{m} + \left(3 \times \frac{\Delta l}{l}\right) = \frac{3}{100} + \left(3 \times \frac{2}{100}\right) = \frac{3}{100} + \frac{6}{100}$$
$$= \frac{9}{100} = 9\%.$$

26. (b): Impulse = Force × Time.

Therefore dimensional formula of impulse = Dimensional formula of force  $\times$  Dimensional formula of time = [MLT - [T] = [MLT - 1] and dimensional formula of linear momentum  $[p] = MLT^{-1}$ .

27. (a)

28. (b): Relative density, refractive index and Poisson ratio all the three are ratios, therefore they are dimensionless constants.

**29.** (c) : Units of  $RC = \text{ohm} \times \text{ohm}^{-1} \times \text{second} = \text{second}$ . Therefore dimensions of RC = time.

30. (a): Percentage error in mass =  $2\% = \frac{2}{100}$  and percentage error in speed =  $3\% = \frac{3}{100}$ .

$$K.E. = \frac{1}{2}mv^2$$

Therefore the error in measurement of kinetic energy

$$\frac{\Delta K.E.}{K.E.} = \frac{\Delta m}{m} + 2 \times \frac{\Delta v}{v} = \frac{2}{100} + 2 \times \frac{3}{100} = \frac{8}{100} = 8\%$$

31. (b) : Pressure =  $\frac{\text{Force}}{\text{Area}}$ . Therefore dimensions

of pressure = 
$$\frac{[MLT^{-2}]}{[L^2]}$$
 =  $ML^{-1}T^{-2}$ .

**32.** (d): Dimensions of  $P = [ML^{-1}T^{-2}]$ 

Dimensions of r = [L]

Dimensions of  $v = [LT^{-1}]$ 

Dimensions of l = [L]

$$\therefore \text{ Dimensions of } \eta = \frac{[P][r^2 - x^2]}{[4\nu I]} = \frac{[ML^{-1}T^{-2}][L^2]}{[LT^{-1}][L]}$$
$$= [ML^{-1}T^{-1}]$$

33. (b) : Given  $p = p_0 e^{-\alpha t}$ out is a dimensionless

$$\alpha = \frac{1}{t^2} = \frac{1}{[T^2]} = [T^{-2}]$$

**34.** (c): Let 
$$k = P^x S^y c^z$$
 .....(i)

k is a dimensionless

Dimensions of  $k = [M^0L^0T^0]$ 

Dimensions of 
$$P = \frac{\text{Force}}{\text{Area}} = \frac{[\text{MLT}^{-2}]}{[\text{L}^2]} = [\text{ML}^{-1}\text{T}^{-2}]$$

Dimensions of 
$$S = \frac{\text{Energy}}{\text{Area} \times \text{time}} = \frac{[\text{ML}^2\text{T}^{-2}]}{[\text{L}^2][\text{T}]} = [\text{MT}^{-3}]$$

Dimensions of  $c = [LT^{-1}]$ 

Substituting these dimensions in eqn (i), we get  $[M^0L^0T^0] = [ML^{-1}T^{-2}]^x [MT^{-3}]^y [LT^{-1}]^z.$ 

Applying the principle of homogeneity of dimensions, we get

$$x + y = 0$$
 ....(ii)

$$-x + z = 0 \qquad \dots (iii)$$

$$-2x - 3y - z = 0$$
 .....(iv)

Solving (ii), (iii) and (iv), we get

$$x = 1, y = -1, z = 1$$

**35. (b)**: Density 
$$\rho = \frac{\text{mass } m}{\text{volume } V}$$
 ....(i)

Take logarithm to take base e on the both sides of eqn (i), we get

$$\ln \rho = \ln m - \ln V \qquad \dots (ii)$$

Differentiate eqn (ii), on both sides, we get

$$\frac{\Delta \rho}{\rho} = \frac{\Delta m}{m} - \frac{\Delta V}{V}$$

Errors are always added, Error in the density  $\rho$  will be

$$= \left[\frac{\Delta m}{m} + \frac{\Delta V}{V}\right] \times 100\%$$
$$= \left[\frac{0.01}{22.42} + \frac{0.1}{4.7}\right] \times 100\% = 2\%$$

Units and Measurement 7

36. (a): Permeability of free space  $\mu_0 = \frac{2\pi \times \text{force} \times \text{distance}}{\text{current} \times \text{current} \times \text{length}}$ 

Dimensional formula of  $\mu_0 = \frac{[MLT^{-2}][L]}{[A][A][L]}$ =  $[MLT^{-2}A^{-2}]$ 

**37.** (d):  $f = am^x k^y$  .....(i)

Dimensions of frequency  $f = [M^0L^0T^{-1}]$ 

Dimensions of constant  $a = [M^0L^0T^0]$ 

Dimensions of mass m = [M]

Dimensions of spring constant  $k = [MT^{-2}]$ 

Putting these value in equation (i), we get  $[M^0L^0T^{-1}] = [M]^x [MT^{-2}]^y$ 

Applying principle of homogeneity of dimensions, we get

$$x + y = 0$$
 .....(ii)  
 $-2y = -1$  .....(iii)  
or  $y = \frac{1}{2}$ ,  $x = -\frac{1}{2}$ 

**38.** (d): Dimensions of force  $F = [MLT^{-2}]$ 

Dimensions of velocity gradient  $\frac{\Delta v}{\Delta Z} = \frac{[LT^{-1}]}{[L]}$ =  $[T^{-1}]$ 

Dimensions of area  $A = [L^2]$ 

Given 
$$F = -\eta A \frac{\Delta v}{\Delta Z}$$

Dimensional formula for coefficient of viscocity

$$\eta = \frac{F}{(A)\left(\frac{\Delta v}{\Delta Z}\right)} = \frac{[MLT^{-2}]}{[L^2][T^{-1}]} = [ML^{-1}]$$

**39.** (c) : Units of  $b = \frac{x}{t^2} = \frac{\text{km}}{\text{s}^2}$ 

**40.** (d): Dimensions of energy  $E = [ML^2T^{-2}]$ 

Dimensions of volume v= [L3]

Dimensions of force  $F = [MLT^{-2}]$ 

Dimensions of area  $A = [L^2]$ 

Dimensions of voltage  $V = [ML^2T^{-3}A^{-1}]$ 

Dimensions of charge q = [AT]

Dimensions of angular momentum  $L = [ML^2T^{-1}]$ 

:. Dimensions of 
$$\frac{E}{v} = \frac{[ML^2T^{-2}]}{[L^3]} = [ML^{-1}T^{-2}]$$

Dimensions of 
$$\frac{F}{A} = \frac{[MLT^{-2}]}{[L^2]} = [ML^{-1}T^{-2}]$$

Dimensions of 
$$\frac{Vq}{v} = \frac{[ML^2T^{-3}A^{-1}][AT]}{[L^3]} = [ML^{-1}T^{-2}]$$

Dimensions of angular momentum is [ML<sup>2</sup>T<sup>-1</sup>] while other three has dimensions [ML<sup>-1</sup>T<sup>-2</sup>]

41. (c): Induced emf  $|\varepsilon| = L \frac{dI}{dt}$ 

where L is the self inductance and  $\frac{dI}{dt}$  is the rate of change of current.

.. Dimensional formula of

$$L = \frac{|\mathcal{E}|}{dI} = \frac{[ML^2T^{-3}A^{-1}]}{[AT^{-1}]} = [ML^2A^{-2}T^{-2}]$$

42. (a): Torque  $(\tau)$  = Force × distance Dimensional formula for  $(\tau)$  = [MLT<sup>-2</sup>][L] = [ML<sup>2</sup>T<sup>-2</sup>]

43. (a) : Capacitance 
$$C = \frac{\text{charge}}{\text{Potential difference}}$$

Dimensions of 
$$C = \frac{[AT]}{[ML^2T^{-3}A^{-1}]} = [M^{-1}L^{-2}T^4A^2]$$

Resistance  $R = \frac{\text{Potential difference}}{\text{current}}$ 

$$= \frac{[ML^2T^{-3}A^{-1}]}{[A]} = [ML^2T^{-3}A^{-2}]$$

Dimensional formula of CR


$$= [M^{-1}L^{-2}T^4A^2][ML^2T^{-3}A^{-2}] = [T]$$

As the (CR) has dimensions of time and so is called time constant of CR circuit.

**44.** (d): Angular momentum L

= Moment of inertia  $I \times$  Angular velocity  $\omega$ .

 $\therefore$  Dimensional formula  $L = [ML^2][T^{-1}] = [ML^2T^{-1}]$ 

