If m and n are two natural numbers, n is a perfect cube when n = m x m x m = m^3	ones digit	of	Ones dia	it of out o		
Hence m is the cube root of n ; m = $\sqrt[3]{n}$ or m = $n^{\frac{1}{3}}$. 01	Ones digit of cube			
n is a perfect cube or a cube number (ex. 8, 27, 64, 125)			0			
			1			
			8			
In the prime factorization, of a perfect cube: each prime factor appears 3 times and the factors can be grouped into triples	2		7			
	4		4			
			5			
To convert a number that is not a perfect cube into a perfect cube	6			6		
 first resolve the given number into its prime factors form triples; groups of three of similar factors 	7		3			
 Check which factor(group) does not have triples; multiply or divide the given number by this 	8	8 2				
factor (or factors so that we can form triples)	9 9					
Properties of cubes and cube roots:	Number	cube	Ν	lumber	cube	
Cubes of all even natural numbers is even	1	1	1	.1	1331	
Cubes of all odd natural numbers is odd	2	8	1	.2	1728	
 Sum of cubes of first n natural numbers = square of their sums : 	3	27	1	.3	2197	
$1^3 + 2^3 + 3^3 + \dots n^3 = (1 + 2 + 3 \dots n)^2$	4	64	1	.4	2744	
 Cubes of numbers 1, 4, 6, 9 are numbers are ending in same digit 	5	125	1	.5	3375	
 If a and b are any two integers then : 	6	216		.6	4096	
$\sqrt[3]{ab} = \sqrt[3]{a} \times \sqrt[3]{b}$	7	343		.7	4913	
$\begin{bmatrix} a & \sqrt[3]{a} \end{bmatrix}$	8	512		.8	5832	
$\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$	9	729		.9	6859	
$B \neq 0$	10	1000	2	20	8000	
 Cubes of numbers ending in digit 8 and 2 are numbers ending in digits 2 and 8 respectively 						
 Cubes of numbers ending in digit 7 and 3 are numbers ending in digits 3 and 7 respectively 						
 Cubes of numbers ending in digit 7 and 3 are numbers ending in digits 3 and 7 respectively Cubes of numbers ending in digit 7 and 3 are numbers ending in digits 3 and 7 respectively 						

	Cube root of a cube number (estimation method)
Cube root is the inverse operation of finding a cube	
	 take any cube number start forming groups of 3 digits starting from
If $a^3 = x$, then $\sqrt[3]{x} = a$	rightmost number Group 2 Group1
	 Look at group 1 : from group 1 we get the ones place (units) digit of
Cube root of a cube through prime factorization	the required cube root
 Resolve the given number into prime factors 	 The other group (group 2) say lies between n³ and (n+1)³
 make triplets; groups of similar factors 	• $n^3 < \text{group2} < (n+1)^3$
 Take one factor from each group (triplet) and multiply product gives cube root of given number 	 Take n as the tenths place of required cube root
	Finding the cube root of 17576 through estimation:
Cube root of 3375 through prime factorization:	 Form groups of three starting from the rightmost digit of 17576 17 576.
	• Group 1: 576 has three digits whereas 17 has only two digits
	 Annex zeroes to make 3 digits we get <u>017</u> <u>576</u>.
$3375 = 3 \times 3 \times 3 \times 5 \times 5 \times 5$	• Take 576. The digit 6 is at its one's place.
$3373 = \underline{3 \times 3 \times 3} \times \underline{3 \times 3 \times 3}$	• We take the one's place of the required cube root as 6.
$= 3^3 \times 5^3 = (3 \times 5)^3$	• Take the other group, i.e., 17.
	 Cube of 2 is 8 and cube of 3 is 27; 8 < 17 < 27
<i>w</i> .	• The smaller number among 2 and 3 is 2.
cube root of $3375 = \sqrt[3]{3375}$	The one's place of 2 is 2 itself. Take 2 as ten's place of the cube root of 17576.
$= 3 \times 5 = 15$	Thus, $\sqrt[3]{17576} = 26$

Hardy Ramanujan's number : numbers that can be expressed as the sum of 2 cubes in two different ways (3 of them are given below)

1729 ; (1, 12) and (9,10)

4101; (2, 16) and (9, 15)

13832; (18, 20) and (2, 24)