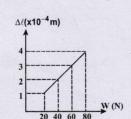
Chapter Mechanical Properties of Solids


Topic-1: Hooke's Law & Young's Modulus

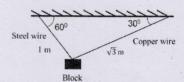
MCQs with One Correct Answer

1. One end of a horizontal thick copper wire of length 2L and radius 2R is welded to an end of another horizontal thin copper wire of length L and radius R. When the arrangement is stretched by applying forces at two ends, the ratio of the elongation in the thin wire to that in the thick wire is

[Adv. 2013]

- (a) 0.25
- (b) 0.50
- (c) 2.00
- (d) 4.00
- 2. The adjacent graph shows the estension $(\Delta \ell)$ of a wire of length 1 m suspended from the top of a roof at one end and with a load W connected to the other end. If the cross-sectional area of the wire is 10^{-6} m², calculate the Young's modulus of the material of the wire. [2003S]
 - (a) $2 \times 10^{11} \text{ N/m}$
 - (b) $2 \times 10^{-11} \text{ N/m}$
 - (c) $3 \times 10^{-12} \text{ N/m}$
 - (d) $2 \times 10^{-13} \text{ N/m}$

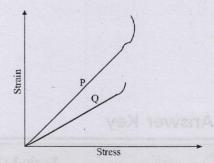
- 3. The following four wires are made of the same material. Which of these will have the largest extension when the same tension is applied? [1981-2 Marks]
 - (a) length = 50 cm, diameter = 0.5 mm
 - (b) length = 100 cm, diameter = 1 mm
 - (c) length = 200 cm, diameter = 2 mm
 - (d) length = 300 cm, diameter = 3 mm.


Integer Value Correct Type

4. A block of weight 100N is suspended by copper and steel wires of same cross sectional area 0.5cm² and, length m and 1m, respectively. Their other ends are fixed on a ceiling

as shown in figure. The angles subtended by copper and steel wires with ceiling are 30° and 60°, respectively. If elongation in copper wire is and elongation in steel wire

is
$$(\Delta l_s)$$
 , then the ratio $\frac{\Delta l_c}{\Delta l_s}$ is_____


[Young's modulus for copper and steel are $1 \times 10^{11} N / m^2$ and $2 \times 10^{11} N / m^2$, respectively.] [Adv. 2019]

(P)

MCQs with One or More Than One Correct

5. In plotting stress versus strain curves for two materials P and Q, a student by mistake puts strain on the y-axis and stress on the x-axis as shown in the figure. Then the correct statement(s) is (are) [Adv. 2015]

- (a) P has more tensile strength than Q
- (b) P is more ductile than Q
- (c) P is more brittle than Q
- (d) The Young's modulus of P is more than that of Q

Topic-2: Bulk & Rigidity Modulus and Work Done in Stretching a Wire

Fill in the Blanks

1. A wire of length L and cross sectional area A is made of a material of Young's modulus Y. If the wire is stretched by an amount x, the work done is [1987 - 2 Marks]

Answer Key

Topic-1: Hooke's Law & Young's Modulus

1. (c)

2. (a)

3. (a) 4. (2)

4. (2) 5. (a, b)

Topic-2: Bulk & Rigidity Modulus and Work Done in Stretching a Wire

$$1. \quad \left(\frac{1}{2} \left(\frac{YA}{L}\right) x^2\right)$$

Hints & Solutions

Topic-1: Hooke's Law & Young's Modulus

1. (c) Using,
$$Y = \frac{F/A}{\Delta \ell / \ell_0}$$

$$Y = \frac{F/\pi (2R)^2}{\Delta \ell_1 / 2L} = \frac{F/\pi R^2}{\Delta \ell_2 / L} \qquad \therefore \frac{\Delta \ell_2}{\Delta \ell_1} = 2$$

2. **(a)** Using,
$$Y = \frac{F}{A} / \frac{\Delta \ell}{\ell} = \frac{F}{A} \cdot \frac{\ell}{\Delta \ell} = \frac{20 \times 1}{10^{-6} \times 10^{-4}}$$
$$= 2 \times 10^{11} \,\text{N/m}^2.$$

3. **(a)** Using,
$$Y = \frac{T/A}{\Delta \ell / \ell}$$
 $\Rightarrow \Delta \ell = \frac{T \times \ell}{A \times Y} = \frac{T}{Y} \times \frac{\ell}{A}$
 $\therefore \Delta \ell \propto \frac{\ell}{A}$. $\left(\because \frac{T}{Y} \text{ is constant}\right)$

 $\frac{\ell}{\Lambda}$ is largest in (a) hence largest extension.

(2) Given: $l_c = \sqrt{3}$ m; $l_s = 1$ m; $Y_c = 1 \times 10^{11}$ N/m² and $Y_s = 2 \times 10^{11} \text{ N/m}^2$.

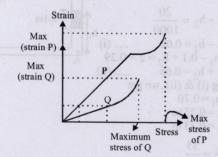
At equilibrium, $T_s \cos 60^\circ = T_c \cos 30^\circ$

$$\Rightarrow \frac{T_s}{2} = \frac{T_c\sqrt{3}}{2}$$

$$\Rightarrow T_s = \sqrt{3}T_c \Rightarrow \frac{T_c}{T_s} = \frac{1}{\sqrt{3}} \text{ Im}$$

$$\therefore \frac{l_c}{l_s} = \frac{\sqrt{3}}{1}$$

$$\Rightarrow T_s \cos 60^\circ \qquad 30^\circ$$


$$T_c \cos 30^\circ$$
and
$$\frac{Y_c}{Y_s} = \frac{1 \times 10^{11}}{2 \times 10^{11}} = \frac{1}{2}$$

From,
$$Y = \frac{Fl}{A\Delta l} \implies \Delta l = \frac{Fl}{AY}$$

Here, $A_s = A$

$$\therefore \frac{\Delta l_c}{\Delta l_s} = \left(\frac{T_c}{T_s}\right) \times \left(\frac{l_c}{l_s}\right) \times \left(\frac{Y_s}{Y_c}\right) = \left(\frac{1}{\sqrt{3}}\right) \times \left(\frac{\sqrt{3}}{1}\right) \times \left(\frac{2}{1}\right) = 2$$

(a, b) From graph, the maximum stress that P can withstand before breaking is greater than Q.

The strain of P is more than Q therefore P is more ductile.

$$Y = \frac{\text{stress}}{\text{strain}}$$
 So a given strain, stress is more for Q .

$$Y_{Q} > Y_{P}$$

Topic-2: Bulk & Rigidity Modulus and Work Done in Stretching a Wire

Work done,
$$W = \frac{1}{2}Kx^2$$

where $K = \frac{YA}{L}$ and $x = \text{extension in wire}$

$$W = \frac{1}{2}\left(\frac{YA}{L}\right)x^2$$