
Heat & Thermodynamics



Heat is a form of energy. This form of

energy can be used in different walks of our

life. Vehicles moving on the road use I.C.

engines which utilise heat energy and this

heat energy is converted into mechanical

energy. All these engines follow some cycles.

These cycles are called Thermodynamic

cycles. Each Thermodynamic cycle again

consists of number of processes. Efficiency

of a Thermodynamic cycle depends on these

processes. So it is important to study all these

processes, which are elaborately dealt with

in THERMODYNAMICS part of this

module.

Heat is transitory in nature. It can move

from one object to another or from one part

of a  body to another. This flow of heat can

take place in any one of the three ways –

conduction, convection and radiation. In

HEAT TRANSFER we will study this aspect

of heat.

We will also study about the expansion

of solid on heating, which is the result of

increase in kinetic energy of the molecules

or atoms, the solid is consisting of.

IIT-JEE
SYLLABUS

Thermal expansion of solids,
liquids and gases; Calorimetry,
latent heat; Heat conduction in
one dimension; Elementary
concepts of convection and
radiational; Newton’s law of
cooling Ideal gas laws; Specific
heats (Cv and Cp for monatomic
and diatomic gases); Isothermal
and adiabatic processes, bulk
modulus of gases; Equivalence
of heat and work; First law of
thermodynamics and its
applications (only for ideal
gases). Blackbody radiation :
absorptive and emissive powers;
Kirchhoff ’s law, Wien’s
displacement law, Stefan’s law.
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Definition of Heat :

Heat is energy in transit which is transferred from one body to the other, due to difference in temperature,
without any mechanical work involved.

1. Thermal Expansion:1.  Thermal Expansion:1.  Thermal Expansion:1.  Thermal Expansion:1.  Thermal Expansion:1.  Thermal Expansion:1.  Thermal Expansion:1.  Thermal Expansion:1.  Thermal Expansion:1.  Thermal Expansion:

Expansion due to increase in temperature.

Cause of thermal expansion : Molecules are held together by elastic forces and they vibrate with some
constant mean distance between them.

As temperature increases, vibration energy of the constituent particles increases which results in in-
crease in separation between the particles and hence there is thermal expansion.

Types of Thermal expansion:

Coefficient of expansion For temperature change Δt

(1) Linear

0
0

1
lim

t

l

l t 


 

 change in length 0 0        t

( 0l is initial length of the rod, where   is

 co-efficient of linear expansion)

(2) Superficial

0
0

1
lim

t

A

A t 


 

 change in Area 0 0A A A A t    

( 0A is initial area of the rod, where   is

 co-efficient of superficial expansion)

(3) Volume 0
0

1
lim

t

V

V t 


 

 change in volume 0 0V V V V t    

( 0V  is initial volume of the rod, where   is

 co-efficient of volume expansion)

(4) For isotropic solid,

1 2 3         (say)

So 2 and  3     

(5) For anisotropic solids,

1 2 1 2 3  and             

Here 21,  and 3 are coefficients of linear expansion in X, Y and Z directions respectively..
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Illustration1:
A copper and a tungsten plate having a thickness 2 mm  each are riveted together so that at
0ºC they form a flat bimetallic plate. Find the average radius of curvature of this plate at

200t C  . The coefficients of linear expansion for copper and tungsten are 5 11.7 10c K   

and 5 10.4 10t K    .

Solution : From figure,
L R  take logarithm and differentiate

In L In R In  

dL dR

L R
 (as L  is very small)

L R

L R

 


 1 2( )L t

L R

   


R L



1 2

0.769
( )

R m
t


 

   .

Variation in Density:
With increase in temperature, volume increases, so density decreases and vice-versa.

0

(1 )

d
d

t


 

For solids, values of  are generally small so we can write

0 (1 )d d t   (using binomial expansion)

Note: (i)  for liquids are in order of 310 .
(ii) For water, density increases from 0 to 4ºC so   is –ve (0 to 4ºC) and for 4ºC to higher tempera-
ture   is +ve. At 4ºC density is maximum.

Illustration 2:
A sphere of diameter 7cm and mass 266.5 gm floats in a bath of liquid. As the temperature is
raised, the sphere just begins to sink at a temperature of 35ºC. If the density of the liquid at 0ºC

is 31.527 /gm cm , find the co-efficient of cubical expansion of the liquid. Neglect the expansion

of the sphere.
Solution :

The sphere will sink in the liquid at 35ºC, when its density becomes equal to the density of liquid at
35ºC.

The density of sphere, 35 3

266.5

4 22 7

3 7 2

 
       
   

3
35 1.483 /gm cm 

Now, 0 35[1 ]T    

1.527 1.483[1 35]   

1.029 1 35        
1.029 1

0.00083/
35

C


    .



Apparent Expansion of Liquid in a container:
Initially container was completely filled with liquid. Temperature is increased by t
Change in volume of liquid 0 (1 )L LV V t   

Change in volume of container 0 (1 )   C CV V t

So, overflow volume of liquid relative to container L CV V V  

0 ( )L CV V t     
So coefficient of apparent expansion of liquid w.r.t. container

apparent L C    

Expansion In Enclosed Volume:
Increase in height of liquid level in tube when bulb was initially completely filled :

apparent change in volume of liquid 

area of tube 
h 

0

0

( )
;

(1 2 )
L g

g

V t
h

A t

   


  

apparent  L g    

Initially   Finally

A sphere of metal 1( )A   just inside a spherical shell of metal 2( )B   at any

temperature t. If the temperature of metals is increased and 1 2    then
volume stress will be developed (compressive in metal A and tensile in metal

B). But if 1 2( )   the free space will be created between metals.

A,1

B,2

With same amount of change in temp. the expansion of radius will be same 0 (1 )R R t  

Ring DiscR0
R0

Illustration 3:
A one litre glass flask contains some mercury. It is found that at different temperature  the
volume of air inside the flask remains the same. What is the volume of mercury in this flask if
coefficient of linear expansion of glass is 69 10 / C   while volume expansion of mercury is

41.8 10 / C   ?
Solution:

If V is the volume of flask, LV of mercury and AV  of air in it,

L AV V V 
Now as with change in temperature volume of air remains constant, the expansion of mercury will be
equal to that of the whole flask i.e.,

LV V  

or G L LV V     [as  V V   ]

Here V  1 litre = 1000 cc and 63 27 10 /G G C     

So 6 4(1000 27 10 /1.8 10 ) 150LV       cc.



Thermal Stress:

A rod of length 0l  clamped between two fixed walls

For t  change in temperature

stress (area assumed to be constant)
F

A


0

strain
l

l




0l l t  

so,
0

0

/

/

FlF A F
Y

l l A l A t
  
  

or, | |F YA t   F F
lo

or,
0 0

l YA
F YA l

l l

 
   

 

Energy stored in rod E 
1

2
  stress × strain × volume

For increase in temperature stress will be compressive and for decrease in temperatue stress will be
tensile

Illustration 4:
A light steel wire of length   and area of cross-section A is hanging vertically downward with
a ceiling. It will cool to the room temperature (30ºC) from the initial temperature 100ºC. Calcu-
late the weight which should be attached at its lower end such that its length remains same.
Young’s Modulus of steel is Y and coefficient of linear expansion is  .

Solution :
Thermal Stress due to temperature change (100 30)Y  
Stress due to weight /W A
Since no change in length take place

.(100 30)
W

Y
A

   

70W A Y  .

Variation of Time Period of Pendulum Clocks:

0
0 2

l
T

g
 

If temperature is increased by ,t  
0 (1 )

2
l t

T
g

 
 

02 (1 )
2

l
T t

g


    (by using Binomial expansion)

T 0 (1 )
2

T t


   0 0 2
T T T t


   

0

1
( ) sec/sec   

2

T
t T

T


    increase in time period



Illustration 5.

A pendulum clock with a pendulum made of Invar 6( 0.7 10 / º )C    has a period of 0.5 s and

is accurate at 25º C. If the clock is used in a country where the temperature averages 35º C,
what correction is necessary at the end of a month (30 days) to the time given by the clock?

Solution:
In time interval t , the clock will become slow (or will lose time) by

1

2
t t   

So, 71
(7 10 ) (30 86400) (35 25) 9.1

2
t s         .

Measurement of Length by Metallic Scale:

actual measure one divisionl l l 

and one division (1cm) (1 )l t  

For variable  :
(1) variation of  with distance

Let ax b  

Total expansion = 
0

(expansion of length dx) ( )   
l

ax b dx t
dxx

(2) variation of   with temperature
Let ( )f T 

2

1

0 ( )
T

T

l l f T dT  

Caution : If  is in ºC then put 1T  and 2T in ºC

    Similarly if   is in ºK, put 1T  and 2T  in K.

Practice Problems  #  01Practice Problems  #  01Practice Problems  #  01Practice Problems  #  01Practice Problems  #  01Practice Problems  #  01Practice Problems  #  01Practice Problems  #  01Practice Problems  #  01
1. A surveyor’s 30m stell tape is correct at a temperature of 20ºC. The distance between two points, as

measured by this tape on a day when the temperature is 35ºC, is 26m. What is the true distance
between the points ?  (

steel
 = 1.2 × 10–5 /ºC)

2. A clock with a brass pendulum shaft keeps correct time set a certain tempeature.
(a) How closely must the temperature be controlled if the clock is not to gain or lose more than 1 sec
a day ? Does the answer depend on the period of the pendulum?
(b) Will an increase of temperature cause the clock to gain or lose? (

brass
 = 2 × 10–5/ºC)

3. A steel ring of 3.00 inches inside diameter at 20ºC is to be heated and slipped over a brass shift
measuring 3.003 inches in diameter at 20ºC. To what temperature should ring  be heated?

4. A pendulum clock loses 12sec a day if the temperature is 40ºC and goes fast by 4 sec. a day if the
temperature is 20ºC. Find the temperature at which the clock will show correct time and the coefficient
of linear expansion of the metal of the pendulum shaft.

5. A copper and a tungsten plate having a thickness  = 2mm each are riveted together so that at
0ºC they form a flat bimetallic plate. Find the average radius of the curvature of this plate at
t = 200ºC. The coefficient of linear expansion for copper and tungsten are 

Cu
 = 1.7 × 10–5 /K

and 
W

 = 0.4 × 10–5 /K.



6. A glass flask whose volume is exactly 1000cm3 at 0ºC is filled level full of mercury at this temperature.
When the flask and mercury are heated to 100ºC, 15.2cm3 of mercury overflow. The coefficient
of cubical expansion for Hg is 1.82 × 10–2/ºC. Compute the coefficient of linear expansion of glass.

7. A 250cm3 glass bottle is completely filled with water at 50ºC. The bottle and water are heated to
60ºC. How much water runs over if :

(a) the expansion of the bottle is neglected :

(b) the expansion of the bottle is included ? Given the coefficient of areal expansion of glass
= 1.2 × 10–5 /ºC and 

water
 = 60 × 10–5 /ºC

8. A sinker of weight W
0
 has an apparent weight W

1
 when placed in a liquid at a temperature T

1
 and

W
2
 when weighed in the same liquid at a temperature T

2
. The coefficient of cubical expansion of

the material of the sinker is . What is the coefficient of volume expansion of the liquid?

9. A vessel is filled completely with 500gm of water and 1000gm of mercury. When 21200 cal of
heat is given to it, water of mass 3.52gm overflows. Calculate the coefficient of volume expansion
of mercury. The expansion of the vessel may be neglected. Coefficient of volume expansion of water
= 1.5 × 10–4 /ºC, density of mercury = 13.6 g/cc, density of water = 1g/cc and specific heat of
mercury = 0.03 cal/g/ºC .

10. A U tube contains mercury. The left limb of tube is maintained at a temperature of T
1
ºC and the

right limb at a temperature of T
2
ºC. The height of mercury columns in the left and right limbs are

h
1
 and h

2
 respectively. Find the coefficient of volume expansion of Hg. Neglect the expansion of

tube.

2. Calorimetry:2.  Calorimetry:2.  Calorimetry:2.  Calorimetry:2.  Calorimetry:2.  Calorimetry:2.  Calorimetry:2.  Calorimetry:2.  Calorimetry:2.  Calorimetry:
Calorie:

The amount of heat needed to increase the temperature of 1 gm of water from 14.5ºC to 15.5ºC at
STP is known as 1 calorie

Specific Heat:

It is heat required to raise temperature by 1º C or 1º K for unit mass of the body.

dQ mc dT

2

1

T

T

Q m cdT   (be careful about unit of temperature, use units according to the given units of c)

Latent Heat:

The amount of heat required to change one phase of 1 gm of a substance to another phase.

Q mL L = latent heat of substance in cal/gm or in Kcal/kg.

ice 80 /L cal gm – Specific latent heat of fusion of ice

steam 540 cal/gmL  – Specific latent heat of vaporization of water

Molar Heat Capacity:

If instead of unit mass we consider one mole of a substance, the heat required to change the tempera-
ture of one mole of a substance through 1 ºC (or K) is called molar heat capacity or molar specific
heat and is represented by C. If the molecular weight of a substance is M :

Q
C Mc

T
 


as and    

Q m
c

m T M

 
    

Its SI units are (J/mol K) while dimensions 2 2 1 1[ ]ML T    



Thermal-capacity :
If instead of unit mass we consider the whole body, (of mass m), the heat required to raise the
temperature of a given body by 1 ºC is called its thermal capacity , i.e.,
Thermal capacity ( / )mc C Q T    
Thermal capacity of a body depends on the mass and nature of body. It has units (J/K) or cal/ºC and

dimensions 2 2 1[ ]ML T   .

Water-Equivalent :
If thermal capacity of a body is expressed in terms of mass of water it is called water-equivalent of the
body, i.e., water-equivalent of a body is the mass of water which when given same amount of heat as
to the body, changes the temperature of water through same range as that of the body, i.e.,

( )W m c g 
The unit of water equivalent W is g while its dimension [M].

Principle of Calorimetry :
When two bodies (one being solid and other liquid or both being liquid) at different temperature are
mixed, heat will be transferred from body at higher temperature to a body at lower temperature till
both acquire same temperature. The body at higher temperature releases heat while body at lower
temperature absorbs it, so that :
Heat lost = Heat gained,
i.e. principle of calorimetry represents the law of conservation of heat energy.

Illuatration 6.
The temperature of equal masses of three different liquids A, B and C are 12ºC, 19º C and 28º
C respectively. The temperature when A  and B  are mixed is 16º C and when B  and C  aree
mixed is 23º C. What would be the temperature when A  and C  are mixed?

Solution: In accordance with principle of calorimetry :
When A  and B   are mixed

(16 12) (19 16)A Bmc mc  

 (3/ 4)A Bc c
and when B  and C  are mixed

(23 19) (28 23)B Cmc mc  

 (4 /5)C Bc c
Now when A  and C  are mixed if T  is the common temperature of mixture:

( 12) (28 )A Cmc T mc T  

Substituting Ac  and Cc  from above,

(3/ 4)( 12) (4 /5)(28 )T T  
which on solving gives,

20.25ºT C .
Illustration 7.

A solid material is supplied with heat at a constant rate. The temperature of the material is
changing with the heat input as shown in figure. Study the graph carefully and answer the
following questions :

(i) What do the horizontal regions AB and CD  represent?

(ii) If 2CD BA , what do you infer?
(iii) What does slope DE  represent?
(iv) The slope of OA   the slope of BC . What does this indicate?

A
B

C
D

E

O

Y

X

Te
m

pe
ra

tu
re

Heat input



Solution :
(i) The horizontal portions AB  and CD  of the graph represent the change of phase.
The portion AB represents the change of phase from solid to liquid at constant temperature and the
portion CD  represents the change of phase from liquid to vapour at constant temperature or the
portion CD  represents the latent heat of vaporization.
(ii) 2CD AB ,

i.e., latent heat of vaporization is twice the latent heat of fusion.
(iii) The slope DE  is equal to /dT dQ  for vapour, i.e., this gives the rate of increase of tempera-
ture of vapour with heat input.

 Slope of 
1

Specific heat of the vapour
DE 

or, Specific heat of vapour 
1

Slope of DE


(iv) Slope OA   slope BC
The slope OA  represents that

Specific heat of solid 
1

Slopeof OA


Now slope OA   slope BC , represents that specific heat of the liquid is more than that of the solid.

Practice Problems  #  02Practice Problems  #  02Practice Problems  #  02Practice Problems  #  02Practice Problems  #  02Practice Problems  #  02Practice Problems  #  02Practice Problems  #  02Practice Problems  #  02

1. The heat required to increase the temperature of 10 kg water by 10º C is :

(A)  20 kcal (B) 100 kcal (C)  10 kcal (D) 1 kcal

2. When 400 J of heat are added to a 0.1 kg sample of metal, its temperature increases by 20ºC.
The specific heat of the metal is : (in J/kgºC)

(A)  100 (B)  200 (C)  300 (D)  50

3. 420 J of energy is supplied to 20 gm of water. The rise of temperature is :

(A)  10ºC (B)  7ºC (C)  100ºC (D)  5ºC

4. The specific heat of metal at low temperature varies as S = aT3 where a is a constant and T is
the absolute temperature. The heat energy needed to raise unit mass of the metal from T = 1 K
and  T = 2K is :

(A)  3a (B)  15a/4 (C) 2a/3 (D) 12a/5

5. The ratio of densities of two bodies is 3 : 4 and the ratio of specific heat is 4 : 3. The ratio of their
thermal capacities for unit volume is :

(A)  3 : 4 (B)  4 : 3 (C)  1 : 1 (D)  9 : 16

6. The density of a material A is 1500 kg/m3 and that of another material is 2000 kg/m3. It is found
that the heat capacity of 8 volumes of A is equal to heat capacity of 12 volume of B. The ratio
of specific heats of A and B will be :

(A)  1 : 2 (B)  3 : 1 (C)  3 : 2 (D)  2 : 1

7. 200 gm water is filled in a calorimeter of negligible heat capacity. It is heated till its temperature
is increased by 20ºC. The heat supplied to water is :

(A) 1000 cal (B) 4000 cal (C)  2000 cal (D)  3000 cal



8. Heat released by 1 kg steam at 150º C, if it is converted into 1 kg water at 50ºC is :

(A)  315 kcal (B)  115 kcal (C) 150 kcal (D) 615 kcal

9. A solid material is supplied with heat at a constant rate. The temperature of material is changing
with heat input as shown in the figure. What does slope DE represent?

Q

X
A B

C D

E

Heat input

Te
m

pe
ra

tu
re

O

(A)  Latent heat of liquid
(B)  Latent heat of vapour
(C)  Heat capacity of vapour
(D)  Inverse of heat capacity of vapour.

,10. How much heat is required to convert 8.0 gm of ice at –15ºC to steam at 100ºC ? (Given
Sice = 0.53 cal/gºC, Lf = 80 cal/g and Lv = 539 cal/g and Swater = 1cal/gºC)

Practice Problems  #  03Practice Problems  #  03Practice Problems  #  03Practice Problems  #  03Practice Problems  #  03Practice Problems  #  03Practice Problems  #  03Practice Problems  #  03Practice Problems  #  03
1. A block of mass 2.5kg is heated to temperature of 500ºC and placed on a large ice block. What

is the maximum amount of ice that can melt (approx). Specific heat for the body = 0.1Cal/gmºC.

(A) 1kg (B) 1.5kg (C) 2kg (D) 2.5 kg

2. 10gm of ice at 0ºC is kept in a calorimeter of water equivalent 10gm. How much heat should be
supplied to the apparatus to evaporate the water thus formed? (Neglect loss of heat)

(A) 6200 cal (B) 7200 cal (C) 13600 cal (D) 8200 cal

3. Heat is being supplied at constant rate to a sphere of ice which is melting at the rate of 0.1gm/
sec. It melts completely in 100sec. The rate of rise of temperature thereafter will be (assume no
loss of heat)

(A) 0.8 ºC/sec (B) 5.4 ºC/sec (C) 3.6 ºC/sec (D) will change with time

4. 1kg of ice at –10ºC is mixed with 4.4kg of water at 30ºC. The final temperature of mixture is (specific
heat of ice is 2100 J/kg/K)

(A) 2.3ºC (B) 4.4C (C) 5.3ºC (D) 8.7ºC

5. Steam at 100ºC is added slowly to 1400gm of water at 16ºC until the temperature of water is raised
to 80ºC. The mass of steam required to do this (Lv = 540 cal/gm)

(A) 160 gm (B) 125mg (C) 250gm (D) 320gm

6. A 2100 W continuous flow geyser (instant geyser) has water inlet temperature = 10ºC while the
water flows out at the rate of 20g/sec. The outlet temperature of water must be about

(A) 20ºC (B) 30ºC (C) 35ºC (D) 40ºC

7. The temperature of equal masses of three different liquids A, B, C and 12ºC, 19ºC and 28ºC
respectively. The temperature when A and B are mixed 16ºC while when B and C are mixed, it
is 23ºC. The temperature when A and C are mixted is .

(A) 16.5ºC (B) 20.26ºC (C) 10.36ºC (D) none of these

8. Two identical conducting rods are first connected independently to two vessels, one containing water
at 100ºC and the other containing ice at 0ºC. In the second case, the rods are joined end to end
and connected to the same vessels. Let q1 and q2 g/s be the rate of melting of ice in the two cases
respectively. The ratio q1/q2 is

(A) 
1

2
(B) 

2

1
(C) 

4

1
(D) 

1

4



9. The graph shown in figure represent change in the temperature of 5kg of a substance at it absorbs
heat at a costant rate of 42kJ min–1. The latent heat of vaporization of the substance is

225
200
175
150
125
100

75
50
25

0  5 10  15  20 25 30 35 40 45 50 

time (min)

Te
m

p.
 (

ºC
)

(A) 630 kJ kg–1 (B) 126 kJ kg–1 (C) 84 kJ kg–1 (D) 12.6 kJ kg–1

10. Calorie is defined as the amount of heat required to raise temperature of 1g of water by 1ºC and
it is defined under which of the following conditions?
(A) from 14.5ºC to 15.5ºC at 760 mm of Hg (B) from 98.5ºC to 99.5ºC at 760 mm of Hg
(C) from 13.5ºC to 14.5ºC at 76 mm of Hg (D) from 3.5ºC to 4.5ºC at 76 mm of Hg
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1. An ice cube of mass 0.1 kg at 0ºC is placed in an isolated container which is at 227ºC. The specific
heat S of the container varies with temperature T according to the empirical relation S = A + BT,
where A = 100 cal/kg-K and B = 2×10–2 cal/kg-K2. If the final temperature of the container is
27ºC, determine the mass of the container. (Latent heat of fusion of water = 8×104 cal kg,sp. heat
of water = 103 cal/kg-K).

2. The specific heat of a substance varies with temperature T as C = AT2 + BT cal/gºC, with temperature
in degree kelvin. Calculate the amount of heat required to heat 50g of substance from 27ºC to 57ºC.
Also find the time taken if the heat is supplied by a heater of resistance 200 ohm operating on 220V.
(Given A = 2.5×10–3 cal/g(ºC)3 ; B = 12×10–2cal/g(ºC)2.

3. Two bodies of equal mass m are heated at a uniform rate under
identical conditions. Their change in temperatures are shown
graphically in figure.

1 2 3 4 5 6 7 8 9

20
40
60
80

100

Te
m

p.
T

ºC

Time

B2
B1

C1

C2

II
 I

O

A1

A2

(a)  What are their melting points ?

(b)  What is the ratio of their latent heats ?

(c)  What is the ratio of their specific heats ?

4. A mixture of 250 g of water and 200g of ice at 0ºC is kept in a calorimeter which has water equivalent
of 50g. If 200 g of steam at 100ºC is passed through the mixture, calculate the final temperature
and weight of content of the calorimeter. Given that specific heat of ice and water are 0.5cal/goC
and 1cal/goC while latent heat 80cal/g and 540 cal/g respectively.

5. A lump of 0.10 kg of ice at –10ºC put in 0.15kg of water at 20ºC. How much water and ice will
be found in the mixture when it has reached in thermal equilibrium? (specific heat of ice = 0.50
kcal/kg while its latent heat 80 kcal/kg)

6. 5g of water at 30ºC and 5g of ice at –20ºC are mixed together in a calorimeter. Find the final
temperature of the mixture. Assume water equivalent of calorimeter to be negligible,sp. heat of ice
and water are 0.5cal/gºC and 1cal/gºC, and latent heat of ice is 80 cal/g.

7. How many grams of ice at –14ºC is needed to cool 200g of water from 25ºC to 10ºC?
 [cice = 0.5cal/gºC and LF for ice = 80 cal/g]



8. Determine the final result when 200gm of water and 20gm of ice at 0ºC are in a calorimeter having
a water equivalent of 30gm and 50gm of steam is passed into it at 100ºC.

9. What will be the final temperature, when 150gm of ice at 0ºC is mixed with 300gm of water at
50ºC. Specific heat of water = 1 cal/gm/ºC. Latent heat of fusion of ice = 80 cal/gm.

10. In a calorimeter (water equivalent = 40gm) are 200gm of water and 50gm of ice all at 0ºC. Into
this is poured 30gm of water at 90ºC. What will be the final condition of the system.

3. Laws of Thermodynamics :3.  Laws of Thermodynamics :3.  Laws of Thermodynamics :3.  Laws of Thermodynamics :3.  Laws of Thermodynamics :3.  Laws of Thermodynamics :3.  Laws of Thermodynamics :3.  Laws of Thermodynamics :3.  Laws of Thermodynamics :3.  Laws of Thermodynamics :
Zeroth Law of Thermodynamics:

If two bodies A and B are in thermal equilibrium and A and C are also in thermal equilibrium, then B
and C are also in thermal equilibrium.

Prevost Theory of Exchanges:
According to this theory, every body is continuously emitting radiant energy in all directions at a rate
depending only on the nature of its surface and its temperature and it is absorbing radiant energy from
all surrounding bodies at a rate depending on its surface and the temperature of the surrounding
bodies.

Mechanical Equivalent of Heat:
Whenever mechanical work is transformed into heat or heat into mechanical work, there is a constant
ratio between the work and the amount of heat. This ratio is called “mechanical equivalent of heat” and
is denoted by J . Thus, if W  be the amount of work done and Q  the amount of heat produced, we
have

W
J

Q
 , W JQ

If 1Q  unit then J W . Therefore, J  is numerically equal to the mechanical work required to pro-
duce one unit of heat.

 First law of Thermodynamics :
It is the consequence of conservation of energy for gaseous system.
Heat supplied to the gas = Increase in internal energy + work done by the gas.
Q U W   Q = +ve   heat is supplied to the gas

in differential form dQ dU dW  Q  = –ve   heat is taken out from the gas

and dQ nCdT C = molar specific heat

PC C (constant pressure); VC C =(constant volume)

and [( / 2) ]dU d f nRT f = degree of freedom

( / 2)dU f nRdT dU = +ve for increase in temperature

dU = –ve for decrease in temperature

2

1

V

V

dW PdV   (P = pressure of the gas of which work is to be calculated)

W +ve for work done by gas (in expansion of gas)

W  –ve for work done by gas (in contraction of gas)

Process C Monoatomic Diatomic Polyatomic

V=constant ( / 2)VC f R (3/2) R (5/2) R 3R

P=constant
2

2P

f
C R


 (5/2) R (7/2) R 4R



Mayor’s Relation P VC C R 
Note: C of a gas depends on the process of that gas, (which is infinite in Isothermal Process).

Ratio of specific heat of gases : 
2P

V

C f

C f


    

Monoatomic 5/3=1.67

Diatomic 7/5=1.4

Polyatomic 4/3=1.33

And
2

1
f 

  ;              ;
1 1V P

R R
C C


 
    .

Indicator Diagram:
This is a graph between pressure and volume of a system under going operation,

P

V

(1) Every point of Indicator Diagram represents a unique state (P, V, T) of gases.
(2) Every curve on Indicator Diagram represents a unique process.

Isochoric Process (V = constant)
0 0dV dW  

By First Law of Thermodynamic

VdQ dU nC dT 

2

1

2 1( )
T

V V

T

Q nC dT nC T T        

1

2

P

V
IsochoricIsobaric Process (P = constant)

0dP 
By First Law of Thermodynamics
dQ dU dW 

2 1 2 1 2 1( ) ( ) ( )
2p

f
nC T T nR T T nR T T      

 

2 1( )W nR T T 
1 2

P

V
Isobaric

* Be careful if 0V  then not necessarily an Isochoric Process.

* If 0P  then not necessarily an Isobaric Process.
Isothermal Process (T = constant):

0dU  ( 0)dT 

PV K
By First Law of Thermodynamics

dQ dW 

dQ PdV  



2

1

( ) /
V

V

Q W nRT dV V   1 2
P

Isothermal Process

V1 V2

T >T2 1

T2

T1

2 1

1 2

ln ln
V P

W nRT nRT
V P

  .

Adiabatic Process :
dQ = 0 but if 0Q  , it is not necessarily adiabatic.

dW dU  By First Law of Thermodynamics

2

1

1 2 1 1 2 2( )

1 1 1

T

T

nR T T PV PVnRdT
W

 
   

     

How to get the process Equation for adiabatic
(i) First Law of Thermodynamics with process condition

1

nRdT
dU dW  

  …(i)

(ii) Differential form of gas law
( ) ( )d PV d nRT

PdV VdP nRdT 

But 1

nRdT
dW PdV


 

 

So ( 1)PdV VdP PdV     …(ii)

( )VdP PdV  

dP dV

P V
 

ln ln lnP V C  

Const.PV  
1 Const. TV

1 Const.T P  
For Adiabatic Process PV   constant

adiabatic isothermal

dP dP

dV dV
 

Slope of adiabatic curve is more in magnitude in comparison to the slope of
the  isothermal curve.

P

V

Adiabatic

Isothermal

Bulk Modulus of Gases:

( )/
P P

V
V V V
 

    
 

Isothermal bulk modulus of Elasticity

/T
T

dP P
E V

dV V V
       

Adiabatic bulk modulus of Elasticity



/adia
adia

dP P
E V

dV V V
       

adia

T

E

E
  .

Molar Specific Heat For Polytropic Process
nPV  K

molar heat capacity of polytropic process 1 1

R R
C

n
 
    1 1

R R

n
 

 

So C is constant for polytropic process
Illustration 8:

Two moles of diatomic ideal gas is taken through the process PT  const. Its temperature is

increased from 0T K  to 02T K . Find work done by the system ?

Solution : W PdV 
Here 1 1 2 2PT PT P T c   (Constant)

PT c 

.
PV

P c
nR



2P V ncR 

ncR
P

V


2

1

1
V

V

PdV ncR dV
V

  

 2 12ncR V V   

2 2 2 1 1 12[ .nR P T V nRPTV  ] 2 2 1 12[ ( ) ( )nRT nRT nRT nRT 

2 1 02 ( ) 4nR T T RT   .
Work done on gas in some process :

1

2

P

V

1

2

P

V

P

V

0but 0V V   W  can be zero For clockwise W   ve
work done = + ve but dW 0 so work is done For anticlockwise W  ve

Work done is least for monoatomic gas in expansion :

P

V1 V2 V

Isothermal
Polyatomic
Diatomic
Monatomic

Adiabatic
Process



Illustration 9:

In a given gas during a process one third of heat supplied is used to raise internal energy
of gas. Find molar specific heat of the gas and their process.

Solution: Heat supplied = nCdT       C = molar specific heat

3 3

3 2 2 1 3

nCdT f fR R dQ
nRdT C dU

         
 .

Illustration 10:

An ideal gas is taken through a process in which the pressure and the volume are changed
according to the equation P = KV. Show that the molar heat capacity of the gas for the process
is given by C = C

V
 +R/2.

Solution : PV =  nRT . . . . . (i)

P = KV . . . . . (ii)

From (i) and (ii),

KV2 = nRT

Differentiating

2 KVdV =  nRdT PdV = nRdT/2

dQ = dU + PdV nCdT = nC
V
dT + nRdT/2

C = C
V
 + R/2

Illustration 11:

An ideal gas, whose adiabatic exponent is equal to  , is expanded so that the amount of heat
transferred to the gas is equal to the decrease of internal energy. Find

(a) The molar heat capacity of the gas in this process,

(b) The equation of the process in the variables T, V;

(c) The work performed by one mole of the gas when its volume increases   times if the

initial temperature of the gas is 0T .

Solution : (a) 1 2 2 1( )Q U U U U U       

(as given in the problem)

so 1V

R
dQ dU nC dT n dT     

 

Hence, molar heat capacity 1

dQ R
C

ndT
  

 

(b)  dQ dU dW

For this problem

   dU dU dW

2dU dW  

2 VnC dT pdV  

2
1

R nRT
n dT dV

V
  

 



( 1)
0

2

 
  

dT dV

T V

( 1) / 2TV   constant

(c) 2 dW dU

2 2     W dU U

0 0 0
0 0

2 ( ) 2 1 2 1V V V

T T
C T T C T C T

T T

   
          

   

Since ( 1) / 2TV   constant ( 1) / 2
0 0T V 

( 1) / 2( 1) / 2

0

0

1
            

VT

T V

so, 0 0 ( 1) / 2
0

1
2 1 2 1V V

T
W C T C T

T 

   
        

( 1) / 2
02 [1 1/ ]

( 1)

 


 
RT

.

Efficiency of a Cyclic Process
So 0U   no rise in internal energy

Q W  

Efficiency 
work done by gas

heat input
 

out

in in

1
Q

QW

Q
   

P

V

21

Qin

Qout

Illustration 12:
An ideal gas is taken through a cyclic thermodynamical process through four steps. The amount

of heat involved in these steps are 1 5960Q J ; 2 5585Q J  3 2980Q J  ;  and

4 3645Q J respectively. The corresponding works involved aree

1 2 32200 ; 825 ; 1100W J W J W J      and 4W respectively..

(a) Find the value of 4W

(b) What is the efficiency of the cycle?

Solution : (a) According to the given problem

1 2 3 4 5960 5585 2980 3645        Q Q Q Q Q

9605 8565 1040   Q J

1 2 3 4 4 42200 825 1100 275          W W W W W W W



and as for cyclic process  , 0    F I F IU U U U U

So from first law of thermodynamics, i.e.,   ,    Q U W we have

41040 (275 ) 0,  W  i.e.  4 765W  J

(b) As efficiency of a cycle is defined as

1 4 1 4

Network

Input heat ( ) ( )

 
   

 
W Q

Q Q Q Q

1040
0.1082 10.82%

9605
    .
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1. Calculate the work done by the gas in the state diagram shown.

B

C

A

200 450 V
(cc)

(kPa)
P

200

120

(A) 30J (B) 20J (C) –20J (D) –10J

2. Variation of molar specific heat of a metal with temperature is best depicted by
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Temperature (T)0

3. 1g of H
2
O changes from liquid to vapour phase at constant pressure at 1atm. The voulme increases

from 1 cc to 1671 cc. The heat of vaporization at this pressure is 540 cal/g. The increase in internal
energy of water is

(A) 2099 J (B) 3000 J (C) 992 J (D) 2122 J

4. A sound wave passing through air at NTP produces a pressure of 0.001 dyne/cm2 during a compression.
The corresponding change in temperature (given = 1.5 and assume gas to be ideal) is

(A) 8.97 × 10–4 K (B) 8.97 × 10–6 K (C) 8.97 × 10–8 K (D) none of these

5. When a system is taken from state 1 to 2 along the path 1a2 it absorbs 50 cal of heat and work done
is 20 cal. Along the path 1b2, Q = 36 cal. What is the work done along 1b2?

a 2

b1

(A) 56 cal (B) 66 cal (C) 16 cal (D) 6 cal



6. 1g mole of an ideal gas at STP is subjected to a reversible adiabatic expansion to double its volume.
Find the change in internal energy (= 1.4)

(A) 1169.5 J (B) 769.5 J (C) 1369.5 J (D) 969.5 J

7. A gram mole of a gas at 127ºC expands isothermally until its volume is doubled. Find the amount of
work done.

(A) 238 cal (B) 548 cal (C) 548 J (D) 238 J

8. Find the work required to compress adiabatically 1g of air initially at NTP to half its volume. Density

of air at NTP = 0.001129 gcm–3 and 
P

V

C
1.4

C
 .

(A) 62.64 J (B) 32.64 J (C) –32.64 J (D) –62.64 J

9. An ideal gas expands according to the law PV3/2 = constant. We conclude

(A) The adiabatic exponent at the gas K = 1.5

(B) The molar heat capacity C = C
V
 – 2R

(C) Temperature increases during the process

(D) Such a gas is not feasible

10. The ratio of work done by an ideal diatomic gas to the heat supplied by the gas in an isobaric process
is

(A) 
5

7
(B) 

3

5
(C) 

2

7
(D) 

5

3
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1. A monatomic gas is supplied heat Q very slowly keeping the pressure constant. Find the work done

by the gas.

(A) 
2

Q
5

(B) 
3

Q
5

(C) 
Q

5
(D) 

2
Q

3

2. A gas mixture consists of 2 moles of oxygen and 4 moles of argon at temperature T. Neglecting all
vibrational modes, the total internal energy of the system is

(A) 4RT (B) 15RT (C) 9RT (D) 11 RT

3. For a thermodynamic process Q = –50 calorie and W = –20 calorie. If the initial internal energy is
–30 calorie then, final internal energy will be :

(A) –100 calorie (B) –60 calorie (C) 100 calorie (D) 91.20 calorie

4. The isothermal bulk modulus of elasticity of a gas is 1.5 × 105 Nm–2. Its adiabatic bulk modulus of

elasticity will be (if = 1.4)

(A) 3 × 105 Nm–2 (B) 2.1 × 105 Nm–2 (C) 1.5 × 105 Nm–2 (D) 

5. When the temperature of a gas in a vessel is increased by 1ºC then its pressure is increased by 0.5%.
The initial temperature is

(A) 100 K (B) 200 K (C) 273 K (D) 300 K

6. The internal energy of air in a room of volume 50m3 at atmospheric pressure will be

(A) 2.5 × 107 erg (B) 2.5 × 107 joule (C) 5.25 × 107 joule (D) 1.25 × 107 joule

7. The volume of a gas is reduced to 1/4 of its initial volume adiabatically at 27ºC. The final temperature
of gas (if = 1.4) will be

(A) 27 × (4)0.4 K (B) 300 × (1.4)0.4 K (C) 100 × (4)0.4 K (D) 300× (4)0.4 K



8. One mole of an ideal gas is contained under a weightless piston of a vertical cylinder at a temperature
T. The space over the piston opens into the atmosphere. What work has to be performed in order to
increase isothermally the gas volume under the piston times by slowly rising the piston?  Neglect
friction.

9. 3 moles of an ideal monatomic gas perform a cycle shown in figure. The gas temperature T
A
 = 400K,

T
B
 = 800K, T

C
 = 2400 K, T

D
 = 1200 K. Find the work done by the gas.

C

D

B

A

T

P

10. One mole of Argon is heated using PV3/2 = constant. Find the amount of heat obtained by the process
when the temperature changes by T = –26K.
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1. In the given diagram an ideal gas changes its state from A to C via two points AC and AB.

P(Nm)
-2

5

O 2 6                               

V(m)3
A

C
B

D

15

(a) Find work done along each path

(b) The internal energy of the gas at A is 10J and the amount of heat supplied to the gas to change its
state to C through the path AC is 200J. Calculate internal energy at C .

(c) The internal energy at state B is 20J. Find the amount of heat supplied to the gas in process AB
and process BC.

2. One mole of a monatomic gas is taken through the cycle ABCA as shown in the figure. In the process
C A the gas obeys the relation

3P0

P0

P /20

O    V 3V0                                0

V

A

B

C

P

Q
C  A

 + W
C  A

 = 0

(where Q
C  A

 + is the heat supplied in the process C A and W
C  A

 is the work done by the gas
in that process) AB is an isothermal process.

(a) Find the work done and change in internal energy in each process and also find the heat exchanged
in each process.

(b) Find the average molar specific heat for processes AB and CA.



3. The shown container has all insulating surface except bottom through which heat can flow. The bottom
has area of cross-section A, thickness a and thermal conductivity k. The movable piston is insulating
and massless and no leakage is possible through it. Initially (at time t = 0) the gas (monatomic) inside
the container is at temperature T

0
 and volume V

0
. The surrounding temperature is T

s
 (> T

0
) and

pressure P
0
.

Find

(a) the temperature of the container as a function of time.

(b) the height of piston from the bottom as a function of time if initial height is h
0
.

4. S is piston of mass M which can slide inside a cylinder without friction. The walls of the cylinder is
adiabatic and the piston is diathermic and area of cross section of cylinder is A, length of the cylinder
is l

0 
initial pressure of each chamber is p

0
. Volume of each chambers are equal. Initially spring is

unstretched and has spring constant k. The spring is fixed with piston and wall of the cylinder as shown
in the figure.

S 

l0

Find out its time period when piston is given small displacement.

5. Three moles of an ideal gas P

7
C R

2
  
 

 at pressure P
0
 and temperature T

0
 is isothermally ex-

panded to twice its initial volume, it is then compressed at a constant pressure to its original volume.

(a) Sketch P-V and P-T diagram for complete process.

(b) Calculate net work done by the gas.

(c) Calculate net heat supplied to the gas during complete process.

(Write your answer in terms of gas constant = R)

6. On a P-V diagram starting from an initial state (P
0, 
V

0
) plot an adiabatic expansion to 2V

0
, an isothermal

expansion to 2V
0
 and an isobaric expansion to 2V

0
.

(a) Use this graph to determine in which process the least work in done by the system.

(b) Plot the processes in part (a) on a P-T diagram starting from (P
0
, T

0
).

7. There are two vessels, each of them containing one mole of an ideal monatomic gas. Initial volume of
each gas in each vessel is 8.3 × 10–3 m3 at 27ºC. Equal amount of heat is supplied to each vessel. In
one of the vessels, the volume of gas is doubled without change in its internal energy, whereas the
volume of gas is held constant in the other vessel. The vessels are now connected to allow free mixing
of the gas. Find the final temperature and pressure of the combined gas system.

8. Two moles of a gas (= 5/3) are initially at temperature 27ºC and occupy a volume of 20 litres. The
gas is first expanded at constant pressure until the volume is doubled. Then it is subjected to an
adiabatic change until the temperature returns to its initial value.

(a) Sketch the process on a P-V diagram.

(b) What are final volume and pressure of the gas.

(c) What is the work done by the gas.



9. The rectangular box shown in figure has a partition which can slide without friction along the length of
the box. Initially each of two chambers of the box has one mole of a monatomic ideal gas ( = 5/3) at
a pressure of P

0
, volume V

0
 and temperature T

0
. The chamber on the partition are thermally insulated.

Heat loss through lead wires of heater is negligible. The gas in the left chamber expands by pushing the
partition until the final pressure in both chambers becomes (243/32) P

0
. Determine

heater

(a) the final temperature of the gas in each chamber.
(b) the work done by the gas in the right chamber.

10. An ideal mono-atomic gas is confined in a cylinder by a spring loaded piston of cross-section
8 × 10–3 m2. Initially the gas is at 300K and occupies a volume of 2.4 × 10–3 m3 and the spring
is in its relaxed (unstretched, uncompressed) state. The gas is heated by a small electric heater until
and piston moves out slowly by 0.1m. Calculate the final temperature of the gas and the heat supplied
in joules by the heater. The force constant of the spring is 8000 N/m, atmospheric pressure is
1 × 105 N/m2. The cylinder and the piston are thermally insulated. The piston is massless and there
is no friction between the piston and the cylinder. Neglect heat loss through the lead wires of the
heater. The heat capacity of the heater coil is negligible. Assume the spring to be massless.

4. Heat–Transfer:4.  Heat–Transfer:4.  Heat–Transfer:4.  Heat–Transfer:4.  Heat–Transfer:4.  Heat–Transfer:4.  Heat–Transfer:4.  Heat–Transfer:4.  Heat–Transfer:4.  Heat–Transfer:
(A) Conduction:

Heat energy is transferred (usually through solids) from one part of the material medium to other
without transferring the material particles.

(i) Steady State : In this state heat absorption stops and temperature gradient throughout the rod be-

comes constant i.e. 
dT

dx
 constant

(ii) Before steady State : Temperature of rod at any point changes

Note:
If specific heat of any substance is zero, it can be considered always in steady state.

Ohm’s Law For Thermal Conduction in Steady State:
In steady state heat passing through a bar of length L  and cross-section A  in time t  when its ends are

at temperatures 1T  and 2 1( )T T , it is given by:

1 2( )T T
Q KA t

L


 … (i)

So rate of flow of heat will be

dQ dT
KA

dt dx
  … (ii)

A Q

L

x=0 x=L

T1 T2

The quantity ( / )dT dx  is called temperature gradient (minus sign indicates that with increase in x ,
temperature   decreases) and the constant K  depends on the nature of metal and is called coefficient
of thermal conductivity or simply thermal conductivity and is a measure of the ability of a substance to

conduct heat through it. The dimensions of coefficient of thermal conductivity are 3 1[ ]MLT T   while its

SI  units are W/mK.

Let the two ends of rod of length   is maintained at temperature 1T  and 2T



Thermal current 
1 2

Th

T TdQ

dt R




Where thermal resistance ThR
KA




lT1 T2

(a) Two rods joined

1 2

1 2

T TdQ

dt R R





A B
R1 R2

TT1 T2

(T >T )1 2

(b) Three rods joined to a common point

1 2 3

1 2 3

100 20 5
0

T T T

K A K A K A

  
  

   100ºC Tl1

l2

l3

K1

K2

K3

20ºC

5ºC

Series and Parallel Connection of Rods in Steady State:
Series Connection

1K = thermal conductivity of B

2K  = thermal conductivity of C

1 2T T
length and cross section area of both rods are same
length =   and cross section area = A

1
1

R
K A




2
2

R
K A




Thermal current 
1 2 1 2

1 2 1 2

  
   
 

T T T T T TQ
i

t R R R R

R l1, R l2, 
T1 T2

K1 K2 T
CB

 2 1 1 2( ) ( )T T R T T R  

1 2 1 1 2 2TR T R T R TR  

 1 2 1 2 2 1( )T R R T R T R  

1 2 2 1

1 2

T R T R
T

R R







1 2 1 2

1 2

T T T T

R R R

 




 1 2R R R 

Two rods together is equivalent to a single rod of thermal resistance 1 2R R

Parallel Connection

1 1 2
1

1

Q T T
i

t R

 
 



2 1 2
2

2

 
 


Q T T

i
t R



1 2i i i 

1 2
1 2

1 2

1 1
( )

T T
T T

R R R

 
   

 

R1

R2

T1
T2

K1

K2

C
B

The system of the two rods is equivalent to a single rod of thermal resistance R is given by

1 2

1 1 1

R R R
 

Illustration 13.

Three cylindrical rods ,A B  and C  of equal lengths and equal diameters are joined in series as

shown in figure. Their thermal conductivities are 2 ,K K  and 0.5K  respectively. In steady state,
if the free ends of rods A  and C  are at 100º C and 0º C respectively, calculate the temperaturee
at the two junction points. Assume negligible loss through the  curved surface. What will be the
equivalent thermal conductivity?

L

K

A100ºC

2K 0.5K

0ºC

BCAB

B C

Solution: As the rods are in series, eq A CR R R R  B  with ( / )R L KA

i.e.,
7

2 0.5 2eq

L L L L
R

KA KA KA KA
    … (i)

And hence,
(100 0) 200

(7 / 2 ) 7

dQ KA
H

dt R L KA L

 
   

Now in series, rate of flow of heat remains same, i.e., A B CH H H H   .

So for rod A ,

A

dQ dQ

dt dt
         

i.e.,
(100 )2 200

7

 
AB KA KA

L L

or, 100 (100 / 7) (600 / 7) 85.7º    AB C

And for rod C ,

C

dQ dQ

dt dt
         

i.e.,
( 0) 0.5 200

7

  
BC KA KA

L L

or, (400 / 7) 57.1º  BC C

Furthermore if eqK  is equivalent thermal conducitivity,,

7

2eq
eq

L L L L
R

K A KA

 
  [from equation (i)]

i.e., (6 / 7)eqK K .



Conduction Before Steady State:
Differential form of Ohm’s Law

dQ dT
KA

dt dx


dT

dx
 temperature gradient

dx

T T - dT

Conduction in a Section of Medium Before Steady State:

dQ1 dQ2

T1 T2

1 2( )T T

1 2dQ dQ dQ  (In steady state 0dQ  , i.e. 1 2dQ dQ )

1 2dT dT
mS dT KA dt KA dt

dx dx
  

1 2dT dTdT KA

dt mS dx dx
   
 

dT  increase in temperature of the section in time dt.

Illsturation 14:
Find temperature as a function of radius r in case of spherical shell. Inner and outer surfaces

temperature are fixed at 1  and 2 respectively. Inner and outer radius of shell are e 1r  and 2r

respectively.
Solution :

Considering a spherical shell of inner radius 1r  and outer radius 2r , maintained at temperature 1  and

2  respectively 2 1( )   .

Considering an elementary spherical shell of thickness dr at a temperature difference d . Rate of radial flow
of heat in steady state

2(4 )
dQ d

H K r
dt dr


   

or
2 2

1 1

2

4
r

r

dr K
d

r H






   

1 2
1 2

1 1 4
[ ]

K

r r H

  
     

 
…(i)

dr
r

r1

r2

1

2

Rate of flow

1 2 1 2 1 2

2 1

1 2

4 ( ) 4 ( )

( )1 1

K Kr rdQ
H

dt r r

r r

       
  

 
 

 

Considering the temperature of the layer as   at a distance r from the centre.

1 1

2

4r

r

dr K
d

r H






   



1
1

1 1 .4
[ ]

K

r r H

  
     

 
…(ii)

Using (i) and (ii), we get

1 1

1 2

1 2

1 1

1 1
r r

r r


  


   ,

1
1 1 2

1 2

1 1

( )
1 1
r r

r r


      

 .

Growth Of Ice:
Considering a layer of ice of thickness X . The air temperature is ºC  and water temperature below
the ice is 0º C.
Considering unit cross-section area of ice, if a layer of thickness dx  grows in time dt ,
Then heat given by this layer
= mass   latent heat = A.dx . L
  density of ice L  latent heat of fusion of ice.Temperature of air ºC

x

dx

Temperature of water 0ºC

If this quantity of heat is conducted upwards through the ice layer in time dt .


 0 ( )

Adx L K dt A
x

 
  

time taken 
2

1

2 2
2 1( )

2

x

x

L L
t x dx x x

K K

 
   

 

Rate of increase of thickness of the ice layer

dx K

dt Lx

  
  

.

Convection:
Heat energy is transferred (usually through liquids and gases) by mass movement of molecules from
one point to another. (Due to gravity & buoyant force).

Radiation:
Heat energy is transferred by electromagnetic waves even in absence of medium.

Absorptive power a
Absorptive power of a body is defined as the fraction of the incident radiation that is absorbed by the
body.

Energyincident
a 

Emissive power E
The emissive power denotes the energy radiated per unit area per unit time per unit solid angle along
the normal to the area.

Energyabsorbed
Absorptive power 



Emissivity 
Emissivity of a surface is the ratio of the emissive power of the surface to the emissive power of black
body at the same temperature.
Emissivity   (Emissive power of the surface)   (Emissive power of black body at the same tem-
perature)

Black body
A perfectly black body is one which absorbs completely all the radiation, of whatever wave-length,
incident on it.

Kirchhoff’s Law
It states that the ratio of the emissive power to the absorptive power for radiation of a given wave
length is the same for all bodies at the same temperature, and is equal to the emissive power of a
perfectly black body at that temperature.

Stefan’s law of radiation
The total radiant energy emitted E  per unit time by a black body of surface area A  is proportional to
the fourth power of its absolute temperature.

4E T
or, 4E AT     Stefan’s constant
For a body which is not a black body

4E AT     emissivity of the body
Using Kirchoff’s law

( )

( )

body

black body

E
a

E


or,
4

4

AT
a

AT





or, a 

Emissivity and absorptive power have the same value.
Net Loss Of Thermal Energy:

If a body of surface area A  is kept at absolute temperature T  in a surrounding of temperature 0T

0( )T T . Then energy emitted by the body per unit time
4E AT 

And energy absorbed per unit time by the body
4

0 0E AT 
Net, loss of thermal energy per unit time.

4 4
0 0( )E E E A T T      .

This is known as Stefan Boltzmann’s Law

Newton’s Law Of Cooling:
For a small temperature difference between a body and its surrounding, the rate of cooling of the body
is directly proportional to the temperature difference.
If a body of surface area A  is kept at absolute temperature T in a surrounding of temperature

0 0( )T T T . Then net loss of thermal energy per unit time.

4 4
0( )

dQ
A T T

dt
  

If the temperature difference is small



 0T T T  

4 4
0 0{( ) }A T T T      

4

4 4
0 0

0

1
T

A T T
T

        
   

4
0

0 0

1 4 higher powers of 1
  

     
 

T T
AT

T T

3
04 AT T   … (i)

Now, rate of loss of heat at temperature T
dQ dT

ms
dt dt

  … (ii)


3

0 04 ( )
dT

ms AT T T
dt

   

3
0

0

4
( )

ATdT
T T

dt ms

 
 

0( )
dT

k T T
dt

    where 3
04k AT 

0( )
dT

T T
dt

  .

Average form of Newton’s law of cooling :
If a body cools from 1T to 2T in time t

1 2 1 2
02

T T T TK
T

t ms

      

0( )
dT K

T T
dt ms

 

By solving and integrating T  (from 1T  to T) and time (0 to t). We get
/

0 1 0( ) Kt msT T T T e  

Illustration 15:
In a room where the temperature is 30ºC, a body cools from 61ºC to 59ºC in 4 minutes. Find the
time taken by the body to cool from 51ºC to 49ºC .

Solution :
Rate of cooling   difference in temperature

dT

dt


dT
K

dt
  

In first case
61 59 2dT   
60 30 30   

4dt  minutes

    
2 1

30 4 60

dT
K

dt
  
 

For second case
2dT 
50 30 20   

    
2

6
1 2060

dT
dt

K
  

  min.



Wien’s black body radiation :
At every temperature (>0K) a body radiates energy radiations of all
wavelengths.
According to Wien’s displacement law if the wavelength corresponding to

maximum energy is m

Then mT b  where b  is a constant (Wien’s constant)
T = temperature of body

T <T <T1 2 3

Intensity at a specific temp. T,  5
mI T

This is wien’s fifth power law.
 Illustration 16:

Two bodies A and B have thermal emissivities of 0.01 and 0.81 respectively. The outer surface
areas of the two bodies are same. The two bodies emit total radiant power at the same rate. The

wavelength B  corresponding to maximum spectral radiancy in the radiation from B is shifted
from the wavelength corresponding to maximum spectral radiancy in the radiation from A by
1.00 m . If the temperature of A is 5802 K calculate:

(a) The temperature of B and (b) wavelength B .

Solution : (a) According to Stefan’s law the power radiated by a body is given by – P = 4e AT

According to the given problem A BP P  with A BA A

So that 4 4
A A B Be T e T ,.   i.e.    2 40.01 (5802) 0.81( )BT 

or    (1/ 3)(5802) 1934BT K 
(b) According to Wien’s displacement law

,A A B BT T      i.e.   (5802 /1934)B A  

i.e.    3B A      and also   1B A m      (given)

so (1/ 3) 1 ,B B m        i.e.     1.5B m   .

Practice Problems  #  08Practice Problems  #  08Practice Problems  #  08Practice Problems  #  08Practice Problems  #  08Practice Problems  #  08Practice Problems  #  08Practice Problems  #  08Practice Problems  #  08
1. Three identical rods A, B and C of equal lengths and equal diameters are joined in series as shown

in figure. Their thermal conductivities are 2K, K and K/2 respectively. Calculate the temperature at
two junction points.

100ºC 0ºC

2K 0.5K

T2T1

A B C

(A) 85.7, 57.1ºC (B) 80.85, 50.3ºC (C) 77.3, 48.3ºC (D) 75.8, 49.3ºC
2. Three rods of material x and three rods of material y are connected as shown in figure. All the rods are

of identical length and cross-section. If the end A is maintained at 60º and the junction E at 10ºC, find
effective thermal resistance. Given length of each rod = l, area of cross-section = A, conductivity of
x = K and conductivity of y = 2K.

A

y

B

x

C

x

E

y

D

y

(A) 
4

3KA

l
(B) 

7

3KA

l
(C) 

4KA

3l
(D) 

7KA

3l



3. If wavelength of maximum intensity of radiation emitted by sun and moon are 0.5 × 10–6 m and 10–4m
respectively, the ratio of their temperature is
(A) 1/10 (B) 1/50 (C) 100 (D) 200

4. One end of a metal rod of length 1.0m and area of cross-section 100cm2 is maintained at 100ºC. If the
other end of the rod is maintained at 0ºC, the quantity of heat transmitted through the rod per minute
is (coefficient of thermal conductivity of material of rod = 100 Wkg–1 K–1)
(A) 3×103

 
J (B) 6×103

 
J (C) 9×103

 
J (D) 12×103

 
J

5. In a steady state, the temperature at the end A and B of 20cm long rod AB are 100ºC and 0ºC. The
temperature of a point 9 cm from A is
(A) 45ºC (B) 60ºC (C) 55ºC (D) 65ºC

6. The coefficient of thermal conductivity of copper is nine times that of steel. In the composite cylindrical
bar shown in the figure, what will be the temperature at the junction of copper and steel?

copper steel 0ºC100ºC

6cm18cm

(A) 75ºC (B) 33ºC (C) 67ºC (D) 25ºC

7. Two rods of length d
1
 and d

2
 and coefficient of thermal conductivities K

1
 and K

2
 are kept touching

each other. Both have the same area of cross-section. The equivalent of thermal conductivity is

(A) K
1
 + K

2
(B) K

1
 d

1
 + K

2
 d

2
(C) 

1 2 2 2

1 2

d K d K

d d


 (D) 

1 2

1 2 2 2

d d

(d K ) (d K )




8. The total area of the walls of a room is 137m3. An electric heater is used to maintain the temperature
inside the room at +20ºC, while the outside temperature is –10ºC. Walls are made of three layers of
different materials. The innermost layer is made of wood 2.5cm thick middle layer is made of cement
1cm thick  and outermost layer is made of bricks 25cm thick. What will be the power of electric
heater? Assume that there is no loss of heat from the roof and the floor. The coefficient of thermal
conductivity of wood, cement and brick are 0.125, 1.5 and 1 watt/mºC respectively.

(A) 9000 watt (B) 8000 watt (C) 7000 watt (D) 5000 watt

9. A cylindrical rod has temperature T
1
 and T

2
 at its ends. The rate of flow of heat is Q

1
 cals–1. If all the

linear dimensions are doulbed keeping temperature constant, then the rate of flow of heat is cals–1 Q
2

will be

(A) 4Q
1

(B) 2Q
1

(C) Q
1
/4 (D) Q

1
/2

10. Two rods of same length and material transfer a given amount of heat in 12 seconds, when they are
joined end to end. But when they are joined lengthwise, then they will transfer same heat in same
conditions in
(A) 24s (B) 3s (C) 1.5s (D) 48 s
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1. A man has a total surface area of 1.m2. Find the total rate of radiation of energy from the body.

(A) 566 J (B) 682 J (C) 732 J (D) 782 J

2. Two spheres of same material have radii 1m and 4m and temperature 4000K and 2000K respectively.

The ratio of energy radiated per second is

(A) 1 (B) 2 (C) 4 (D) none of these

3. The emissivity of a body of surface area 5cm2 and at temperature 727ºC radiating 300J of energy per

minute is

(A) 0.48 (B) 0.38 (C) 0.28 (D) 0.18



4. A body cools is 7 minutes from 60ºC to 40ºC. The temperature after next 7 minutes will be .... Given

temperature of surrounding is 10ºC.

(A) 32ºC (B) 38ºC (C) 22ºC (D) none of these

5. Bodies A and B have thermal emissivities of 0.01 and 0.81 respectively. The outer surface area of the

two bodies are same. The two bodies emit total radiant power at the same rate. Find the temperature

of B if the temperature of A is 5802 K.

(A) 1634 K (B) 1734 K (C) 1934 K (D) none of these

6. The temperature of a body falls from 40ºC to 36ºC in 5 minutes. The temperature of the body will

becomes 32ºC in

(A) less than 10 minutes (B) 10 minutes

(C) more than 10 minutes (D) none of these

7. A solid at temperature T
1
 is kept in an evacuated chamber at temperature T

2
 > T

1
. The rate of growth

of temperature is proportional to

(A) T
2
 – T

1
(B) 2 2

2 1T T (C) 3 3
2 1T T (D) 4 4

2 1T T

8. According to Newton’s law of cooling, the rate of cooling of a body is proportional to ()n where 
is the difference of temperature of the body and the surrounding and n is equal to

(A) 3 (B) 4 (C) 1 (D) 2

9. A block body at a temperature 77ºC radiates heat at a rate of 10 calcm–2 -s. The rate at which this

body would radiate heat is units of calcm–2–s at 427ºC is closest to

(A) 40 (B) 160 (C) 200 (D) 400

10. Find the heat radiated per second by a body of surface area 12cm2 kept in thermal equilibrium in a

room at temperature 20ºC. The emissivity of the surface is 0.8 and = 6 × 10–8 Wm–2 K–4.

(A) 4.2 J (B) 0.42 J (C) 0.042 J (D) 42 J
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1. Water is being boiled in flat bottom kettle placed on a stove. The area of the bottom is 3000cm2 and

the  thickness is 2mm. If the amount of steam produced is 1g/min, calculate the difference of temperature

between the inner and outer surface of the bottom. K for the material of kettle is 0.5 cal/ºC/s/cm, and

the latent heat of steam is 540 cal/gm.

2. A uniform copper bar 100cm long is insulated on sides, and has its ends exposed to the ice and steam

respectively. If there is a layer of water 0.1 mm thick at each end, calculate the temperature gradient

in the bar K
Cu

 = 1.04 and K
water

 = 0.0014 in C.G.S. units.

3. The rods of copper, brass and steel are welded together to form a Y-shaped structure. The cross-

sectional area of each rod is 4cm2. The end of copper rod is maintained at 100ºC and the ends of the

brass and steel rods at 0ºC. Assume that there is no loss of heat from the surface of the rods. The

length of rods are :

(A) What is the temperature of the junction point?

(B) What is the heat current in the copper rod ?

 K(Cu) =0.92, K (steel) = 0.12 and K(brass) = 0.26 C.G.S. units.



4. One end of a copper rod of uniform cross-section and of length 1.5 m is in contact with ice and the

other end with water. At what point along its length should a temperature of 200ºC be maintained so

that in steady state, the mass of ice melting is equal to that of steam produced in the same interval of

time? Assume that whole system is insulated from surroundings.

5. A steam pipe 1m in length with an outside diameter of 5.00cm has a uniform temperature of 100ºC.

The pipe is insulated with a 6.00 cm layer of asbestos fibre. If the room temperature is 20ºC, what is

the heat loss to room per hour per meter of pipe length? What is the temperature in the middle of the

layer of insulation? K (asbestos) = 0.19 × 10–4 cal/s/ºC/m.

6. The emissivity of tungsten is approximately 0.35. A tungsten sphere 1cm in radius is suspended within

a large evacuated enclosure whose walls are at 300K. What power input is required to maintain

the sphere at a temperature of 3000K if heat conduction along the supports is neglected?

= 5.67 × 10–8 S.I. units.

7. The rate at which the radiant energy reaches the surface of earth from the sun is about 1.4 kW/m2. The

distance from earth to the sun is about 1.5 × 1011 m, and the radius of sun is about 0.7 × 109 m.

(a) What is the rate of radiation of energy, per unit area, from the sun’s surface?

(b)  If the sun radiates as an ideal blackbody, what is the temperature of its surface?

8. Two solid copper spheres of radii r
1
 = 15 cm and r

2
 = 20cm are both at a temperature of 60ºC. If the

temperature of surroundings is 50ºC, then find :

(a) the ratio of the heat loss per second from their surfaces initially

(b) the ratio of rates of cooling initially.

9. Two identical sphere A and B are suspended in an air chamber which is maintained at a temperature of

50ºC. Find the ratio of the heat lost per sec. from the surface of the sphere if :

(a) A and B are at temperature 60ºC and 55ºC respectively.

(b) A and B are at temperature 250ºC and 200ºC respectively.

10. A body cools down from 60ºC to 55ºC in 30 seconds. Using Newton’s law of coiling, calculate the

time taken by same body to cool down from 55ºC to 50ºC. Assume that the temperature of surrounding

is 45ºC.



Solved  Example   Objective
Problem 1: During adiabatic process pressure (P) versus density () equation is

(a) P.   constant (b) P.    constant

(c) 1P .   constant (d)
1

P .   = constant

Solution : In adiabatic process
PV = constant … (1)

Density 
m

V
          or   V–1

 equation (1) can be written as P.    constant

Problem 2: Two cylinders fitted with pistons contains equal amounts of an ideal diatomic gas at 300
K. The piston of A is free to move, while that of B is held fixed. The same amount of heat is
given to the gas in each cylinder. If the rise in temperature of the gas in A is 30 K, then the
rise in temperature of gas in B is
(a) 30 K (b) 18 K
(c) 50 K (d) 42 K

Solution : In cylinder A heat is supplied at constant pressure while in cylinder B heat is supplied at constant
volume.
 (Q)

A
 = nC

P
 (T)

A
      and             (Q)

B
 = nC

V
 (T)

B

Given that (Q)
A
 = (T)

B
    

P
B A

V

C
( T) ( T)

C
  

P

V

C
(1.4)(30) 1.4

C

 
  

 
 = 42 K

Problem 3: A cylindrical tube of uniform cross-sectional area A is fitted with two air tight friction
less pistons. The pistons are connected to each other by a metallic wire. Initially the pres
sure of the gas is P

0
 and temperature is T

0
. Atmospheric pressure is also P

0
. Now the

temperature of the gas is increased to 2T
0
, the tension in the wire will be

Wire

(a) 2P
0
A (b) P

0
A

(c)
0P A

2
(d) 4P

0
A

Solution : Volume of the gas is constant V = constant
 P  T
i.e. pressure will be doubled if temperature is doubled

 P = 2P
0

PA P A0

F

Now let F be the tension in the wire. Then equilibrium of any one piston gives

F = (P – P
0
)A = (2P

0
 – P

0
)A = P

0
A



Problem 4:. Internal energy of n
1
 moles of hydrogen at temperature T is equal to the internal energy of

n
2
 moles of helium at temperature 2T. Then the ratio n

1
/n

2
 is

(a)
3

5
(b)

2

3

(c)
6

5
(d)

3

7
Solution : Internal energy of n moles of an ideal gas at temperature T is given by:

f
U nRT

2
  (f = degrees of freedom)

U
1
 = U

2

 f
1
n

1
T

1
 = f

2
n

2
T

2

 
1 2 2

2 1 1

n f T (3)(2) 6

n f T (5)(1) 5
  

Here f
2
 = degrees of freedom of He = 3 and f

1
 = degrees of freedom of  H

2
 = 5

Problem 5: If 2 moles of an ideal monoatomic gas at temperature T
0
 is mixed with 4 moles of another

ideal monoatomic gas at temperature 2T
0
, then the temperature of the mixture is

(a) 0

5
T

3
(b) 0

3
T

2

(c) 0

4
T

3
(d) 0

5
T

4
Solution : Let T be the temperature of the mixture.

Then U =U
1
 + U

2

or 1 2 1 0 2 0

f f f
(n n )RT (n )RT (n )(R)(2T )

2 2 2
  

or (2 + 4) T = 2T
0
 + 8T

0
 (n

1
 = 2, n

2
 = 4)

or 0

5
T T

3


Problem 6: In the process PV = constant, pressure (P) versus density () graph of an ideal gas is
(a) a straight line parallel to P-axis
(b) a straight line parallel to -axis
(c) a straight line passing through origin
(d) a parabola

Solution : PV = constant
 T = constant

Now 
PM

RT
 

or   P for T = constant
Hence, P- graph is a straight line passing through origin.

Problem 7: P-V diagram of an ideal gas is shown in figure. Work done by the gas in the process
ABCD is
(a) 4P

0
V

0
(b) 2P

0
V

0

(c) 3P
0
V

0
(d) P

0
V

0

P

2P0

AB

C D

V

P0

V0 2V0 3V0

Solution : W
AB

 = - P
0
V

0

W
BC

 = 0
and W

CD
 = 4P

0
V

0

W
ABCD

 = –P
0
V

0
 + 0 + 4P

0
V

0
 = 3P

0
V

0



Problem 8: Consider the two insulating sheets with thermal resistance R
1
 and R

2
 as shown in figure.

The temperature   is

(a)
1 2 1 2

1 2 1 2

R R

( )(R R )

 
   (b)

1 1 2 2

1 2

R R

R R

  


(c)
1 2 1 2

2 2
1 2

( )R R

R R

  
 (d)

1 2 2 1

1 2

R R

R R

  


R2

R1



2

1

Solution : For the two sheets

H
1
 = H

2
 (H = rate of heat transfer)

or 
1 2

1 2R R

   


Solving this we get 1 2 2 1

1 2

R R

R R

  
 



Problem 9 Six identical conducting rods are joined as shown in figure. Points A and D are main
tained at temperatures 200°C and 20°C respectively. The temperature of junction B will
be

                         A
B C D

200ºC 20ºC

(a) 120°C (b) 100°C

(c) 140°C (d) 80°C

Solution : Equivalent electrical circuit will be as shown in figure.

Temperature difference between A and D is 180°C which is equally distributed in all the rods.

Therefore, temperature difference between A and B will be 60°C or temperature of B should
be 140°C.

A
R

D
R R

200ºC 20ºC

Problem 10: Temperature of a body  is slightly more than the temperature of the surrounding 
0
. Its

rate of cooling (R) versus temperature of body () is plotted, its shape would be

(a)

R


(b)

R



(c)

R


(d)

R



Solution : According to Newton’s law of cooling rate of cooling R  temperature difference
Hence, R = K ( – 

0
)

This is an equation of a straight line.



Problem 11: One end of a conducting rod is maintained at temperature 50°C and at the other end ice is
melting at 0°C. The rate of melting of ice is doubled if
(a) the temperature is made 200°C and the area of cross-section of the rod is doubled
(b) the temperature is made 100°C and length of the rod is made four times
(c) area of cross section of rod is halved and length is doubled
(d) the temperature is made 100°C and area of cross-section of rod and length both are
doubled

Solution : Rate of melting of ice  rate of heat transfer (dQ/dt).

Further 









KA

differenceetemperatur

dt

dQ
l

or A
)differenceetemperatur(

dt

dQ

l


If temperature difference, A and l are all doubled then 
dQ

dt
 and hence, rate of melting of ice will

be doubled.

Problem 12: The ratio of specific heat of a gas at constant pressure to that at constant volume is . The
change in internal energy of a mass of gas when the volume changes from V to 2V at
constant pressure P is

(a)
R

1  (b) PV

(c)
PV

1  (d)
PV

1


 

Solution : U = nC
V
T

= f i

R
n (T T )

1

 
   

f inRT nRT

1




 

P(2V) P(V) PV

1 1


 

   

Problem 13: The figure shows two paths for the change of state of a gas from A to B. The ratio of molar
heat capacities in path 1 and path 2 is
(a) 1 (b)  1
(c) 1 (d) data insufficient

P

V

A B
1

2

Solution : Molar heat capacity 
Q

C
T





or 
U W

C
dT

  


U is same in both the paths but
W

2
  W

1

 C
2
  C

1

or C
1
/C

2
  1



Problem 14: The molar heat capacity in a process of a diatomic gas if it does a work of  
Q

4
 when a

heat of Q is supplied to it is

(a)
2

R
5

(b)
5

R
2

(c)
10

R
3

(d)
6

R
7

Solution : dU = C
V
dT = 

5
R dT

2
 
 
 

or
2(dU)

dT
5R

 …(1)

From first law of thermodynamics
dU = dQ – dW

Q
Q

4
 

3Q

4


Now molar heat capacity

dQ Q 5RQ 10
C R

2(dU) 3QdT 32
5R 4

   
 
 
 

Problem 15: Two meal rods of the same length and area of cross-section are fixed end to end between
rigid supports. The materials of the rods have Young modulii Y

1
 and Y

2
, and coefficients of

linear expansion 
1
 and 

2
. The junction between the rods does not shift if the rods are

cooled.

(a) Y
1


1
 = Y

2


2
(b) Y

1


2
 = Y

2


1

(c) Y
1

2 2
1 2 2Y   (d) 2 2

1 1 2 2Y Y  

Solution : Tension must be the same in both the rod for their junction to be in equilibrium.

Y
1
A

1
t = Y

2
A

2
t

Problem 16: When the temperature of a body increases from t to t + t, its moment of inertia increases

from I to I + I. The coefficient of linear expansion of the body is . The ratio 
I

I


 is equal

to

(a)
t

t


(b)

2 t

t



(c) t (d) 2 t

Solution : I = mr2

I + I = m[r(1 +  t)]2

or I + I = [mr2(1 + 2 t)] = I(1 + 2 t)

or I/I = 2 t.



Problem 17: In a vertical U-tube containing a liquid, the two arms are maintained at different
temperatures, t

1
 and t

2
. The liquid columns in the two arms have heights l

1
 and l

2
 respectively.

The coefficient of volume expansion of the liquid is equal to

(a)
1 2

2 1 1 2

l l

l t l t


 (b)

1 2

1 2 2 2

l l

l t l t




L2
t1

t12

L1

(c)
1 2

2 1 1 2

l l

l t l t


 (d)

1 2

1 1 2 2

l l

l t l t




Solution : Let 
0
, 

1
 and 

2
 be the densities of the liquid at temperatures 0, t

1
 and t

2
 respectively

To balance pressure, 
1
l
1
g = 

2
l
2
g

or 
0 0

1 2
1 2

l l
1 t 1 t

    
         

Problem 18: Two containers of equal volume contain the same gas at pressure p
1
 and p

2
 and absolute

temperatures T
1
 and T

2
 respectively. On joining the vessels, the gas reaches a common

pressure p and a common temperature T. The ratio p/T is equal to

(a)
1 2

1 2

p p

T T
 (b)

1 2

1 2

p p1

2 T T

 
 

 

(c)
1 2 2 1

1 2

p T p T

T T


 (d)

1 2 2 1

1 2

p T p T

T T




Solution : For a closed system, the total mass of gas or the number of moles remains constant.
p

1
V = n

1
RT

1
, p

2
V = n

2
RT

2
, p(2V) = (n

1
 + n

2
)RT

Problem 19: A horizontal cylinder has two sections of unequal cross-sections, in which two pistons
can move freely. The pistons are joined by a string. Some gas is trapped between the
pistons. If this gas is heated, the pistons will
(a) move to the left
(b) move to the right
(c) remain stationary        
(d) either (a) or (b) depending on the initial pressure of the gas

Solution : The pressure of the gas remains constant, and is equal to the atmospheric pressure (for equilibrium
of the gas pus pistons system). If the temperature of the gas is increased, its volume must
increases. For this, the pistons must move to the right.

Problem 20: A gas expands from 1 litre to 3 litres at atmospheric pressure. The work done by the gas is
about
(a) 2J (b) 200 J
(c) 300 J (d) 2  105J

Solution : AT constant pressure, work = pressure  change in volume
= 1 × 105 × 2 × 10–3 m3

= 200 J



Solved  Example   Subjective
Problem 1: One mole of an ideal gas whose pressure changes with volume as , P V where   is a

constant, is expanded so that its volume increase   times. Find the change in internal
energy and heat capacity of the gas.

Solution : Let V be the initial volume of the gas. It is expanded to a volume V. The work done in this
process is given by

2

2

VV V

V V V

V
W PdV VdV

   
      

 
 

2
2 1

2

     
V

The pressure of the gas varies with volume as  P V . So, the initial and final pressure will be

 V and  V. The change in internal energy is given by

   
2 2 2 2

2 1
1 1 1 1

f i f f i i
V

R T T P V PV V V V
dU nC dT

     
      

       
The heat exchange in this process is given by

 Q U W

2 2 2
2 2 2 1

1 1 1
1 2 2 1

                             

V V V

Here 
2

 i i
i

PV V
T

nR nR
  and  

2 2 
 f f

f

P V V
T

nR nR

Now heat capacity 
1


f

Q
C

T T

 
2

21 1
1

2 1

    
         f i

V
C

T T

   
2

2

2 2

1
1

2 11

    
           

nR V

V

1

2 1

  
    

nR

Here  n = 1

1

2 1

  
     

R
C .

Problem 2: One mole of monoatomic ideal gas is taken through the cycle shown in figure.
AB Adiabatic expansion
B C Cooling at constant volume
C   D Adiabatic compression
D   A Heating at constant volume P

V

A
B

CD
The pressure and temperature at A, B etc., are denoted by

, ; ,A A B BP T P T  etc/ respectively..



Given 1000 , (2 / 3)A B AT K P P   and  (1/ 3)C AP P . Calculate

(a) The work done by the gas in the process AB
(b) The heat lost by the gas in the process BC and

(c) Temperature DT given 2 / 5(2 /3) 0.85  and 8.31R   J/mol K.

Solution : (a) As for adiabatic change PV   constant

i.e.
RT

P
P

   
 

constant [as PV RT  ]

i.e. 1

T

P



  constant    so 

1

B B

A A

T P

T P

 
   

   
   

 where 
5

3
 

i.e.

1
1 2 / 5

2 2
1000 850

3 3B AT T K

        

   

so
[ ] 1 8.31[1000 850]

[ 1] [(5 / 3) 1]
i f

AB

R T T
W

   
 

  

i.e. (3/ 2) 8.31 150 1869.75ABW     J

(b) For ,B C V  constant so 0W 
so from first law of thermodynamics

0VQ U W C T        

or  
3

1 ( 850)
2 CQ R T

     
 

as 
3

2vC R

Now along path BC, V = constant; P T

i.e.
(1/ 3) 850

, 425
(2 /3) 2 2

C C A B
C B

B B A

P T P T
T T

P T P
      K …(ii)

So
3

1 8.31(425 850) 5297.625
2

Q       J

[Negative heat means, heat is lost by the system]

(c) D  A process is isochoric

,D D

A A

P T

P T
 i.e.

D
D A

A

T
P P

T


But C and D are on the same adiabatic

1 1

D D A D

C C C A

T P P T

T P P T

  
     

      
     

or  
1

1
1/

,A
D C

C A

P
T T

P T


  

  
 

  i.e.  

2 / 5

3/ 5

2 (1/ 3) 1000
B A

C
A

T P
T

P

     
   

i.e.

2 / 3 2 / 5
3/ 5 1 2 3

1000
2 3 1000DT
              

 i.e.  500DT  K



Problem 3: A piston can freely move inside a horizontal cylinder closed from both ends. Initially, the

piston separates the inside space of the cylinder into two equal parts each of volume 0V ,

in which an ideal gas is contained under the same pressure 0P  and at the same temperature.

What work has to be performed in order to increase isothermally the volume of one part of
gas   times  to that of the other by slowly moving the  piston ?

Fagent

x

P A2

P A1

Solution : Let the agent move as shown.
In equilibrium position,

1 agent 2P A F P A 

agent 2 1( )F P P A 

Elementary work done by the agent

agent 2 1 2 1( ) ( )F dx P P A dx P P dV     … (i)

Applying PV = constant for two parts, we have

1 0 0 0( )P V Ax PV   and 2 0 0 0( )P V Ax PV 

0 0
1

0( )

PV
P

V Ax


    and      
0 0

2
0( )

PV
P

V Ax




0 0 0 0
2 1 2 2 2 2 2

0 0

(2 ) 2PV Ax PV V
P P

V A x V V
   

 

When the volume of the left end is   times the volume of right end, we have

0 0( ) ( )V V V V   

0

1

1
V V

  
   

…(ii)

The work done by the agent is given by

0 0
2 1 2 2

00 0

2
( )

( )
  

 
V V PV V

W P P dV dV
V V

   2 2 2 2 2
0 0 0 0 0 0 0 0[ln ] [ln ln ]VPV V V PV V V V      

2

2 2 2
0 0 0 0 0

1
ln ln

1
PV V V V

                

2
2

0 0 0 0

( 1)
ln{4 /( 1) } ln

4
PV PV

           
.

Problem 4: Three moles of an ideal gas being initially at a temperature 0 273T K  were isothermally

expanded 5.0  time its initial volume and then isochorically heated so that the pressuree
in the final state became equal to that in the initial state. The total amount of heat transferred

to the gas during the process equals 80Q   KJ. Find the ratio /P VC C   for this gas.



Solution : In isothermal process, the heat transferred to the gas is given by

1 0 2 1 0ln( / ) lnQ nRT V V nRT   …(i)

2 1 1 2[ ( / ) ( / )]V V P P  

In isochroric process, 2Q U  (W = 0)

2 { /( 1)}VQ nC T n R T       …(ii)

Now
02

1

TP

P T
     or     

1
0 0

2

P
T T T

P

 
   

 

0 0 0( 1)T T T T       …(iii)

substituting the value of T  from equation (iii) in equation (ii), we get

2 0( 1)
1

R
Q n T

 
    

0 0ln ( 1)
1

R
Q nRT n T

 
      

or
0

1
ln

1

Q

nRT

  
      

or
0

1
1

ln
Q

nRT


  

 

0

1
1

ln
Q

nRT


   

 

Substituting given values, we get

3

(5 1)
1

80 10
ln5

3 8.3 273


  




 

Solving we get 1.4 

Problem 5: One end of a rod of length 20 cm is inserted in a furnace at 800 K. the sides of the rod are
covered with an insulating material and the other end emits radiation like a blackbody.
The temperature of this end is 750 K in the steady state. The temperature of the surrounding
air is 300 K. Assuming radiation to be the only important mode of energy transfer between
the surrounding and the open end of the rod, find the thermal conductivity of the rod.

Stefan constant 8 2 46.0 10 /W m K   

Solution : Quantity of heat flowing through the rod in steady state

. .dQ K A d

dt x


 …(i)

Quantity of heat radiated from the end of the rod in steady state

 4 4
0

dQ
A T T

dt
   …(ii)

From (i) and (ii)



 4 4
0

.K d
T T

x


  

8 4 4 850
6.0 10 [(7.5) (3) ] 10

0.2

K 
   

or K = 74 W/m – K.

Furnace 
800K

750K

20cm

Air temp. 
300K

Problem 6. The intensity of solar radiation, just outside the earth’s  atmosphere, is measured to be

1.4 2kW/m . If the radius of the sun 87 10 m,  while the earth-sun distance is 6150 10 km ,

then  find

(i) the intensity of solar radiation at the surface of the sun,

(ii) the temperature at the surface of the sun assuming it to be a black body,

(iii) the most probable wavelength in solar radiation,

Solution: Assuming the sun to be a “blackbody” at a temperature  0T , we can write,

W = intensity of solar radiation on the sun’s surface 4
0T  ,

Where   is the Stefan-Boltzmann constant

(i) The radiation emitted from the solar surface per unit time is spread over the surface of a
sphere having a radius equal to earth-sun distance where it is received on the earth (just outside
the atmosphere)

 2 2
04 4S SeW R I D    

where SeD  is the distance between the sun and the earth, and 0I  is the intensity outside the

earth’s atmosphere.

2

0
S

Se

R
I W

D

 
  

 

Now, 8 97 10 m, 150 10 mS SeR D   

and 3 2
0 1.4 10 W/mI   .



28
3 4

9

7 10 49
1.4 10 10

150 10 225
W W  

       

or 7 26.4 10 W/mW  

(ii) Assuming the sun to be a blackbody,

 7 4 8 4
0 06.4 10 5.67 10T T    


4 15

0

6.4
10

5.67
T  

or 4
0 0.58 10 K 5800KT   

(iii) Using Wien’s  displacement law,



3
mp 0 0.29cm-K 2.9 10 m-KT    

or
3

72.0 10
5 10 m 5000

5800mp A



     

[Note : mp  is also referred to as max ]

Problem 7. Consider a lake that is getting frozen at an atmospheric temperature of  -10 ° C. Assuming
that most of the heat that is lost comes from the latent heat of fusion released when the
water freezes. Find the rate at which the thickness of ice increases as a function of time.
Take the conductivity of ice as K and the density of ice  density of water  

Solution: The water just beneath the ice is almost at  0°C. Assume that the thickness of ice at time t  is

 x t , that the area of the lake is A
0
 and that the density of ice is  .

If the latent heat of ice is L, then

 0 0 010
0 10

LA dx KA KAdQ

dt dt x x


       

or,
10dx K

dt xL




or,
10K

xdx dt
L


 

or
2 10

2

x K
t

L
 

 constant

At 0t  , we assume that 0x   : i.e. initially the lake is not frozen.

Therefore,
2 20K

x t
L




or   20
,

K
x t t C t

L
 



where
20K

C
L


  is a constant.

Problem 8. A solid copper sphere of density  , specific heat c  and radius r  is at temperature e 1T . It

is  suspended inside a chamber whose walls are at temperature 0 K. What is the time

required for the temperature of sphere to drop to 2T ? Take the emmissivity of the sphere to

be equal to e .

Solution: The rate of loss of energy due to radiation,



4P eA T 

This rate must be equal to 
dT

mc
dt

.

Hence,
4dT

mc eA T
dt

  

Negative sign is used as temperature decreases with time. In this equation,

34

3
m r    

 
 and 24A r 


43dT e

T
dt cr


 



or,

2

1

4
0 3

Tt

T

r c dT
dt

e T


 

 

Solving this, we get 3 3
2 1

1 1

9

r c
t

e T T

 
    

.

Problem 9. As insulated container is divided into two equal portions. One portion contains an ideal
gas at pressure P and temperature T, while the other portion is a perfect vacuum. If a hole
is opened between the two portions, find the change in internal energy and temperature of
the gas.

Solution : As the system is thermally insulated,

0Q 
Further as here the gas is expanding against vacuum (surroundings), the process is called free
expansion and for it,

0W PdV   [as for vacuum P = 0]

So in accordance with first law of thermodynamics, i.e. Q U W     , we have

0 0,U       i.e.   0U    or   U  constant

So in this problem internal energy of the gas remains constant, i.e. 0U  . Now as for an ideal
gas

3
,

2
U RT      i.e.   U T

So temperature of the gas will also remain constant, i.e. 0T  .

Problem 10: A 2m long wire of resistance 4 ohm and diameter 0.64 mm is coated with plastic insulation
of thickness 0.06 mm. When a current of 5 ampere flows through the wire, find the
temperature difference across the insulation in steady state if

[ 20.16 10 / s]K cal cm C   

dr

r a
1

2

b

Solution : Considering a concentric cylindrical shell of radius r and thickness dr as shown in figure. The
radial rate of flow of heat through this shell in steady state will be



dQ d
H KA

dt dr


   Negative sign is used as with increase in r,   decreases

Now as for cylindrical shell A = 2 r L

2


  
d

H rLK
dr

or

2

1

2b

a

dr LK
d

r H





 
   

which on integration and simplification gives

 
1 22 ( )

ln

   
  

LKdQ
H

bdt
a

…(i)

Here,
2 2(5) 4 cal

24
4.2 4.2 s

I R
H


  

2 200L m  cm

1 (0.64 / 2)r  mm= 0.032 cm and 2 1 0.032 0.006 0.038R r d     cm

So
 

1 2
10 10

3824 ln 32( )
2 2.3026[log 38 log 32]


   

 

10 1024 2.3026[log 38 log 32]

3.14 0.64

 




or 1 2

55 [1.57 1.50]
( ) 2

2

 
     ºC.


