athode Ray scilloscope

CRO is a digital instrument, which works on the principle of thermionic emission i.e. emission of electron from a heated surface. It is a linear device. With the use of CRO one can measure peak to peak, rms, peak or average value of voltage and current.

Calibration of CRO

Calibration of CRO is done by applying a known quality of square signal having a frequency of 1 kHz and peak to peak magnitude of 1 mV.

☐ The rise time (t_r), of signal applied to CRO and bandwidth of CRO are related as

$$t_r \times B.W. = 0.35$$

If this condition fails then the signal is distorted at the output of CRO.

Electrostatic Deflection

$$y = \frac{1}{2} \frac{e E_y}{m v_{ox}^2} x^2$$

where, y = Displacement in y-direction; m

e = Charge of an electron; Coulomb

 E_v = Electric field intensity in Y-direction; V/m

m = Mass of electron; kg

v_{ox} = Velocity of electron when entering the fields of deflecting plates; m/s

x = Displacement in x-direction; m

Deflection

$$D = \frac{L I_d E_d}{2d E_a}$$

where, L = Distance between screen and the centre of deflecting plates; m

 $l_{\rm d}$ = Length of deflecting plates; m

E_d = Potential between deflecting plates; V

d = Distance between deflecting plates; m

E_a = Voltage of pre-accelerating anode; V

Deflection sensitivity

$$S = \frac{D}{E_d} = \frac{L I_d}{2dE_a} \text{ m/V}$$

Deflection factor

$$G = \frac{1}{S} = \frac{2d E_a}{L I_d} V/m$$

Sawtooth Generator

where, V_0 = Instantaneous voltage across the capacitor at time t; V V_{cc} = Supply voltage

Lissajous patterns

If horizontal and vertical deflecting plate are applied with sinusoidal signal, the waveform pattern appearing on the screen is called Lissajous pattern.

Application

- Used for finding the phase angle difference between the signal applied to vertical and horizontal plate.
- Used for finding the frequency ratio between vertical and horizontal plates voltage.

Phase angle (¢) between V_x and V_y	Lissajous pattern
0° or 360°	90° 180° 0°
0° < φ < 90° (or) 270° < φ < 360°	90° 180° — 0°
φ = 90° or 270°	90°
Ψ= 90 01 270	180° — 0° 270°
90° < φ < 180° (or) 180° < φ < 270°	180° - 0°
	270° 90°
φ = 180°	180° 0° 270°

Finding the phase angle ϕ from given Lissajous pattern

(a) When Lissajous pattern is in first and third quadrant

☐ First possibility

$$\phi = \sin^{-1}\left(\frac{x_1}{x_2}\right) = \sin^{-1}\left(\frac{y_1}{y_2}\right)$$

- □ Second possibility = 360° Φ
- (b) When Lissajous pattern is in second and fourth quadrant

☐ First possibility

$$\phi = 180^{\circ} - \sin^{-1}\left(\frac{x_1}{x_2}\right)$$

□ Second possibility = 360° - •

Measurement of Frequency Using Lissajous Pattern

 $\frac{f_y}{f_x} = \frac{\text{(number of intersections of the horizontal line with the curve)}}{\text{(number of intersections of the vertical line with the curve)}}$

where,

 $f_y = Frequency of signal applied to Y plates$

 f_x = Frequency of signal applied to X plates