Short Answer Type Questions

Q. 1. Find the number of terms in the A.P. 7, 10, 13, 31

[DDE-2017]

Sol. Given A.P. is 7, 10, 13, 31

Here, a = 7, I = 30 and d = 3 Using formula, I = a + (n - 1)d

$$\Rightarrow 31 - 7 = 3n - 3$$

$$\Rightarrow$$
 24 + 3 = 3n

$$\Rightarrow n = 9$$

Q. 2. In an A.P., 8, 11, 14,.. Find $s_n - s_n - 1$.

[DDE-2017]

Sol. We know that, $s_n - s_n = a_{n_i}$ Swhich is the n^{th} term of A.P.

Here, a = 8, d = 3

$$a_n = T_n = a + (n-1)d$$

$$= 8 + (n-1)3$$

$$= 3n + 5$$

Q. 3. Find the sun of given terms: -

[DDE-2017]

Sol. Given series 81 + 82 + 83 + + 89 + 90

$$T_n = I = a + (n-1)d$$

$$\therefore$$
 90 = 81 + $(n-1)$. 1

(here,
$$a = 81$$
, $I = 90$ and $d = 1$)

$$\Rightarrow n = 9$$

Now,

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$= \frac{10}{2} [2 \times 81 + (10 - 1) \times 1]$$

$$= 5[162 + 9]$$

$$= 5 \times 171 = 855$$

[DDE-2017]

Sol. Given series, 251 + 252 + 253 + + 259 + 260

We know that,
$$T_n = l = a + (n-1)d$$

Here,
$$a = 250, d = 1$$
 and $I = 260$

$$\therefore$$
 260 = 251 + (n – 1). 1

$$\Rightarrow n = 10$$

Now,

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$=\frac{10}{2}[2\times251+(10-1)1]$$

$$= 5[502 + 9]$$

$$= 5[511]$$

$$= 2555$$

Q. 5. Find the number of squares that can be formed on 8 x 8 chess board? [DDE-2017]

Sol. The number of squares in a $n \times n$ chess board will be $\sum n^2$; n varying from 1 to n.

Now,
$$\sum_{n} n^2 = 1^2 + 2^2 + 3^2 + \dots + n^2$$

$$= \frac{n(n+1)(2n+1)}{6} \qquad(i)$$

Put n=8 in eq (i), we get

$$\sum 8^2 = \frac{8 \times (8+1)(2 \times 8 \times 1)}{6} = \frac{8 \times 9 \times 17}{6} = 204$$

Q. 6. In a G.P., the 3^{rd} term is 24 and 6^{rd} term is 192. Find the 10^{th} term. [DDE-2017]

Sol. Let the first term of G.P. be a and the common ratio be r.

Given,
$$T_3 = 24$$

$$\Rightarrow ar^2 = 24 \dots (i)$$

And
$$T_6 = 192$$

$$\Rightarrow ar^5 = 192 \dots \dots (ii)$$

Dividing eq. (i) by (ii), we get

$$\frac{ar^5}{ar^2} = \frac{192}{24}$$

$$\Rightarrow r^3 = 8$$
 or $r = 2$

Putting the value of r in eq. (i), we get $a(2)^2 = 24$

$$\Rightarrow a = 6$$

$$\therefore T_{10} = ar^9$$

$$=6(2)^9$$

$$= 3072$$

Q. 7. If a, b, c are in G.P, then show that $a^2 + b^2, ab + bc, b^2 + c^2$ are also im G.P. [DDE-2017]

Sol. Given that, a, b, c are in G.P

$$\Rightarrow b^2 = ac$$

$$\Rightarrow b^2 - ac = 0$$

$$\Rightarrow (b^2 - ac)^2 = 0$$

$$\Rightarrow b^4 + a^2c^2 - 2b^2ac = 0$$

$$\Rightarrow a^2b^2 + b^2c^2 + 2b^2ac = a^2b^2 + b^2c^2 + a^2c^2 + b^4$$

(Adding $a^2b^2 + b^2c^2$ both sides)

$$\Rightarrow (ab + bc)^2 = (a^2+b^2)(b^2+c^2)$$

$$\Rightarrow a^2 + b^2$$
, $ab + bc$, $b^2 + c^2$ are in G.P.

Hence Proved

Q. 8. Write the n^{th} term of the series $\frac{3}{7.11^2} + \frac{5}{8.12^2} + \frac{7}{9.13^2} + \cdots$

[DDE-2017]

$$2n + 1$$

$$n^{th}$$
 term of 7,8,9,... is

$$6 + n$$

$$n^{th}$$
 term of 11^2 , 12^2 , 13^2 , ... is $(10+n)^2$

$$(10+n)^2$$

$$n^{th}$$
 term of the given series =
$$\frac{2n+1}{(6+n)(10+n)^2}$$

$$\frac{2n+1}{(6+n)(10+n)}$$