8. Optics

8.1. At what distance f, from a biconvex lens must we
place an object for the distance between the object and
the real image 1o be minimal?

8.2. Two biconvex lenses a and b with the same radii of
curvature are manufactured from glass samples with differ-
ent refraclive indices. How should we employ the graphs
that represent the dependence of the distance f, between
a lens and the image of an ol)ject on the distance f, be-
tween the lens and the object in order to determine thc
ratio of the refractive indices?

8.3. When taking a picture of a group of objects that are
positioned at different distances from the camera, one
must allow for the so-called depth of focus, or the limits
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of the greatest and the smallest distance between which
the image is sharp for a given focus setting of the camera.
Why is the depth of focus the greater the smaller the
aperture setling?

8.4. A pinhole camera consists of a rectangular (hollow)
glass prism whose front base and lateral faces are black-
ened and whose back base is covered with a photographic
plate. A small circular section of the front base is left

Fig. 8.4 Fig. 8.6

unblackened, and through this “pinhole” the light enters
the camera. The refractive index of the glass is n, the dis-
tance from the object to the camera is a;, and the length
of the camera is a,. Determine the ratio of the size of the
image, y,, to the size of the object, y,, assuming that y, <

a,.
8.5. Light falls on an end face of a glass rod at an angle
a. What is the smallest refractive index that the glass may
have so that the light after entering the rod cannot leave
it through a lateral face irrespective of the values of a?
8.6. At what angle to each other must two flat mirrors
be positioned for a beam of light incident on one of the
mirrors at an arbitrary angle in a plane that is perpendic-
ular to the mirror surface to be reflected from both mir-
rors in such a manner that the refracted beam is parallel
to the incident beam? Is a prism suitable for this purpose?
8.7. An electric bulb is hanging above the center of a
round table whose radius is R. At what height 2 must it
be hung for the intensity of illumination at the edge of
the table to be maximal?
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8.8. A beam of light propagates through a medium 7 and
falls onto another medium, 2, at an angle a,. After that
it propagates in medium 2 at an angle a,. The light’s
wavelength in medium 7 is A;. What wavelength has the
light in medium 2?

8.9. Two identical coherent sources of light, S, and S,,
separated by a distance a produce an interference pattern
on a screen. The wavelength of the monochromatic light

o

Fig. 8.7 Fig, 8.8 Fig. 8.9

emitted by the sources is A. Determine the maximal num-
ber of interference fringes that can be observed assuming
that the screen is infinitely large.

8.10. In an experiment that involves the observation of
interference of light via two Fresnel mirrors, the source of
light is positioned symmetrically in relation to both mir-
rors at a distance ! from the boundary between them. How
does the distance between the first interference fringes on
a screen that is positioned far from the mirrors depend on
the angle 0 between the mirrors?

8.11. When there is interference of light waves emitted
by two coherent sources, the geometric locus of points
with the same difference in the phases of the oscillations
that arrive at that point from the two sources constitutes
a surface whose sections with the plane of the drawing are
the curves ab and a’'b’ shown in the figure. What is this
surface?

8.12. A transparent dielectric is deposited in the form
of a thin film on two substrates made of different dielec-
trics. Both films form geometrically identical wedge-like
layers. The refractive index of the material of the film
is » and those of the substrates are n; and n,, with n, <<
n < n,. Suppose that two light beams of similar spec-
tral composition fall on the two systems at the same
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angle. In what respects do the resulting interference pat-
terns differ?

8.13. An air wedge is illuminated by monochromatic
light. The distance between Lhe resulting interference
fringes is a. Ilow will the distance between the interfer-
ence fringes change if the space between the plates that
constitutes the wedge is filled with a transparent liquid?
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8.14. A plano-convex lens with a radius of curvature
R, is lying on a reflecting cylindrical surface whose radi-
us of curvature is R,. The lens is illuminated from above.
What shape do the interference fringes have?

8.15. A plano-convex segment of a glass cylinder whose
curvature radius is R is lying on a flat plate. A paral-
lel beam of light falls on this segment from above. What
shape will the interference fringes have and how will the
distance between the fringes change as we move away from
the straight line along which the segment louches the
plate?

8.16. During observation of Newton rings, a small par-
ticle of unknown thickness a got between the lens and
the plate. How can one determine the wavelength of
monochromatic light incident from above on the lens
using only graphical considerations? What scales along
the vertical and horizontal axes are preferable?

8.17. On a reflecting substrate there lies a transparent
plane-parallel plate that forms an angle a with the sub-
strate. Thus a wedge-like film of air is formed. The sub-
strate has a triangular ledge whose cross section is an iso-
sceles triangle with angles 0 at its base. The plate is illu-
minated with monochromatic light from above. As-
suming that the angles o and 0 are small, sketch the posi-
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tions of the interference fringes. The size of the wavelength
is shown in the figure.

8.18. In the observation of the interference paltern in an
air wedge (Figure (a)) there sometimes appear interference
fringes with distortions caused by the presence of a
ledge or a dent on the substrate. Which of the two inter-
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ference patterns in Figures (b) and (c) corresponds to
which defect?

8.19. Light from a distant source falls on a screen with a-
round hole. At a certain distance from this screen an-
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Fig. 8.19 Fig. 8.20

other screen is placed, and it ison this screen that the dif-
fraction pattern is observed. How will the intensity of il-
lumination at the center of the second screen change if
the distance between the screens is gradually increased,

Te 99



that is, does the intensity of illumination remain consiant
or does it monotonically decrease or does it vary period-
ically?

8.20. Light from a distant monochromatic source, which
can be considered point-like, is incident on a small
round opaque disk or sphere. A screen is positioned at a
certain distance z from the object. This distance, z,
is great if compared with the diameter of the object, so
that the object covers only several Fresnel zones into
which the plane wave can be partitioned. Can it be pos-
sible that under such conditions the geometric shadow on
on the screen contains a bright spot in its center?
8.21, What maxima in the spectrum obtained through
the use of a difiraction grating correspond to the line
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with a longer wavelength and what maxima, to the line
with a shorter wavelength? What approximately is the
ratio of these wavelengths?

8.22. In a spectrum obtained through the use of a diffrac-
tion grating, a spectral line is obtained in the first order
at an angle @,. Determine the highest order of the spec-
trum in which this line can be observed by means of the
same diffraction grating if the light falls on the grating
at right angles to the grating’s surface.

8.23. Suppose the wavelength of a spectral line is mea-
sured via two diffraction gratings. The spectral maxima in
the zeroth and first orders have the shape depicted in the
figures. The scales used in both figures are the same.
Which grating has a larger period and which, a higher re-
solving power? Estimate approximately the resolving
power of each grating assuming that the natural line
width and the Doppler line width are considerably small-
er than the one obtained in experiments.

8.24. Suppose there are two diffraction gratings with spac-
ings ¢, and ¢, and a total number of lines N, and N,,
respectively. Here ¢, << ¢, and N, > N,, but the product
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¢N is the same for both gratings. Which of the two grat-
ings has a greater maximal resolving power if the same
spectral line is observed at normal incidence of light on
the gratings?
8.25. A parallel beam of light falls at an angle 6 on a flat
diffraction grating with a spacing d. Determine the fun-
damental grating condition for the wavelength A, the
maximum order of the spectrum in which the appropri-
ate spectral line can be observed, the maximum wavelength
for which a line in the spectrum can be resolved, and the
maximum dispersive power of the grating?
8.26. A phonograph record can be used as a reflecting
diffraction grating. To obtain a clear difiraction pattern,
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one must direct the light at an angle that is as close to the
grating angle to the surface of the record as possible.
Why?

8.27. What minimal value can the Brewster angle have
when light falls from air onto the surface of any dielec-
tric? )

8.28. When light is incident on a transparent dielectric
at the Brewster angle (tan o = n), the reflected I}ght
proves to be completely polarized. Is the refracted light
also completely polarized in this case?

8.29. Natural nonpolarized light is incident on a double-
refracting crystal. The normals to the ordinary wave (0)
and the extraordinary wave () are directed as shown in
the figure. Find the ratio of the wavelengths of these
waves. '

8.30. A T-shaped pipe with blackened walls is filled
with a turbid medium. Light falls onto one end of the
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pipe in the direction designated by I. As a result of scat-
tering, a fraction of the light emerges from the pipe in
the direction designated by 2. Prove that this fraction is
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Fig. 8.29 Fig. 8.30

polarized and determine the direction in which the elec-
tric field vector oscillates in this fraction.

8.31. Suppose that a ray of light falls on a flat boundary
of a double-refracting crystal. In one case the crystal has
been cut in such a manner that the wave surfaces of the
ordinary and extraordinary rays have the form depicted
in Figure (a), while in

\ / U the other case it has
(a) (b

been cut in such a man-
ner that the correspond-

Fig. 831 ing wave surfaces have

the form shown in Fig-

[ ; ure (b). How is the optic
T === 1 axis of the crystal direct-

ed in each case and is
the crystal positive or
negative?

8.32. Natural light with intensity I, passes through two
Nicol prisms whose transmission planes are at an angle
0 to each other. After the light has passed through the
second prism, it falls on a mirror, is reflected by the mir-
ror, and passes through the two Nicol prisms once more.
What is the intensity I of the light that has travelled this
path?

8.33. Polarized light passes through a transparent sub-
stance that is placed in a longitudinal magnetic field.
The result is the so-called Faraday effect (rotation of the
polarization plane in a magnetic field). After passing
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through the substance (and magnetic field), the light is
reflected by a mirror and travels in the opposite direction,
whereby it travels through the magnetic field once more
but in the opposite direction. Will the angle of rotation
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Fig. 8.33

of the polarization plane be doubled or will it cancel it-
self out?

8.34. When an electric field is applied to a capacitor that
is submerged in nitrobenzene, artificial anisotropy
emerges in the medium and the nitrobenzene behaveslike a

double-refracting crystal in which the reftactive index
of the extraordinary ray, n, is greater than that of the
ordinary wave, n,. The phenomenon, known as the Kerr
effect, can be observed via two crossed Nicol prisms.
Does the observed pattern change if the direction of the
electric field is reversed?

8.35. When a source of light moves toward the observer,
the optical Doppler effect manifests itself. The curves in
the figure depict the dependence of the perceptible fre-
quency of the light on the speed of the source of light,
with one curve corresponding to the results predicted by
classical theory and the other. to the results predicted by
the theory of relativity. The ratio of the speed of the source
to the speed of light is laid off on the horizontal axis,
while the ratio of the perceptible frequency to the fre-
quency of the light emitted by the source (i.e. of a fixed
source) is laid off on the vertical axis. Which curve cor-
responds to which theory?

8.36. To determine the directional velocity of the ions
that move in an electric field in a plasma, one commonly
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measures the wavelength of the waves emitted by the ex-
cited ions. The measurements are carried out in two direc-
tions, counter to the direction of motion of the ions and
“in pursuit” of the ions. The measured wavelengths are
A, and A,, respectively. Can we employ the classical for-
mulas of the Doppler effect or must we use the relativis-
tic formulas? The ion velocities range from 10¢ to
10° m/s.

8.37. The figure depicts the same spectral line emitted
by a gas at different temperatures. The wavelength is
laid off on the horizontal axis, while the ratio of the inten-
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sity at a given wavelength to the maximal intensity at a
given temperature is laid off on the vertical axis. Which
curve corresponds to a higher temperature?

8.38. An electric current flows through a rarefied gas in
a tube 7 (Figure (a)). The radiation emitted by the excit-
ed positive ions is analyzed in the transverse direction
by a spectrograph 2. The wavelength distribution of the
intensity of the radiation for one spectral line isshownin
Figure (b). Can analyzing this distribution yield the tem-
perature of the ions?

8.39. Two objects having the same shape and size but
different absorption coefficients (immisivities) are heat-
ed to the same temperature and placed in a vacuum.
As a result of emission of radiation the objects cool ofi.
The curves in the figure show the change in temperature
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in the process of cooling. The cooling-off time from the
moment the objects were placed in the vacuum is laid off
on the horizontal axis, while the temperature of the ob-
jectsis laid offon the vertical axis. Which curve character-
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Fig. 8.38 Fig. 8.39

izes the object with a higher absorption coefficient and
which, with a lower absorption coefficient?

8.40. An ideal gas is placed inside a closed isolated vol-
ume. The concentration of the molecules of the gas is
n. At what temperature will the volume density of the
kinetic energy of translational molecular motion in the
gas be equal to the volume density of the energy of black-
body (electromagnetic) radiation? Illustrate the result
with numerical examples.

8.41. Two separate segments of equal area are isolated
in the energy distribution of blackbody radiation. Are
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the emissive powers over the respective wavelength in-
tervals the same? What about the number of emitted pho-

tons in each segment?
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8.42. A student has sketched the curves representing the
energy distribution in the emission spectrum of black-
body radiation for two temperatures as shownin the figure.
What mistake did the student make?

8.43. Determine the volume density of the energy of
blackbody radiation over the frequency range from v,
to v,. The radiation function is laid off on the vertical
axis.

8.44. The figure shows two curves: one corresponding to
the energy distribution of blackbody radiation at a cer-
tain temperature obtained from theoretical "assumptions
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(curve 1), and the other corresponding to the energy dis-
iribution of the radiation emitted by a certain object
that has been heated to the same temperature (curve 2).
Why can we be sure that the experimental curve does not
give a true picture?

8.45. Curve I in the figure depicts the energy distribu-
tion in the emission spectrum of a black body. Curve 2
represents, in schematic form, the energy distribution in
the emission spectrum of a certain object that has been
heated to the same temperature as the black body. Curve
2 consists of three segments: on the segments ranging
from A = 0 to A, and from A, to A = oo all ordinates of
curve 2 are one-half the respective ordinates of curve I,
while on the segment from A, to A, the value of e, re-
mains constant. Sketch the distribution of the absorption
coefficient (immisivity) over the wavelengths for the ob-
ject in question.

8.46. The radiation emitted by a black body can be re-
presented either by the energy distribution over the wave-
lengths (Figure (a)) or by the energy distribution over the
frequencies (Figure (b)). In the first case the wavelength
at which the black body emits a maximum amount of ra-
diation is A,,, while in the second the frequency at which
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the black body emits maximum amount of radiation is
vm- Is it true that at a fixed temperature the quantities
A and vy, are related through the formula vy = ¢/Ay,?
8.47. Represent the volume density of the energy of
blackbody radiation in the form of a distribution function
for the number of quanta in the energy of one quantum.
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8.48. How does the volume specific heat capacity of
the vacuum depend on temperature?

8.49. According to the electromagnetic theory of light,
the light incident on a surface always exerts a pressure
on that surface equal to

p=L(1+R), (8.49.1)

where I is the intensity of the light, that is, the light
energy arriving every second at a unit area of the surface,
and R is the reflection coefficient. Can the origin of this
pressure be explained in the same manner as is done in
the kinetic theory of gases, where the pressure of a gas on
the wall of a vessel is interpreted as transfer of momentum
from each particle to the wall?

8.50. Are there any practical means by which one can
obtain a beam of parallel rays of light in the mathematic-
al sense (using the terminology of wave optics, a stream
of strictly plane waves)?
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8.51. The energy distribution function for photoelectrons
has the form shown in the figure. What determines the
maximal energy of the photoelectrons?

8.52. In the Lukirskii-Prilezhaev experiments (also con-
ducted independently by R. A. Millikan), the dependence
of the stopping potential Ug,p, that is, the potential
needed to stop the photocurrent in a photocell and the as-
sociated electric circuit, on the frequency of the light in-
cident on the surface of the photocell is depicted by straight
lines. How to find the Planck constant knowing the
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slope of these straight lines? In what respect do the para-
meters that characterize these two straight lines differ?
8.53. Two electrodes placed in a vacuum at a certain dis-
tance from each other are connected electrically by a re-
sistor. One electrode is illuminated with light from a
source whose spectrum contains radiation with a wave-
length A that satisfies the condition

he/h > p,

where p is the work function of electrons leaving Lhe me-
tal of the illuminated electrode. Will there be any current
in this circuit?

8.54. A photocathode can be illuminated by the light
from two sources, each of which emits monochromatic ra-
diation. The sources are positioned at equal distances
from the photocathode. The dependence of the photocur-
rent on the voltage between the cathode and the anode is
depicted by curve I for one source and by curve 2 for the
other. In what respect do these sources differ?
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8.55. Two photocathodes are illuminated by the light
emitted by a single source. The dependence of the photo-
current on the voltage between the cathode and the anode
is depicted by curve I for one cathode and by curve 2
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for the other? What photocathode has a higher work func-
tion?

8.56. The stopping potential applied between a photocath-
ode and the respective anode is such that the fastest
photoelectrons can fly only one-half of the distance be-
tween the cathode and the anode. Will the electrons be able
to reach the anode if the distance between the cathode and
the anode is reduced by half but the voltage is kept con-
stant?

8.57. In one case of Compton scattering a photon flies at
an angle 0 to the initial direction of the incident photons,
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and in other case it flies at an angle 6,. In which case is
the wavelength of the radiation after scattering greater,
and in which case does the electron participating in the
interaction receive a greater portion of energy?



8. Optics

8.1. If we introduce the notation I = f, 4 f, in the
lens formula

1 1 1
htETT
and perform simple manipulations, we get

o
b=tr=r -

To determine the minimum of I, we nullify the derivative

A 2h(h—=P—f
i, (h—FE

whence f, = 2F.
8.2. The lens formula that allows for the parameters
of the lens is
1,1 1 ty_ 1
(the sign of the radius of curvature is determined by the

direction from the surface and to the center of curvature).
The ratio of the principal focal lengths is

Lo  mp—t (8.2.2)

Fb na—‘i ?

where we have allowed for the fact that the radii of cur-
vature of bhoth lenses are the same. Formula (8.2.1)
can be transformed thus:

__hF
=57

On the curve representing the f, vs. f; dependence, the
value of F is determined by the position of the vertical
asymplote of each curve. However, a more exact value
can be obtained by drawing a straight line that passes
through the origin at an angle of 45° to the axes. In this
case the coordinates of the points of intersection of this
straight line with the curves yield f, = f; = 2F for both
lenses, while the ratios of these coordinates determine,
via formula (8.2.2), the ratio of ny, —1 to n, — 1.
8.3. The smaller the aperture, the lower the optical
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distortions caused by the large width of the beam of light
incident on the lenses of the objective. If the aperture is
very small, the optical properties of the camera closely re-
semble those of a pinhole camera, whose aperture, in lerms
of geometrical optics, can be as small as desired and
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whose depth of focus extends from zero to infinity.
Actually, however, diffraction imposes certain restric-
tions on this ideal case. The limiting value of the diam-
eter of the aperture, D, is determined by the wavelength
of the light and by the distance from the aperture to the
photographic plate. Theoretical considerations suggest
that D must be close to the value for which only one
Fresnel zone fits into the aperture:*

D=4V M.

For instance, at A &~ 0.5 pm and f &~ 5 cm, the diameter
of the aperture is approximately 0.6 mm. Note that in
photography the size of the aperture is characterized by a
quantity known as the aperture ratio, or the ratio of the
diameter of the aperture to the focal length. Usually the
aperture ratio is marked by a fraction whose numerator
is unity (1/4.5, 1/5.6, 1/8, 1/11). In the example we are
discussing here the aperture ratio is equal to 1/80. In
cameras the smallest aperture ratio is practically never
less than 1/16, so that diffraction effects play no role in
the present problem and need not be taken into account.

* According to Rayleigh, the sharpest focus in a pinhole camera
is achieved when the radius of the aperture is 0.95 of the
radius of the zeroth Fresnel zone.
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8.4. The solution can be found from simple trigonomet-
ric reasoning under common assumptions and approxima-
tions:
sin oy & tan o) & oy, sin a, & tan a, X Ay,
o, = n, yla, x~ oy, Yla, x o,.

Whence,

Y2 __ @3

no oamn”
8.5. A ray Lhat enters the rod at an angle «, travels in
the glass after being refracted at an angle B given by
Snell’s law:

sin p = n1sin a. (8.5.1)

The ray falls on the lateral face of the rod at an angle that
is not smaller than the critical angle. From the figure
accompanying the problem it follows that this angle is
n/2 — PB. According to the critical angle condition,

sin (/2 — B) = cos f = n"L (8.5.2)

The maximal value of p at & = n/2, according to (8.5.1),
obeys the condition

sin p = 1/n. (8.5.3)

Squaring (8.5.2) and (8.5.3) and adding the squares, we
get

1> 2/n?,
whence

n}]/ 2.

The phenomenon of light “trapping” in a glass rod is widely nsed
in fiber optics. If the attenuation of light in the glass is low, the
ray can travel over great distances. Bundles of such rods (or fibers)
form cables over which data can be transmitted with a high accuracy
and a low level of noise. Internal organs of human beings can be
illuminated with the light transmitted by such fibers, which at
present is widely used in medical practice for diagnostic purposes.

8.6. The figure accompanying the problem shows that
after reflection from the first mirror the beam changes its
direction by an angle of 2ct, while after reflection from the
second mirror the beam changes its direction by an addi-
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tional angle of 2B. For the refracted beam to travel in the
direction opposite to the direction of the incident beam,
the sum 2a 4+ 28 must be equal to m, or o -+ P = w/2.

(a) (b) (c)

Fig. 8.6

In this case the angle between the normals to the mirrors
is

0 =n — (a+ P) = /2.

T/he angle between the mirrors must also be equal to
/2.

If instead of the (wo mirrors we take a prism (see Fig-
ure (a) accompanying the answer), then a beam incident
on the base of the prism al an angle o will enter the prism
al an angle P determined by Snell’s law. For the refract-
ed beam to leave the prism in the direction opposite to
the one of the incident beam after undergoing total inter-
nal reflection from the lateral surfaces of the prism, the
beam must fall on the base of the prism (after it has been
reflected by the second lateral surface) at an angle .
Figure (a) accompanying the answer shows that the beam
travels the same path as in the case of two mirrors, where-
by the angle at the apex of the prism must be equal to
nt/2. We see that a prism may also be used to reverse a
beam. For the beam to retain its energy after traveling
through the prism practically for all anglesof incidence, the
lateral surfaces of the prism must be metalized. If three
flat mirrors are positioned at right angles, as shown in Fig-
ure (b) accompanying the answer, it can be demonstrat-
ed that the beam of light may be oriented with respect
to the first mirror (on which it is incident) in an arbitrary
manner and yet the refracted beam will always be paral-
lel to the incident one. Instead of three mirrors we can
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use a glass tetrahedron with a right trihedral angle at the
apex and identical metalized lateral surfaces in the form
of right isosceles triangles (see Figure (¢) accompanying
the answer). A beam incident on the base of the tetrahe-
dron is reflected by the metalized surfaces and leaves the
tetrahedron through the base in the direction opposite
but parallel to the one of the incident beam. An optical
device of this type is known as a corner reflector.

8.7. The intensity of illumination of a surface that is r
distant from the source and forms an angle a with the in-
cident ray is

E - % sin o, (8.7.1)

where I is the intensity of the source. At the edge of the
table, according to (8.7.1),

E Ih

B IET OO
To find the naximum of £ we must nullify the derivative:

AE __p (R24-RPP =30 (RO
dh (R24-h?)3 == {),

whence
h=R/) 2.

8.8. The ratio of the sines of the angles is equal to the
ratio of the speeds of light in the media:

sin a,/sin o, = ¢;/c,.

The ratio of the wavelengths is equal to the ratio of the
speeds of light:

}\41/}:2 = 01/02.
Therefore

__ sina,
27 sina; UV

8.9. The_optical path difference, which determines the
interference pattern, is |z, — 2z, | /A. Since |z, — z; |
cannot be greater than a, the maximal possible number of
fringes on each side from the middle of the screen (i.e.
for z, > z, and for z, <C z;) is equal to the ratio a/A, while
the total number of fringes is 2a/A. Actually the number
of fringes that can be observed is considerably lower,
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since at z,—z, == a the interference fringes must lie in the
plane in which the sources lie.

8.10. As the source of light is positioned symmetvical-
ly in relation to the mirrors, its virtual images appear at
equal distances d Irom the
source and, as the figure
accompanying the answer

o

shows, 'IT\‘»;:
d — 2l cos (0/2). !
|
The source and its virtual :
images lie at Lhe vertices |
of an isosceles triangle. The |7
distance between the vir- &

tual images is
a = 2d sin (9/2), Fig. 8.10
or a =~ 2l sin 0.

The first interference fringes on a screen that is L distant,
from the mirrors are separated by a distance of

h = AM./a,

and, hence, the smaller the value of 6, the greater the dis-
tance h.

8.11. Since equal phase differences correspond to equal
optical path differences, we can write

(25 — 2y)/A == const, or 2z, — z, = nA,

where n is an integer. A surface whose poinls possess Lhe
properly that the difference in the distances [rom any
point to two fixed points (the foci) is a constant, constLi-
tutes a hyperboloid. The section of this hyperboloid by
any plane containing these sources results in two branches
of a hyperbola. The sections of the hyperboloid by planes
that are perpendicular to the straight line which passes
through the middle of the segment connecling the sources
are also branches of hyperbolas. For this reason, the
observed interference fringes have the form of hyperbolas.
8.12. When light is reflected from the upper boundary
of each {ilm, the phase of the wave changes to the opposite
or, as it is usually said, a half-wave is lost. The light that
passes Lhrough the film is reflected by the substrate, which
in one case has a refractive index greater than that of the
film and in the other, smaller than that of the film. When
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n, > n, a new change in the phase of the reflected wave
1o the opposite one occurs, while when »; << n, the phase
ol the reflected wave is relained. For this reason, the
places on oue film where light is observed correspond to
the dark places on the other film, and vice versa.

8.13. The difference
belween neighboring in-
terference fringes in air
. is delermined by the
i relationship

| ay = ho/2 lan a,

X

o
[

while for a liquid this
relationship is
a = M2 tan a.

) Since A = Ay/n, we can

cm—— o — 3 wrile a = ay/n.
N _W }m; 8.14. Interference s
- ——1 '"’h,

caused by the difference

(0 in pathsof the light rays

X that forms in the space

between the lens and the

fN cylinder. The interference

g fringes constitule bands
&% of equal width.

Lel usintroduce a sys-
tem of coordinates. One
axis, the x axis, is direct-

Fig. 8.14 ed along Lhe gencralor
of the cylinder that
passes through the point at which the lens touches the
cylinder, while the second axis, the y axis, is al right
angles to Lhe generator discussed above (sec Figure (a)
accompanying the answer). We draw a plane thal is
perpendicular to the z axis and passes at a disltance y
from the origin. Figure (b) shows the section of the lens
by the plane (curve /) and the section of the cylinder by
the plane (curve 2). The same figure demonstrates the
seclion of the lens by a plane that is perpendicular to the
z axis and intersecls the lens along ils diameter (dashed
curve J). From Figure (b) it also follows that the gap be-
tween the lens and the cylinder is
. re y* x4 y? y?
b hy—hy == 2R, 2R, 2R, 28, ¢
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Here, as usual, we assume the following approximations
to be valid:

r=V22Rh, y= V 2R,h.

After carrying oul the appropriate (ransformations we
gel
y*

@2 1 1
Sk T 2k (T,H—) =1 (8.14.1)

If we intvoduce the notation @* == 2R and b -
2hRR,/(R, — R,), then (8.14.1) assumes the form

x2 y2
=t
The interference fringes have the shape of ellipses (sec
Figure (c) accompanying the answer) in which £ is a pa-
rameter. In rveflected light, & = (2k + 1)/A (with A& -=
0,1, 2, 3, ...) for bright bands and A& =: kA for dark.
8.15. The scction of the cylinder segmeunt by a plane
parallel to the plane of the drawing is everywhere (he
same. For this reason, all points that have the same path
difference for the ray reflected from the lower surface of
the cylinder and the ray reflected from the upper surface
of the plate lie at the same distance from the cylinder’s
generator that touches the plate, with the result that the
interference fringes are in the form of straight lines
parallel to the generator. The method of determining the
distances between the sequential fringes closely resembles
the method of determining the radii of Newton rings. The
distances from the generator that touches the plate satisfy
the same conditions as the radii of Newton rings do,
namely,

h—;”l//‘RK /cl~1

for bright bands in reflected light and dark bands in
transmitled light, and

h—V Rk

for dark bands in reflected light and bright bands in
transmitted light. As we move away from the generalor,
the distances between neighboring bands become smaller,
just as the radii of Newlon rings do.
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8.16. The width of the air gap between the lens 'an(l the
plate is the sum of the thickness of the lens section and
the particle thickness:

re

ho-hyta-== ik |-a,
where r is the radius of the ring being observed. A bright
ring whose number is & is observed al

2k-1-1 A

h———--.
2 2

Thus,

e i’iz‘_‘ M — 2Ra.

If the numbers of sequential rings are laid off on the
horizontal axis and the square of the radii of the corre-
sponding rings, on the vertical axis, we obtain a straight

line (see the figure accompanying

r the answer) whose slope is equal
| to the ratio of the difference of
| squares of radii of two neighbor-
|
|

|| ing rings to the product AR,
| that is, (. — ri_,)/AR. Knowing
Bk ko k R we can find A. Note that
Fig. 8.16 in this method there is no differ-
ence  between bright and dark
rings, and knowing the exact number of a ring is notl
necessary. For this reason, in the figure accompanying
the answer we have assigned a number % to an arbitrary
ring, while the numbers k¥ — 1 and & -+ 1 are assigned to
the neighboring rings.
8.17. To construct the interference fringes, we draw
a number of straight lines parallel to the plate in such
a way that the distances between them aloug the vertical
line are equal Lo one-hall of the wavelength. The points
at. which these straight lines intersect the substrate (in-
cluding the surface of the ledge) delermine the position
of the interference fringes of equal width. Analyzing Lhe
position of the fringes oblained here, one can establish
that from the wider side of the wedge (in the fignre accom-
panying the problem, on the right) the distance between
the fringes, or bands, is smaller (for any value of 6)
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than over the flat sections of the substrate. The distance
between the fringes from the narrow side of the wedge
(on the left) can be cither sinaller or greater than the
distance over the flat sections depending on the relation-

ship between 6 and a. For
0 > a (see Figure (a) ac- /
companying the answer), { .
) AN
(a)

0=a-+ p.

The left side of the ledge

acts as a substrate and ik
e, et wnge. 1 1T 1T T
plate, that is, a wedge. If b '
0 > 20, then P > a and
the distance between the
fringes is smaller than that
between the fringes over N
the flat section of the plate. o2~
This case is depicted in 77
Figure (b) and corresponds

to the case depicted in the Fig. 8.17

figure accompanying the

problem. But if 8 << 2a, we have f <o and Lhe {ringes above
the left side of the wedge are separated by a distance
greater than that separating the fringes over the flat
section of the plate. For 8 << & (sec Figure (c) accompa-
nying the answer), the left side of the wedge also acts
as a substrate and forms a wedge with an angle f < a
with the plate. In this case, too, the distance between
the fringes is greater than that between the fringes over
the flat section of the plate.

8.18. The interference fringes in the wedge constitute
bands of equal width. Ledges diminish, while dents in-
crease the width of the air gap where the path difierence
of rays is formed. For this reason, at the points of a ledge
the path difference is the same as at the points of the
wedge closer to the narrow part of the gap, while at the
points of a dent the difference is the same as at points
closer to the wide part of the gap. For this reason, the
interference pattern depicted in Figure (b) accompanying
the problem corresponds to a ledge, while that depicted
in Figure (c) corresponds to a dent.

8.19. The intensity of illumination at the center of the
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second screen is determined by the number of Fresnel
zones into which the section of the wave surface limited
by the hole in the first screen can be partitioned. If this
number is not large and is even, the light is practically
absent from the center, while if the number is odd, light
is observed at the center. If a is the diameter of the hole,
A is the wavelength of the incident light, and z is the
distance between the screens, the number of Fresnel
zones is determined by the expression

k = a*/4)z.

As the distance between the screens is increased, the
number of zones assumes alternately odd and even values,
and this is accompanied by an increase or a decrease
in the illumination at the center of the diffraction pattern.
Since the number of zones continuously decreases as z
gets larger and larger, the limit distance is the one at
which k& becomes equal to unity, that is,

z = a®/4h.

At adistance greater than this value, the intensity decreases
monotonically, and for z>> a*4A the intensity changes
in inverse proportion to z%, that is, just like for a point
source.

8.20. When the central Fresnel zone and several neigh-
boring zones are screened, the light intensity at the center
of the geometric shadow is exactly the same as if one-half
of the first nonscreened zones was acting. The calculation
is carried out in the same manner as when there is no
obstacle, the only difference being that the calculation
of the overall action of the Fresnel zones starts not from
the zeroth (or central) zone but from the first nonscreened
zone. Therefore, a bright spot is always observed at the
center of the screen irrespective of the distance to the
obstacle or of the wavelength of the light wave (the only
requirement is that the number of zones screened by the
obstacle be moderate).

A theoretical description of the formation of a bright spot at
the center of the geometric shadow was first carried out by Poisson,
who used it as an objection against the wave theory of light, since
he assumed that such a spot could simply not exist. But an experi-
ment carried out by Arago proved without doubt that such a spot
does indeed exist. Actually, this spot was discovered roughly a
hundred years earlier by Maraldi. Curiously enough, the spot was
later named the Poisson spot.
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8.21. The maximum condition in the spectrum of a
diffraction grating is

¢ sin ¢ = k.

Longer wavelengths correspond to larger angles. The
figure accompanying the question shows that the position
of the second-order maximum of the line A, is close to
that of the third-order maximum of the line A,. Therefore,
csin ¢ = 2\, & Ay, Whence, Ay/A, =~ 1.5.

8.22. The condition for a first-order dififraction maxi-
mum to occur is

¢ sin @, == A.

For the highest-order maximum we have ¢ sin ¢q, — kph,
whence
__ sin @py
mT" sin @

Since the value of sin ¢, cannot exceed unity,

_1
sing; °

m (8221)
If &k, contains both an integral part and a fractional
part, the latter must be discarded irrespective of its
value. For instance, if in the first order the line is observed
at an angle of 8.36°, formula (8.22.1) yields k,, =~ 6.88.
The maximal order, therefore, is k, = 6.

8.23. The angles that determine the position of the
first maximum for both gratings are the same, which means
that the gralings spacings are the same. To estimate the
resolving power, we must find the ratio of the wavelength
at the maximum of a line to the difference between this
wavelength and the wavelength corresponding to a neigh-
boring minimum. For small angles the sine function may
be replaced with the angles, so thal

Pmax ~ Amaxs @myn & Amin-

The resolving power,

§— A

xmax—‘ Amin !

is equal approximately to 25 for grating 7 and 10 for
grating 2.
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8.24. The resolving power of a graung is
§ = kN, (8.24.1)

where NV is the gencral number of lines (or grooves), and
k is the order of the spectrum. The maximal resolving
power is determined by Lhe maximum possible order of
the spectrum:

Fyax = c/A. (8.24.2)
Substituting (8.24.2) into (8.24.1) yields
6 = cN/A. (8.24.3)

Since the product ¢V is the same for both gratings and the
observed spectral lines arc the same, the resolving power
of the two gratings must also be the same. A small differ-
ence in resolving powers determined via (8.24.3) can he
caused by the fact that the exact form of (8.24.2) must be

Emax << ¢/A, (8.24.4)

whence
Oax << cV/A. (82/15)
Since only the integral parls are Laken in (8.24.4) and

(8.24.5), the values of 6.4 of the two gratings may differ
somewhat.

Fig. 8.25

8.25. The path difference between the rays from two
neighboring slits is determined, as illustrated by the
figure accompanying the answer, for direction 7 by the
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d%ﬂ'cronue between the segments AB and CD, and for
direction 2, by the difference between AB and CcD,.

Accordingly, the path diffcrences for directions 7 and 2
are

8 = d (sin 0 — sin ¢;) and &, = d (sin ¢, — sin 0),
or

\ . 0-]-¢ . O-—q
— ] cos ) o 1
0, == 2d cos ( 3 ) sin ( 5 ) ,

D7 i 0-- ¢y N ¢1—0
b, = 2d cos (—2—) sin (—2—) .

Thus, the diffraction maximum conditions can be written
thus:

. 0-|-9 . 0-q .
) — 1 . 1 e ]
2d cos (—z——) sin (——2 ) = [kh,

2d cos (q—zzﬂ) sin ( %240 ) = k..

In the first approximation we can assume that 0 4- ¢, ~
¢y, 4+ 0 =~ 20. Hence,
dceosO X (0 — ¢,) =~ kh, dcost X (9, — 0) =~ kh.
(8.25.1)
This formulas have the same form as for the case of normal
incidence of light on a grating with spacing d cos 0.
The maximum order of the spectrum in which the wave-
length A is observed is
k = d cos 6/A,
while the longest wavelength (¢ = 1) is
A = dcos 6.

The dispersive power can be conveniently expressed in
terms of the angle with respect to the direction of the
zeroth maximum, 0 -—— ¢, and ¢, — 0. 1f by ¢ we denote
these differences, which are close in absolute value, we
find that

dy k

dh ™ dcosBcosy

At angles 6 close 1o 90°, the dispersive power of the grating
may be considerably higlier than for normal incidence of
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light on the grating. However, the maximum dispersive
power is 1/A cos v, just as for normal incidence.

8.26. If we assume that the difiracted rays are reflected
in the plane of the graling just like in a mirror (see the
figure accompanying the answer), we arrive at a pattern
similar to the one obtained in the answer to Problem 8.25.

Just like in the case of oblique incidence of the rays on
the graling, the dispersive power increases with a coef-
ficient of (cos0)-1.
8.27. According to Brewster’'s law, when light is re-
flected from a dielectric, complete polarization occurs
when the tangent of the angle of incidence is equal to the
refractive index of the medi-
um reflecting the light. Since
when light propagates in air
and falls on a dielectric the
refractive index is always
greater than unity, we have
tan o > 1, or a > 45°.
Fig. 8.28 8.28. Refracted light is po-
lavized only partially. Light
that is practically completely polarized can be obtained
if one uses a stack (see the figure accompanying the answer)
of parallel plates whose surfaces arc oriented al the Brew-
ster angle to the incident light. Light becomes partially
polarized as it is refracted by the first plate, and as it
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travels from one plate to another, it hecomes more and
more polarized.
8.29. The ratio of the wavelengths is determined by the
ratio of the speeds of propagation of the two waves:
A/ho = celc,,.
At the same Llime,
CeCo = sin P, sin B,.
Hence,
A/hg = sin Be/sin Py, Ao > A,.
8.30. The figure accompanying the answer shows the

directions of the incident and scattered light and the
planes in which the oscillations of the electric field vector

b

K

Fig. 8.30

lic. In the scattered light the oscillations must occur
simultancously in plane a, which is perpendicular to
direction 7, and in plane b, which is perpendicular to
direction 2. This, obviously, may happen only if the
oscillations take place in the directions designated by
arrow 3. The blackening of the walls of the pipe, which
was mentioned in the statement of the problem, is nec-
essary so that no reflection can occur, since otherwise
various directions of propagation of the light might
become possible.

8.31. In the direction of the optic axis, the speed of
propagation of the extraordinary and ordinary waves
is the same and therefore the axis is perpendicular to the
plane tangent to both wave surfaces al the point where
the surfaces touch. In the first case (see Figure (a) accom-
panying the problem) the optic axis is parallel to the
crystal boundary, while in the other (Figure (b)) it is
perpendicular to the boundary. Since in all directions
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except the optic axis the speed of the extraordinary wave
is higher than that of the ordinary, by the common no-
menclature the crystal is negative.

8.32. After the light has passed through the first Nicol
prism, its intensity becomes /, = (1/2) I, (it is assumed
that the extraordinary wave loses no intensity when it
is reflected and when it travels through a Nicol prisin).

€, According Lo Malus’ law, after the light
. has passed through the second Nicol
ﬂ \ prisin the intensily becomes
\
N I, =1,co8*0 = (1/2) T, cos? 0.
\
\ The figure accompanying the answer
(5 _# &  shows the direction of oscillations of
the electromagnetic field vector in the
&

electromagnetic wave after the wave has
Fig. 8.32 passed through the first Nicol prism,
E;, and after the wave has passed
through the second Nicol prism, E,. In the reverse direc-
tion the clectric field vector will be retained after the
reflected wave has passed through the first Nicol prism
but will change to E, cos 0 after the wave has passed
through the second Nicol prism. Accordingly, the inten-
sity after the light has passed through the two Nicol
prisms in both directions will be

I, =1,c0s*0 = I, cos* 0 = (1/2) I, cos* 0.

8.33. The sense of rotation of the polarization plane
depends on the direction of propagation of light in relation
to the direction of the external magnetic field. For an
overwhelining majority of substances (“positive” sub-
stances), the rotation is clockwise (looking in the direction
of the ray of light) if the direction of propagation of light
corresponds with that of the external magnetic field, and
counterclockwise if the two directions are opposite. If
the directions of the light ray and the external magnetic
field coincided when the light passed from Lhe source to
the mirror and, therefore, the polarization plane rotated
clockwise, after the light is reflected by the mirror the
directions of the light ray and the external magnetic
field are in opposition and the polarization plane rotates
counterclockwise. If one views this process from the
mirror, the rotation sense coincides with the clockwise
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rotalion of the polarization plane when light passes in
the primary direclion. As a result, the two rotalions ape
added and the angle doubles.

8.34. Ib the Kerr effect, the difference of the refractive
indices of the extraordinary and ordinary waves obeys
the law

ne — ny, = kE?, (8.34.1)

where % is a conslant characterizing the medium. Since
the clectric field strength is squared in (8.34.1), the
difference n, — n, does not depend on the dircction of
the electric field. The optic axis in nitrobenzene coincides
in direction with the electric field vector. The path differ-
ence between the ordinary and extraordinary rays,

6 =1 (n, — ny) = kE?

(L is the length of the light path in the nitrobenzene), is
also independent of the direction of the electric field
veclor, whereby the optical pattern caused by the emerg-
ing eclliptical polarization will not change under reversal
of direction of electric field.
8.35. According to classical theory, when a source of
electromagnetic waves moves toward the observer, the
ratio of the perceptible frequency to the frequency of
the light emitted by a fixed source is

Vel 1

IV T

with B the ratio of the speed of the source to the speed of
light. According to the theory of relativity, this frequency
ralio does nol depend on whether the source or the observer
is considered fixed and

Vtr _ /1'{_5

Vo 1—p -
The vip-lto-ve ratio is given by the formula

RIRR V) g3

Vel

Hence, the upper curve corresponds Lo classical-theory
results, while the lower curve corresponds Lo the theory-
of-relativity results. For p < 1 the difference between
the two formulas is moderate (e.g. at § = 0.1 the difler-
ence amounts only to 0.5%).
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8.36. The ratio of the ion velocity to the speed of light,
P = vlc, in the case at hand is of the order of 10-*. For
such values of p the difference between the classical and
relativistic formulas for the Doppler effect is negligible.
If the source moves with a velocity v, the wavelength
of the light measured by the receiver is

A=Ay =0T = Ay (1 & vle).

Here A, is the wavelength of the light emitted by a fixed
source, and the plus sign corresponds to the case where
the source is moving away from the receiver, while the
minus sign corresponds to the case where the source is
moving toward the receiver. The difference in wavelengths
measured from both sides of the tube with the plasma in
which the ions move is

AN = 21, (ve),

which yields the following formula for the velocity of the
ions:
Y
U= -m C.

Since the ions have different velocities, each observed
spectral line is blurred, or broadened. The maximal
intensity corresponds to the most probable velocity,
while the extent to which the line is blurred characterizes
the velocity distribution of the directional motion of
the ions.

8.37. Since the velocities of atoms are much lower than
the speed of light, we can employ the classical formulas
for the Doppler effect. As shown in the answer to Prob-
lem 8.36, the difference in the wavelengths of the waves
emitted by two identical sources that move with veloc-
ities of Lhe same absolute value but pointing in opposite
directions in relation to the receiver constitutes

AN = 2), (Vc),

where A, is the wavelength of the wave emitted by a fixed
source, and ¢ is the speed of light. In alight-emitting gas,
the atoms move with different velocities, in accordance
with the Maxwellian distribution law. The higher the
temperature, the more extended is the distribution in
the direction of higher temperatures, therefore the higher
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the temperature, the broader the spectral line. Hence,
curve 2 corresponds to a higher temperature.

8.38. In accord with the Doppler principle, the distri-
bution in wavelengths of the intensity of the emission
lines of excited ions reflects the velocity distribution of
the ions (and hence the energy distribution of the ions,
too). However, this distribution cannot be associated
with the temperature of the gas. The fact is that the
motion of ions in the discharge plasma (which is the source
of radiation emitted in the tube) is highly anisotropic;
this anisotropy is determined by the electric field strength
in the tube. The electric field in the tube has a radial com-
ponent directed from the axis to the wall. On the axis
this component is zero; it increases as we approach the
wall. This field imparts a directional velocity to the ions.
Thus, the left half of the curve in Figure (b) (shorter
wavelengths) corresponds to the ions moving away from
the axis toward the spectrograph, while the right half
corresponds to the ions moving away from the axis in the
opposite direction.

8.39. According to Kirchhoff's law, the ratio of the total
emissivity of a heat radiator to the absorption coefficient
(immissivity) of that same radiator is the same for all
objects, constitutes a universal function of the tempera-
ture, and is equal to the total emissivity of a black body:

erlar = Er.

Hence, an object with a higher absorption coefficient has
a higher emissivity and, therefore, it loses the energy
acquired during heating at a higher rate. Curve 7 (see
the figure accompanying the problem), therefore, repre-
sents the change of temperature in cooling for the object
with the lower absorption coefficient or, in other words,
curve 2 represents the cooling off of the object with the
higher absorption coefficient.

8.40. The average kinetic energy of a molecule of the
gas in translational motion is

w=—2—kT,

where % is the Boltzmann constant. 1f the concentration
of the molecules in the gas is n, the volume density of the
energy of the molecules is

Uy = —z-nkT.
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The volume density of the energy of blackbody radiation,
according to the Stefan-Boltzmann law, is

Up —-i—oT“.
If we set uy, equal to u,, we get

T (Snke ), (8.40.1)

We will illustrate the above result with two examples.
First, suppose that the concentration of the molecules
is the same as that at S.T.P. conditions (T = 273 K,
p = 101 325 Pa). This concentration (the Loschmidt
number) 7 is equal to 2.686 X 10% m-3. Substituting into
(8.40.1) the values k£ = 1.3807 x 10-2 J/K, ¢ =
2.9979 X 10® m/s, and o = 5.670 X 10-®* W.m-2.K-4,
we [ind that

T =9.03 x 10° K.
Under these assumptions, the gas pressure is
p = nkT = 3.35 X 10® Pa = 3300 atm.

In the second example, we wish to find the concentra-
tion of the molecules of the gas if the temperature at which
the energy density of the translational motion of the
molecules is equal to the energy density of electromagnetic
radiation is to be equal to 0 °C. Equation (8.40.1) yields

n="7.42 X 104 m-3,

This concentration yields the following value for the
pressure of the gas:

p = 2.8 X 10-¢ Pa.

8.41. The emissive power over a definite wavelenglh
interval is
A2
AEp— | Expd.
A

Since the integral is the area under the curve limited
by the ordinates corresponding to the lower and upper
values, the emissive power per each interval is the same.
The energy of the quanta corresponding to greater wave-
lengths is lower, whereby even for the same emissive
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power there are more quantaof lower energy (i.e. referring
to S,).

8.42. Contrary to Wien’s displacement law, the maxi-
mum in the blackbody radiation distribution corresponds,

for a higher temperature, to a longer wavelength rather
than to a shorter wavelength.

8.43. The relationship that exists between the radiation
function and the volume radiation density is

EvT = uv'1'0/4-.

The radiant emittance over the frequency range from v,
to v, is determined by the integral

v

AE, ,— S Eyp dv,

Vi
and, hence, the volume radiation density over the same
range is

v

(%)

Auy,, = —64— Eyrp dv.

<e ——p

1

8.44. The thermal radiation emitted by a body cannot
exceed the blackbody radiation over all possible wave-
length intervals. Contrary to

this theoretical fact, the ex- Ga

perimental curve contains a 05

section that lies above the M
curve representing blackbody 03k | |l
radiation. | |

8.45. According to Kirch- | |

hoff's law, oi 'L |

e,‘/a,, = EA» 0 Ay A, A

where E, and e, are the res- Fig. 8.45

pective radiant emittance of

a black body and a given object (which is not a black
body), and a, is the absorption coefficient of the object.
Therefore, the ratio of the ordinates of curve 2 to those
of curve I yields the value of a, for each wavelength. On
the segment from A = 0 to A, the value of a; remains
constant and equal to 0.5. The same happens on the seg-
ment from A, to A = co. On the segment from A; to Ay
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the value of a, passes through a minimum, as shown in
the figure accompanying the answer.
8.46. Since

dE dE

By Bamqrr and ==
we have
dE dA ¢ dE c
Ev=g &= "wam o Er

To compare the maximal values of £, and E,, we take
the derivative

dEy  2c ¢ dE, _ dL';,
= B e = (2B )

At the maximum of E, the second term is zero while the
first is not. Thus, at the wavelength A, the frequency

e (%)

03
02

01r

0

20 22 24 26 28 30«
Fig. 8.46

does not correspond to the one at which £, is maximal.
The maximum occurs at d£,/dA negative, that is, in the
section where E, is falling off.

To find the frequency v, at which £, has its maximum,
we must take the derivative of the Planck function with
respect to v, or

2[ ( hv 1 hv3 ( hv
dE, 2nn ) 3V|exp kT) T %T eXP _T)

v [ee (57) 1]

Nullifying this derivative, we arrive at a transcendental
equation for Av/kT:

hv
hv/RT —_—) =
e ( T ) 3.

308 A



This equation can be solved graphically by constructing
two functions,

y, = e ®kT  and y, =1 — hv/3kT.

An approximate determination (via the intersection point
of the two curves) yields a value of 2.82 for hv,/kT.
A more exact calculation yields

hvi/kT = 2.8214,
or

hvp = 3.896 X 10-2 T. (8.46.1)

From (8.46.1) it follows that Wien’s displacement law
can be written in the form

vm = 9.879 X 101 T,
The frequency vy, corresponds to the wavelength (we de-
note it by A (vp))
A(vp) = 5.10 X 102 T-1,
Thus,
A (v)Am = 1.760.

8.47. The volume densily of the energy of blackbody
radialion over the frequency range from v to v -+ dv
is determined from the Planck formula

8mhv3 1
du =—3;
c hv
exf’( kT )'1

The energy of each quantum in this range is Av. Thus, the
distribution function for the number of quanta over the
energy of one quantum has the form

dv.

dhv — c2m8 exp [hv/(kT)]—1 *

Introducing the dimensionless parameter o = hv/kT,
we can represent (8.47.1) in the form

dn 8rti3 a?
na=—d7=-c37' T3 e°‘__1 . (8.47.2)
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o=

The total “concentration” of the quanta can be oblained
by integrating (8.47.2) with respect to a from zero to
infinity, and the result is

n =

Bk? g S o de (8.47.3)

c3h3 e®—1

The integral in (8.47.3) can be reduced to tabulated func-
tions (it can also be evaluated by expanding it in a power

series). The value of the integral is 2.404, with the result
that

n— SX2ZAVATES gy 9 (198 v 107 T3.

o313

In relative units of (1/r) dn/da, the energy distribulion
function for the quanta is presented in Figure (a).

a
3

!

ol

M (s)
05

04

Tig. 8.47

Since the total energy density of blackbody radiation
energy is

" "—f T4 .= 7.57 % 10716 T4

(o is the constant in the Stefau-Boltzmann law), knowing
the total number of quanta (see formula (8.47.3)) we can
determine the average energy of a single quantum:

hv:iv :% X 10737 = 3.73 ~ 107237 === 2.70kT.

The distribution function given by (8.47.2) enables finding
the energy of the “most probable” (uantum, that is, the
quantum whose energy corresponds Lo the maximum in
the distribution function. To this end one must nullify
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the derivative dng/da. This leads to the transcendental
equation

(2 — a)ex = 2.

An approximate graphical solution (Figure (b)) yields
2 = 1.6. A more exact value is a = 1.594. Hence,

hvy = 1.594kT,

In the answer to Problem 8.46 it was shown that the
energy of the quantum corresponding to the maximum
ol the function £ is hvy, = 2.8214kT. Wien’s displace-
ment law can then be used to determine the cnergy of the
quantum corresponding to the maximum of the function:

7 (M) =S T - 6.855KT .

Note that the average kinetic energy per one degree of
freedom of an ideal gas is w = 0.5kT.

8.48. At first glance it appears that the question is
meaningless. Just think, how can one heat something
that does not exist? Actually, however, space is always
fitled with electromagnetic radiation, whose energy is
determined by the Stefan-Boltzmann law:

u—29 74, (8.48.1)

If we imagine a region in space bounded by a shell that
radiation cannot penetrate cither from the outside or
from within (and inside the shell a perfect vacuum is
maintained), then the electromagnetic radiation inside
the shell must be in thermodynamic cquilibrium with
the shell. To raise the temperature of the shell. we must
supply an amount of heat determined not only by the
heat capacity of the shell but also by the neccessary in-
crease in the density of energy of the electromagnetic
radialion inside the shell. If we define the volume specific
heat capacily as
1 dQ _ du
Cvol = qr T ar

and use formula (8.48.1) to find the derivative. we get
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8.49. If the intensity of the light is I, the number of
photons of monochromatic light incident every second
on a surface of unit area is

N = I/hv.

The momentum of each photon is Av/c. When hitting the
surface, a photon transfers a momentum hv/c to the surface
if it is totally absorbed or a momentum 2hv/c if it is
totally reflected. The pressure exerted on the surface is
equal to the sum of all momenta transferred to the surface .
per unit time. In the case of absorption,

If a fraction of the photons are absorbed and the rest are
reflected, the latter process being characterized by a
reflection coefficient R, then the
pressure exerted by the light on
the surface is

p=L(+R).

% This formula coincides with (8.49.1),

which was obtained on the basis
of the electromagnetic theory of

light.
8.50. Let us assume that such

radiation has been obtained and

L

'I is directed onto a mirror that is a

Fig. 8.50 paraboloid of revolution, with the

rays of light being strictly parallel

to the axis of the paraboloid (see the figure accompanying
the answer). Since planes that are perpendicular to the
rays are wave surfaces, all points in a single plane are
in the same phase of oscillation (irrespective of the nature
of the oscillation). All rays parallel to the axis converge
(after being reflected) at a geometric point that is the
focus of the paraboloid. The geometrical properties of
a parabola imply that the sum of distances from any
point in a plane that is perpendicular to the axis to the
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parabola and from the parabola to the focus is a constant.
This means that the oscillations that arrive at the focus
from all points in a wave surface are in phase. Hence, all
radiation that travels to the paraboloid will be concen-
trated at a single point and the volume energy density
of the radiation will become infinite at that point. This
would make it possible to obtain (theoretically) infinite
local temperatures at a finite temperature of the radiation
source that provides the flow of plane waves.

The picture can be reversed, that is, we may ask our-

selves: what requirements must a source meet for it to
produce a stream of plane waves? Taking into account
the reversibility of light rays, we conclude that such
a source must be concentrated at a geometric point. At
present quantum electronics can produce radiation with
extremely low angular divergence, something on the
order of 102 or even 10~3 of one second of the arc and,
respectively, with colossal local power outputs. But even
in this case the rays in such radiation cannot be con-
sidered strictly parallel.
8.51. The photon energy transferred to an electron in the
metal is used to overcome the potential barrier at the
boundary of the metal (the work function P) and part
of it is lost inside the metal. In addition, one must bear
in mind (hat not only the electrons that occupy levels
Iving near the Fermi level participate in the photoeffect.
In addition to these, there are electrons that move some-
what slower and, hence, require for their liberation ener-
gies greater than the external work function. Therefore,
Einstein’s equation can be written in the form

h =44 P+ W,

where A is the term characterizing the energy losses
inside the metal and the additional energy necessary for
the electrons lying below the Fermi level to become
liberated. The photoelectrons that escape from the surface
of the metal have the maximal energy (4 =: 0); the initial
energy of such electrons corresponds to the Fermi level:

Wy = hv — P.
8.52. According to Einstein's equation,
hv = P + mup/2,
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where v, is the maximal energy of the photoelectrons,
and P is the work function of electrons ejected by the
cathode. To stop the photoelectron current, we must
apply a stopping potential no smaller than Ustop, Which
is determined from the equation

mum/2 = eUgyop,

where e is the clectron charge. Thus,
hv = P + eUgqop.

For a known value of e, the slope of the straight lines,
dUgyop/dv == hle, determines the Planck constant. The
straight lines are different because they correspond to
cathodes with different work functions. The work function
can be determined cither by the point of intersection of
a straight line (for a particular cathode) with the hori-
zontal axis,

P = hv,

(with v, the photoelectric threshold), or by the point of
intersection of the straight line with the vertical axis,
P = —‘EUsmpO'

8.53. According to the hypothesis, the illuminated elec-
trode emitls photoelectrons whose maximal energy is
Wy = he/lh — P,

which makes it possible to think of the system as an emf
source, with the maximal value of the emf heing

& = W,e. (8.53.1)

This source can generate a current in the circuit; the cur-
rent. is determined by the intensity of illumination of the
electrode but cannot exceed a value of

I, = &R.
At the same time, the current cannot exceed the value
I = Ne,

where &V is the number of electrons ejected by the cathode
per unit time due to illumination of the cathode with
light. Since according to (8.53.1) the emf{ is constant and
so is the value of R, the interclectrode gap may be con-
sidered as a resistance ry,, whose value is the smaller
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the greater the intensity of the light. In darkness this
resistance is infinite. Bearing all this in mind, we can
write

I =&/(R + rya0).

8.54. The stopping potential difference, that is the vol-
tage at which the photocurrent ceases, is the same for
both cases. This potential difference determines the
maximal photoelectron energy and equals the difference
between the photon energy and the work function; hence,
the emission frequency for the two sources is the same,
and the sources differ only in the intensity of the radi-
ation they emit.

8.55. According to Einstein’s formula, the work func-
tion is equal to the difference between the photon encrgy
and the maximal kinetic energy of the photoelectrons:

P = hv — m2/2.

The higher the maximal energy of the photoelectrons,
which energy is equal to the maximal stopping potential,
the lower the work function. In the case at hand, the
cathode whose current-voltage characteristic is repre-
sented by curve 2 has a higher work function.

8.56. The point that an electron can reach thanks to
their initial kinetic energy is determined only by the
value of the stopping potential difference. [rrespective
of the distance between the electrodes, the point is always
at the middle of the interelectrode gap, and only such
a distance can the fastest electrons leaving the cathode
cover.

8.57. In Compton scattering, the photon wavelength
changes by

h
A}\,:m—ec('l — CO0S O).

We see that in the case of angle 0, the wavelength increases
by a larger quantity. Hence, hv, << hv,. As a result of
scattering, the photon transfers a fraction of its energy
to the electron, and the energy that the electron receives
is the greater, the smaller the cnergy of the pholon after
scattering, and hence the greater the value of 0 is.
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