Chapter : 16. DEFINITE INTEGRALS

Exercise : 16A

Question: 1

Evaluate:

Solution:

242 5

Evaluation:

$$\int_{1}^{3} x^{4} dx = \left[\frac{x^{5}}{5}\right]_{1}^{3} x^{4} dx = \left[\frac{x^{5}}{5}\right]_{1}^{3}$$
$$= \frac{\frac{243 - 1}{5}}{\frac{242}{5}}$$

Question: 2

Evaluate:

Solution:

14 3

Evaluation:

$$\int_{1}^{4} \sqrt{x} dx = \left[\frac{2}{3}x^{\frac{3}{2}}\right]$$
$$= \frac{2}{3} \left[4^{\frac{3}{2}} - 1\right]$$
$$= \frac{14}{3}$$

Question: 3

Evaluate:

Solution:

15 64

Evaluation:

$$\int_{1}^{2} x^{-5} dx = \left[\frac{x^{-4}}{-4}\right]$$
$$= \frac{2^{-4}}{-4} - \frac{1}{-4}$$
$$= \frac{16 - 1}{64}$$
$$= \frac{15}{64}$$

Question: 4

Evaluate:

Solution:

512 7

Evaluation:

$$\int_{0}^{16} x^{\frac{3}{4}} dx = \left[\frac{4}{7}x^{\frac{7}{4}}\right]$$
$$= \frac{4}{7} \left[16^{\frac{7}{4}} - 1\right]$$
$$= \frac{512}{7}$$

Question: 5

Evaluate:

Solution:

-log4

Evaluation:

$$\int_{-4}^{-1} \frac{\mathrm{dx}}{\mathrm{x}} = -[\log x]$$

=[log(-1)-log(-4)]

=-[log(-4)-log(-1)]

$$= -\left[log\left(\frac{-4}{-1}\right)\right]$$

=-log 4

Question: 6

Evaluate:

Solution:

2

Evaluation:

$$\int_{1}^{4} \frac{\mathrm{dx}}{\sqrt{x}} = \left[2\sqrt{x}\right]$$

=[2√4-2]

=[4-2]

=2

Question: 7

Evaluate:

Solution:

3 2

Evaluation:

 $\int_0^1 \frac{\mathrm{d}x}{\sqrt[3]{x}} = \left[\frac{3}{2}x^{\frac{2}{3}}\right]$

$$= \left[\frac{3}{2}1^{\frac{4}{3}} - 0\right]$$
$$= \frac{3}{2}$$

Question: 8

Evaluate:

Solution:

3

Evaluation:

$$\int_{1}^{8} \frac{\mathrm{dx}}{x^{\frac{2}{3}}} = \left[\frac{3}{1}x^{\frac{1}{3}}\right]$$
$$= \left[3(8)^{\frac{1}{3}} - 3(1)^{\frac{1}{3}}\right]$$

=[6-3]

=3

Question: 9

Evaluate:

Solution:

6

Evaluation:

$$\int_{2}^{4} 3dx = 3[x]$$
$$= 3[4-2]$$

=6

Question: 10

Evaluate:

Solution:

$$\frac{\pi}{4}$$

Evaluation:

$$\int_0^1 \frac{dx}{1+x^2} = [\tan^{-1} x]$$

=[tan⁻¹ 1-tan⁻¹ 0]

 $=\pi/4$

Question: 11

Evaluate:

Solution:

 $\frac{\pi}{2}$

$$\int_0^\infty \frac{\mathrm{d}x}{1+x^2} = [\tan^{-1}x]$$

=[tan⁻¹ ∞ -tan⁻¹ 0]

=π/2

Question: 12

Evaluate:

Solution:

 $\frac{\pi}{2}$

Evaluation:

$$\int_0^1 \frac{\mathrm{d}x}{\sqrt{1-x^2}} = [\sin^{-1}x]$$

=[sin⁻¹ 1-sin⁻¹ 0]

$$=\frac{\pi}{2}$$

Question: 13

Evaluate:

Solution:

$$\frac{1}{\sqrt{3}}$$

Evaluation:

$$\int_{0}^{\frac{\pi}{6}} \sec^{2}x \, dx = [\tan x]$$
$$= \left[\tan\left(\frac{\pi}{6}\right) - \tan 0 \right]$$
$$= \frac{1}{\sqrt{3}}$$

Question: 14

Evaluate:

Solution:

-2

Evaluation:

$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \operatorname{cosec^2 xdx} = \left[-\cot x\right]$$
$$= \left[-\cot \left(\frac{\pi}{4}\right) + \cot \left(-\frac{\pi}{4}\right)\right]$$
$$= \left[-\cot \left(\frac{\pi}{4}\right) - \cot \left(\frac{\pi}{4}\right)\right]$$
$$= -2$$

Question: 15

Evaluate:

$$\left(1 - \frac{\pi}{4}\right)$$

Evaluation:

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot^2 x dx = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} (\csc^2 x - 1) dx$$
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} (\csc^2 x - 1) dx = [-\cot x - x]$$
$$= \left[-\cot\left(\frac{\pi}{2}\right) - \frac{\pi}{2} + \cot\left(\frac{\pi}{4}\right) + \frac{\pi}{4} \right]$$
$$= \left[0 - \frac{\pi}{4} + 1 \right]$$
$$= \left[1 - \frac{\pi}{4} \right]$$

Question: 16

Evaluate:

Solution:

 $\left(1-\frac{\pi}{4}\right)$

Evaluation:

$$\int_{0}^{\frac{\pi}{4}} \tan^{2}x dx = \int_{0}^{\frac{\pi}{4}} (\sec^{2}x - 1) dx$$
$$\int_{0}^{\frac{\pi}{4}} (\sec^{2}x - 1) dx = [\tan x - x]$$
$$= \left[\tan\left(\frac{\pi}{4}\right) - \frac{\pi}{4} - \tan(0) - 0 \right]$$
$$= \left[1 - \frac{\pi}{4} \right]$$

Question: 17

Evaluate:

Solution:

 $\frac{\pi}{4}$

Evaluation:

$$\int_{0}^{\frac{\pi}{2}} \sin^{2}x dx = \int_{0}^{\frac{\pi}{2}} \frac{1}{2} (1 - \cos 2x) dx$$
$$= \frac{1}{2} \left[x - \frac{\sin 2x}{2} \right]$$
$$= \frac{1}{2} \left[\frac{\pi}{2} - \frac{\sin \pi}{2} - 0 + \frac{\sin 0}{2} \right]$$
$$= \frac{\pi}{4}$$

Question: 18

Evaluate:

Solution:

$$\left(\frac{\pi}{8}+\frac{1}{4}\right)$$

Evaluation:

$$\int_{0}^{\frac{\pi}{4}} \cos^{2}x dx = \int_{0}^{\frac{\pi}{2}} \frac{1}{2} (1 + \cos 2x) dx$$
$$= \frac{1}{2} \left[x + \frac{\sin 2x}{2} \right]$$
$$= \frac{1}{2} \left[\frac{\pi}{4} + \frac{\sin (\frac{\pi}{2})}{2} - 0 - \frac{\sin 0}{2} \right]$$
$$= \frac{\pi}{8} + \frac{1}{4}$$

Question: 19

Evaluate:

Solution:

log 2

Evaluation:

$$\int_{0}^{\frac{\pi}{3}} tanx dx = log|secx|$$
$$= log \left|sec\left(\frac{\pi}{3}\right)\right| - ln|cos0|$$
$$= log|2|-log|1|$$
$$= log2$$

Question: 20

Evaluate:

Solution:

$$\log\left(\sqrt{2}-1\right) + \log\left(2+\sqrt{3}\right)$$

Evaluation:

$$\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} cosecxdx = -\log|cosecx + cotx|$$
$$= -\log\left|cosec\left(\frac{\pi}{4}\right) + \cot\left(\frac{\pi}{4}\right)\right| + \log|cosec\left(\frac{\pi}{6}\right) + \cot\left(\frac{\pi}{6}\right)|$$
$$= -\log|\sqrt{2} + 1| + \log|2 + \sqrt{3}|$$

Question: 21

Evaluate:

$$\frac{3\sqrt{3}}{8}$$

Evaluation:

$$\int_{0}^{\frac{\pi}{3}} \cos^{3}x \, dx = \frac{1}{4} \int_{0}^{\frac{\pi}{3}} (3\cos x + \cos 3x) dx$$
$$\frac{1}{4} \int_{0}^{\frac{\pi}{3}} (3\cos x - \cos 3x) dx = \frac{1}{4} \left[3\sin x + \frac{\sin 3x}{3} \right]$$
$$= \frac{1}{4} \left[3\sin \left(\frac{\pi}{3}\right) + \frac{\sin \pi}{3} \right] - \frac{1}{4} \left[3\sin 0 + \frac{\sin 0}{3} \right]$$
$$= \frac{1}{4} \left[\frac{3\sqrt{3}}{2} \right]$$
$$= \frac{3\sqrt{3}}{8}$$

Question: 22

Evaluate:

Solution:

 $\frac{2}{3}$

Evaluation:

$$\int_{0}^{\frac{\pi}{2}} \sin^{3}x \, dx = \frac{1}{4} \int_{0}^{\frac{\pi}{2}} (3\sin x - \sin 3x) dx$$
$$\frac{1}{4} \int_{0}^{\frac{\pi}{2}} (3\sin x - \sin 3x) dx = \frac{1}{4} \left[-3\cos x + \frac{\cos 3x}{3} \right]$$
$$= \frac{1}{4} \left[-3\cos \left(\frac{\pi}{2}\right) + \frac{\cos \left(\frac{3\pi}{2}\right)}{3} \right] - \frac{1}{4} \left[-3\cos 0 + \frac{\cos 0}{3} \right]$$
$$= \frac{1}{4} \left[\frac{9-1}{3} \right]$$
$$= \frac{2}{3}$$

Question: 23

Evaluate:

Solution:

$$(4-3\sqrt{2})$$

Evaluation:

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{(1-3\cos x)}{\sin^2 x} dx = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} (\csc^2(x) - 3\csc(x)\cot(x)) dx$$
$$= \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} (\csc^2(x) - 3\csc(x)\cot(x)) dx$$

Question: 24

Evaluate:

Evaluation:

$$\int_{0}^{\frac{\pi}{4}} \sqrt{1 + \cos 2x} \, dx = \int_{0}^{\frac{\pi}{4}} \sqrt{2\cos^2 x} dx$$
$$= \sqrt{2} [\sin x]$$
$$= \sqrt{2} \left[\sin \left(\frac{\pi}{4}\right) - \sin 0 \right]$$
$$= \sqrt{2} \left[\frac{1}{\sqrt{2}} \right]$$

=1

Question: 25

Evaluate:

Solution:

$$\left(\sqrt{2}-1\right)$$

Evaluation:

$$\int_{0}^{\frac{\pi}{4}} \sqrt{1 - \sin 2x} \, dx = \int_{0}^{\frac{\pi}{4}} \sqrt{\sin^2 x + \cos^2 x - 2\sin x \cos x} \, dx$$
$$= \int_{0}^{\frac{\pi}{4}} (\cos x - \sin x) \, dx$$
$$= [\sin x + \cos x]$$

$$= \left[\cos\left(\frac{\pi}{4}\right) + \sin\left(\frac{\pi}{4}\right) - \cos 0 - \sin 0 \right]$$
$$= \left[+ \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} - 1 \right]$$
$$= \left[\sqrt{2} - 1 \right]$$

Question: 26

Evaluate:

Solution:

2

Evaluation:

$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{dx}{1+\sin x} = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\sec^2\left(\frac{x}{2}\right)}{\left(\tan^2\left(\frac{x}{2}\right)+1\right)^2} dx$$

Let $u = \left(\tan\left(\frac{x}{2}\right)+1\right)$
 $dx = \frac{2}{\sec^2\left(\frac{x}{2}\right)} du$
 $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{dx}{1+\sin x} = 2 \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{u^2} du$
 $= -\frac{2}{u}$

$$=-\frac{2}{\tan\left(\frac{x}{2}\right)+1}$$

=2

Question: 27

Evaluate:

Solution:

 $\frac{1}{2}$

Evaluation:

$$\int_{0}^{\frac{\pi}{4}} \frac{dx}{1+\cos 2x} = \int_{0}^{\frac{\pi}{4}} \frac{dx}{2\cos^{2}x}$$
$$\int_{0}^{\frac{\pi}{4}} \frac{dx}{2\cos^{2}x} = \int_{0}^{\frac{\pi}{4}} \frac{1}{2} \sec^{2}x dx$$
$$\int_{0}^{\frac{\pi}{4}} \frac{1}{2} \sec^{2}x dx = \frac{1}{2} [tanx]$$
$$= \frac{1}{2} [tan\left(\frac{\pi}{4}\right) - tan0]$$
$$= \frac{1}{2} [1]$$
$$= \frac{1}{2}$$

Question: 28

Evaluate:

Solution:

 $\frac{1}{2}$

Evaluation:

$$\begin{split} &\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{dx}{1 - \cos 2x} = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{dx}{2\sin^2 x} \\ &\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{dx}{2\sin^2 x} = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{1}{2} \csc^2 x dx \\ &\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{1}{2} \csc^2 x dx = \frac{1}{2} [\cot x] \\ &= \frac{1}{2} [\cot(\frac{\pi}{4}) - \cot 0] \\ &= \frac{1}{2} [1] \\ &= \frac{1}{2} \end{split}$$

Question: 29

Evaluate:

Solution:

$$\frac{3}{5\sqrt{2}}$$

Evaluation:

$$\int_{0}^{\frac{\pi}{4}} \sin 2x \sin 3x \, dx = \frac{1}{2} \int_{0}^{\frac{\pi}{4}} (\cos x - \cos 5x) \, dx$$
$$= \frac{1}{2} \int_{0}^{\frac{\pi}{4}} (\cos x - \cos 5x) \, dx$$
$$= \frac{1}{2} \left[\sin x - \frac{\sin 5x}{5} \right]$$
$$= \frac{1}{2} \left[\sin \left(\frac{\pi}{4}\right) - \frac{\sin \left(\frac{5\pi}{4}\right)}{5} \right] - \frac{1}{2} \left[\sin(0) - \frac{\sin(0)}{5} \right]$$
$$= \frac{1}{2} \left[\frac{1}{\sqrt{2}} + \frac{1}{5\sqrt{2}} \right]$$
$$= \frac{3}{5\sqrt{2}}$$

Question: 30

Evaluate:

Solution:

$$\frac{5}{12}$$

Evaluation:

$$\int_{0}^{\frac{\pi}{6}} \cos x \cos 2x \, dx = \frac{1}{2} \int_{0}^{\frac{\pi}{6}} (\cos 3x + \cos x) \, dx$$
$$= \frac{1}{2} \left[\frac{\sin 3x}{3} + \sin x \right]$$
$$= \frac{1}{2} \left[\frac{\sin \left(\frac{\pi}{2}\right)}{3} + \sin \left(\frac{\pi}{6}\right) \right] - 0$$
$$= \frac{1}{2} \left[\frac{1}{3} + \frac{1}{2} \right]$$
$$= \frac{5}{12}$$

Question: 31

Evaluate:

Solution:

 $\frac{-4}{5}$

Evaluation:

$$\int_0^{\pi} \sin 2x \cos 3x dx = \frac{1}{2} \int_0^{\pi} (\sin 5x - \sin x) dx$$

$$= \frac{1}{2} \left[\frac{-\cos 5x}{5} + \cos x \right]$$

= $\frac{1}{2} \left[-\frac{\cos (5\pi)}{5} + \cos (\pi) \right] - \frac{1}{2} \left[-\frac{\cos (0)}{5} + \cos (0) \right]$
= $\frac{1}{2} \left[\frac{-(-1)}{5} - 1 \right] - \frac{1}{2} \left[-\frac{1}{5} + 1 \right]$
= $\frac{1}{2} \left[\frac{-4}{5} - \frac{4}{5} \right]$
= $\frac{1}{2} 2 \left(-\frac{4}{5} \right)$
= $-\frac{4}{5}$

Question: 32

Evaluate:

Solution:

2

Explanation:

$$\int_{0}^{\frac{\pi}{2}} \sqrt{1 + \sin(x)} dx = \int_{0}^{\frac{\pi}{2}} \sqrt{2} \cos\left(\frac{2x - \pi}{4}\right) dx$$
$$= 2^{\frac{3}{2}} \sin\left(\frac{2x - \pi}{4}\right)$$
$$= 2^{\frac{3}{2}} \left(0 - \sin(-\frac{\pi}{4})\right)$$
$$= \frac{2\sqrt{2}}{\sqrt{2}}$$
$$= 2$$

Question: 33

Evaluate:

Solution:

2

Explanation:

$$\int_{0}^{\frac{\pi}{2}} \sqrt{1 + \cos(x)} dx = \int_{0}^{\frac{\pi}{2}} \sqrt{2} \cos\left(\frac{x}{2}\right) dx$$
$$= 2^{\frac{3}{2}} \sin\left(\frac{x}{2}\right)$$
$$= 2^{\frac{3}{2}} \left(\sin\left(\frac{\pi}{4}\right) - 0\right)$$
$$= \frac{2\sqrt{2}}{\sqrt{2}}$$
$$= 2$$

Question: 34

Evaluate:

$$\left(\frac{2}{3}+2\tan^{-1}2\right)$$

Explanation:

$$\begin{aligned} &\int_{0}^{2} \left\{ \frac{(x^{4}+1)}{x^{2}+1} \right\} dx = \int_{0}^{2} \frac{x^{4}+2-1}{x^{2}+1} dx \\ &= \int_{0}^{2} \frac{x^{4}-1}{x^{2}+1} dx + \int_{0}^{2} \frac{2}{x^{2}+1} dx \\ &= \int_{0}^{2} \frac{(x^{2}-1)(x^{2}+1)}{x^{2}+1} dx + \int_{0}^{2} \frac{2}{x^{2}+1} dx \\ &= \int_{0}^{2} (x^{2}-1) dx + 2tan^{-1}x \\ &= \left[\frac{x^{3}}{3} - x + 2tan^{-1}x \right]_{0}^{2} \end{aligned}$$

Question: 35

Evaluate:

Solution:

(2 log 3 - 3 log 2)

Explanation:

$$\int_{1}^{2} \frac{dx}{(x+1)(x+2)} = \int_{1}^{2} \frac{(x+2) - (x+1)}{(x+1)(x+2)} dx$$
$$= \int_{1}^{2} \frac{1}{(x+1)} dx - \int_{1}^{2} \frac{1}{(x+2)} dx$$
$$= [log(x+1) - log(x+2)]_{1}^{2}$$
$$= 2log 3-3log 2$$

Question: 36

Evaluate:

Solution:

$$\frac{1}{2} (\log 2 + \log 3)$$

Explanation:

$$\int_{1}^{2} \frac{x+3}{x(x+2)} dx = \int_{1}^{2} \frac{3}{2x} dx - \int_{1}^{2} \frac{1}{x+2} dx$$
$$= \frac{3}{2} \log x - \log(x+2)$$
$$= \frac{1}{2} (\log 2 + \log 3)$$

Question: 37

Evaluate:

$$\frac{1}{4} (\log 5 - \log 3)$$

Evaluation:

$$\int_{3}^{4} \frac{dx}{x^{2} - 4} = \int_{3}^{4} \frac{1}{(x - 2)(x + 2)} dx$$
$$= \int_{3}^{4} \frac{1}{4(x - 2)} dx - \int_{3}^{4} \frac{1}{4(x + 2)} dx$$
$$= \frac{1}{4} \log(x - 2) - \frac{1}{4} \log(x + 2)$$
$$= \frac{1}{4} \log(3 - \frac{1}{4} \log 1 - \frac{1}{4} \log 6 + \frac{1}{4} \log 5$$
$$= \frac{1}{4} \left(\log 5 - \log \left(\frac{6}{2}\right) \right)$$
$$= \frac{1}{4} \left(\log 5 - \log 3 \right)$$

Question: 38

Evaluate:

Solution:

$$\log\left(\frac{5+3\sqrt{3}}{1+\sqrt{3}}\right)$$

Evaluation:

$$\int \frac{dx}{\sqrt{x^2 + 2x + 3}} = \int \frac{dx}{\sqrt{(x+1)^2 + 2}}$$

Substitute:

$$\frac{x+1}{\sqrt{2}} = u$$

$$\therefore dx = \sqrt{2}du$$
$$= \int \frac{\sqrt{2}du}{\sqrt{2u^2 + 2}}$$

$$= log(\sqrt{u^2 + 1} + u)$$

Undo substitution: $u = \frac{x+1}{\sqrt{2}}$

$$\int_{0}^{4} \frac{dx}{\sqrt{x^{2} + 4x + 3}} = \log(\sqrt{(x+1)^{2} + 2} + x + 1)$$

$$= \log\left(\sqrt{(4+1)^{2} + 2} + 4 + 1\right) - \log(\sqrt{(0+1)^{2} + 2} + 0 + 1)$$

$$= \log\left(5 + 3\sqrt{3}\right) - \log(1 + \sqrt{3})$$

$$= \log\left(\frac{5 + 3\sqrt{3}}{1 + \sqrt{3}}\right)$$

Question: 39

Evaluate:

$$\log\left(4+\sqrt{15}\right) - \log\left(3+\sqrt{8}\right)$$

Evaluation:

$$\int \frac{dx}{\sqrt{x^2 + 4x + 3}} = \int \frac{dx}{\sqrt{(x+2)^2 - 1}}$$

Substitute:

x+2=u

 $\therefore dx = du$

$$= \int \frac{du}{\sqrt{u^2 - 1}}$$

 $= log(\sqrt{u^2 - 1} + u)$

Undo substitution: u = x + 2

$$\therefore \int_{1}^{2} \frac{dx}{\sqrt{x^{2} + 4x + 3}} = \log(\sqrt{(x + 2)^{2} - 1} + x + 2)$$
$$= \log\left(\sqrt{(2 + 2)^{2} - 1} + 2 + 2\right) - \log(\sqrt{(1 + 2)^{2} - 1} + 1 + 2)$$
$$= \log(4 + \sqrt{15}) \cdot \log(3 + \sqrt{8})$$

Question: 40

Evaluate:

Solution:

$$\frac{2}{\sqrt{7}} \left\{ \operatorname{ran}^{-1} \frac{5}{\sqrt{7}} - \operatorname{tan}^{-1} \frac{1}{\sqrt{7}} \right\}$$

Evaluation:

$$\int_{0}^{1} \frac{1}{2x^{2} + x + 1} dx = \int_{0}^{1} \frac{1}{\left(\left(\sqrt{2x} + \frac{1}{2^{\frac{3}{2}}}\right)2 + \frac{7}{8}\right)} dx$$

Substitute $4x+1\sqrt{7}=u$

$$\therefore dx = \frac{\sqrt{7}}{4}du$$

Now solving:

$$\int \left(\frac{1}{u^2} + 1\right) du = \tan^{-1} u$$
$$\frac{2}{\sqrt{7}} \int \frac{1}{u^2 + 1} du = \frac{2}{\sqrt{7}} \tan^{-1} u$$
$$\therefore \int_0^1 \frac{1}{2x^2 + x + 1} dx = \frac{2}{\sqrt{7}} \tan^{-1} \left(\frac{4x + 1}{\sqrt{7}}\right)$$
$$= \frac{2}{\sqrt{7}} \tan^{-1} \left(\frac{4 + 1}{\sqrt{7}}\right) - \frac{2}{\sqrt{7}} \tan^{-1} \left(\frac{1}{\sqrt{7}}\right)$$
$$= \frac{2}{\sqrt{7}} \left\{\tan^{-1} \left(\frac{5}{\sqrt{7}}\right) - \tan^{-1} \left(\frac{1}{\sqrt{7}}\right)\right\}$$

Question: 41

Evaluate:

Solution:

 $\frac{\pi}{4} \bigl(a + b \bigr)$

Evaluation:

$$\int_{0}^{\frac{\pi}{2}} (a\cos^{2}x + b\sin^{2}x)dx = \int_{0}^{\frac{\pi}{2}} \left[\frac{a}{2}(\cos 2x + 1) + \frac{b}{2}(1 - \cos 2x)\right]dx$$
$$= \left[\frac{a}{2}\left(\frac{\sin 2x}{2} + x\right) + \frac{b}{2}\left(x - \frac{\sin 2x}{2}\right)\right]$$
$$= \left[\frac{a}{2}\left(\frac{\sin \pi}{2} + \frac{\pi}{2}\right) + \frac{b}{2}\left(\frac{\pi}{2} - \frac{\sin \pi}{2}\right) - \frac{a}{2}\left(\frac{\sin 0}{2} + 0\right) - \frac{b}{2}\left(0 - \frac{\sin 0}{2}\right)\right]$$
$$= \left[\frac{a}{2}\left(0 + \frac{\pi}{2}\right) + \frac{b}{2}\left(\frac{\pi}{2} - 0\right) - \frac{a}{2}(0 + 0) - \frac{b}{2}(0 - 0)\right]$$
$$= \frac{\pi}{4}(a + b)$$

Question: 42

Evaluate:

Solution:

$$\frac{-2}{\sqrt{3}}$$

Evaluation:

$$\int_{\frac{\pi}{3}}^{\frac{\pi}{4}} (\tan x + \cot x)^2 dx = \int_{\frac{\pi}{3}}^{\frac{\pi}{4}} \left(\frac{\tan^2 x + 1}{\tan x}\right)^2 dx$$
$$\int_{\frac{\pi}{3}}^{\frac{\pi}{4}} \left(\frac{\tan^2 x + 1}{\tan x}\right)^2 dx = \int_{\frac{\pi}{3}}^{\frac{\pi}{4}} \frac{\sec^2 x (\tan^2 x + 1)}{\tan^2 x} dx$$

Substitute:

tan(x)=u

$$\therefore dx = \frac{1}{\sec^2(x)} du$$

$$\therefore = \int \frac{(u^2 + 1)}{u^2} du$$

$$\therefore = u - \frac{1}{u}$$

$$\int_{\frac{\pi}{3}}^{\frac{\pi}{4}} \left(\frac{\tan^2 x + 1}{\tan x}\right)^2 dx = [\tan(x) - \cot(x)]$$

$$= \left[\tan\left(\frac{\pi}{4}\right) - \cot\left(\frac{\pi}{4}\right) - \tan\left(\frac{\pi}{3}\right) + \cot\left(\frac{\pi}{3}\right)\right]$$

$$= \left[1 - 1 - \sqrt{3} + \frac{1}{\sqrt{3}}\right]$$

$$= -\frac{2}{\sqrt{3}}$$

Question: 43

Evaluate:

Solution:

3π

16

Evaluation:

By reduction formula:

$$\int_{0}^{\frac{\pi}{2}} \cos^{4}x dx = \frac{\cos^{3}(x)\sin(x)}{4} + \frac{3}{4} \int \cos^{2}x dx$$

We know that,

$$\int \cos^2 x \, dx = \frac{1}{2} \left[\frac{\sin 2x}{2} + x \right]$$

$$\int_0^{\frac{\pi}{2}} \cos^4 x \, dx = \frac{\cos^3(x)\sin(x)}{4} + \frac{3}{8} \left[\frac{\sin 2x}{2} + x \right]$$

$$= \frac{\cos^3\left(\frac{\pi}{2}\right)\sin\left(\frac{\pi}{2}\right)}{4} + \frac{3}{8} \left[\frac{\sin \pi}{2} + \frac{\pi}{2} \right] - \frac{\cos^3(0)\sin(0)}{4} - \frac{3}{8} \left[\frac{\sin 0}{2} + 0 \right]$$

$$= 0 + \frac{3}{8} \left[0 + \frac{\pi}{2} \right] - 0 - \frac{3}{8} \left[0 + 0 \right]$$

$$= \frac{3\pi}{16}$$

Question: 44

Evaluate:

Solution:

$$\frac{1}{\sqrt{5}a}\log\left\{\frac{7+3\sqrt{5}}{2}\right\}$$

Evaluation:

Assume that $a \neq 0$.

$$\int_{0}^{2} \frac{1}{-x^{2} + ax + a^{2}} dx = -\int_{0}^{2} \frac{1}{x^{2} - ax - a^{2}} dx$$
$$= \int_{0}^{2} \frac{4}{(2x + (-\sqrt{5} - 1)a)(2x + (\sqrt{5} - 1)a)} dx$$
$$= \int_{0}^{2} \left(\frac{2}{\sqrt{5}a(2x + (-\sqrt{5} - 1)a)} - \frac{2}{\sqrt{5}a(2x + (\sqrt{5} - 1)a)}\right) dx$$

Now,

$$\int \frac{1}{2x + \left(-\sqrt{5} - 1\right)a} dx$$

Substitute:

 $u=2x+(-\sqrt{5}-1)a$ $\therefore dx = \frac{1}{2}du$ $= \frac{1}{2}\int \frac{1}{u} du$

$$=\frac{1}{2}logu$$

Undo substitution:

$$u = 2x + (-\sqrt{5} - 1)a$$

$$\therefore \int \frac{1}{2x + (-\sqrt{5} - 1)a} dx = \frac{1}{2} log(2x + (-\sqrt{5} - 1)a)$$

Now,

$$\int \frac{1}{2x + (\sqrt{5} - 1)a} dx$$

Substitute:

$$u = 2x + (\sqrt{5} - 1)a$$

$$\therefore dx = \frac{1}{2}du$$

$$= \frac{1}{2} \int \frac{1}{u} du$$

$$= \frac{1}{2} \log u$$

Undo substitution:

$$u = 2x + (\sqrt{5} - 1)a$$

$$\therefore \int \frac{1}{2x + (\sqrt{5} - 1)a} dx = \frac{1}{2} log(2x + (\sqrt{5} - 1)a)$$

$$\frac{2}{\sqrt{5a}} \int_{0}^{2} \frac{1}{(2x + (-\sqrt{5} - 1)a)} dx - \frac{2}{\sqrt{5a}} \int_{0}^{2} \frac{1}{2x + (\sqrt{5} - 1)a} dx$$

$$= \frac{log(2x + (-\sqrt{5} - 1)a)}{\sqrt{5a}} - \frac{log(2x + (\sqrt{5} - 1)a)}{\sqrt{5a}}$$

$$- \int_{0}^{2} \frac{1}{x^{2} - ax - a^{2}} dx = \frac{log(2x + (\sqrt{5} - 1)a)}{\sqrt{5a}} - \frac{log(2x + (-\sqrt{5} - 1)a)}{\sqrt{5a}}$$

$$= \frac{log(4 + (\sqrt{5} - 1)a)}{\sqrt{5a}} - \frac{log(4 + (-\sqrt{5} - 1)a)}{\sqrt{5a}} - \frac{log(0 + (\sqrt{5} - 1)a)}{\sqrt{5a}}$$

$$+ \frac{log(0 + (-\sqrt{5} - 1)a)}{\sqrt{5a}}$$

$$= \frac{1}{\sqrt{5a}} log\left(\frac{7 + 3\sqrt{5}}{2}\right)$$

Question: 45

Evaluate:

Solution:

 $\frac{\pi}{6}$

Evaluation:

$$\int_{\frac{1}{4}}^{\frac{1}{2}} \frac{dx}{\sqrt{x-x^2}} = \int_{\frac{1}{4}}^{\frac{1}{2}} \frac{1}{\sqrt{\frac{1}{4} - \left(x - \frac{1}{2}\right)^2}}$$

Substitute:

$$2x-1 = u$$

$$\therefore dx = \frac{1}{2}du$$

$$\int \frac{1}{\sqrt{1-u^2}}du = \sin^{-1}(u)$$

Undo Substitution:

$$u=2x-1$$

∴=sin⁻¹ (2x-1)
$$\int_{\frac{1}{4}}^{\frac{1}{2}} \frac{dx}{\sqrt{x-x^2}} = sin^{-1}(2x-1)$$
$$= sin^{-1}(1-1) - sin^{-1}(\frac{1}{2}-1)$$
$$= \frac{\pi}{6}$$

Question: 46

Evaluate:

Solution:

 $\frac{\pi}{8}$

Evaluation:

$$\int_{0}^{1} \sqrt{x - x^{2}} dx = \int_{0}^{1} \sqrt{\frac{1}{4} - \left(x - \frac{1}{2}\right)^{2}} dx$$
$$= \frac{1}{2} \int_{0}^{1} \sqrt{1 - (2x - 1)^{2}} dx$$

Substitute:

2x-1=u

$$\therefore dx = \frac{1}{2}du$$
$$\therefore \frac{1}{2}\int \sqrt{1 - u^2}du$$

Substitute:

u=sin(v)

∴sin⁻¹ (u)=v

 \therefore du=cos(v)dv

$$=\int cos(v)\sqrt{a-sin^2(v)}dv$$

 $=\int cos^2(v)dv$

We know that,

$$\int \cos^2(v) \, dv = \frac{1}{2} \left[\frac{\sin(2v)}{2} + v \right]$$

Undo Substitution:

v=sin⁻¹ (u)sin(sin⁻¹ (u))=u_{cos}(sin⁻¹(u)) = $\sqrt{1-u^2}$

$$=\frac{\sin^{-1}(u)}{2}+\frac{u\sqrt{1-u^2}}{2}$$

Undo Substitution:

$$u=2x-1$$

$$\therefore = \frac{\sin^{-1}(2x-1)}{4} + \frac{(2x-1)\sqrt{1-(2x-1)^2}}{4}$$

$$\frac{1}{2} \int_0^1 \sqrt{1-(2x-1)^2} \, dx = \frac{\sin^{-1}(2x-1)}{8} + \frac{(2x-1)\sqrt{1-(2x-1)^2}}{8}$$

$$= \frac{\sin^{-1}(2-1)}{8} + \frac{(2-1)\sqrt{1-(2-1)^2}}{8} - \frac{\sin^{-1}(0-1)}{8} - \frac{(0-1)\sqrt{1-(0-1)^2}}{8}$$

$$= \frac{\pi}{16} + 0 - \frac{\pi}{8} - 0$$

$$= \frac{\pi}{8}$$

Question: 47

Evaluate:

Solution:

 $\log 2 - \log 3 + \frac{2}{3}$

Evaluation:

$$\int_1^3 \frac{1}{x^2(x+1)} dx$$

Perform partial fraction decomposition:

$$\int_{1}^{3} \frac{1}{x^{2}(x+1)} dx = \int_{1}^{3} \left(\frac{1}{x+1} - \frac{1}{x} + \frac{1}{x^{2}}\right) dx$$
$$= \left[log(x+1) - log(x) - \frac{1}{x} \right]$$
$$= \left[log(4) - log(3) - \frac{1}{3} - log(2) + log(1) + \frac{1}{1} \right]$$
$$= log(2) - log(3) + \frac{2}{3}$$

Question: 48

Evaluate:

Solution:

$$\log 6 - \log 5 - \frac{2}{15}$$

Evaluation:

$$\int_{1}^{2} \frac{1}{x(2x+1)^{2}} dx = \int_{1}^{2} \left(-\frac{2}{2x+1} - \frac{2}{(2x+1)^{2}} + \frac{1}{x} \right) dx$$
$$= -2 \int_{1}^{2} \frac{1}{2x+1} dx - 2 \int_{1}^{2} \frac{1}{(2x+1)^{2}} dx + \int_{1}^{2} \frac{1}{x} dx$$

$$= -2\left[\frac{1}{2}log(2x+1)\right] - 2\left[\frac{-1}{2(2x+1)}\right] + [log(x)]$$
$$= -[log(5)] + \left[\frac{1}{(5)}\right] + [log(2)] + [log(3)] - \left[\frac{1}{(3)}\right] + [log(1)]$$
$$= log(6) - log(5) - \frac{2}{15}$$

Question: 49

Evaluate:

Solution:

1

Evaluation:

$$\int_0^1 x e^x dx = \int_0^1 (x - 1 + 1) e^x dx$$

 $=[(x-1)e^{x}]$

 $=[(1-1) e^{1}-(0-1) e^{0}]$

=1

Question: 50

Evaluate:

Solution:

$$\left(\frac{\pi^2}{4}-2\right)$$

Evaluation:

$$\int_{0}^{\frac{\pi}{2}} x^{2} \cos(x) dx = x^{2} \sin(x) - \int 2x \sin(x) dx$$
$$\int_{0}^{\frac{\pi}{2}} x^{2} \cos(x) dx = [x^{2} \sin(x) - 2\sin(x) - 2x \cos(x)]$$
$$= \left[\left(\frac{\pi}{2}\right)^{2} \sin\left(\frac{\pi}{2}\right) - 2\sin\left(\frac{\pi}{2}\right) - \pi \cos\left(\frac{\pi}{2}\right) - (0)^{2} \sin(0) + 2\sin(0) + 0 \right]$$
$$= \left[\frac{\pi^{2}}{4} - 2 - 0 - 0 + 0 + 0 \right]$$
$$= \left(\frac{\pi^{2}}{4} - 2 \right)$$

Question: 51

Evaluate:

Solution:

$$\left(\sqrt{2} + \frac{\pi}{2\sqrt{2}} - \frac{\pi^2}{16\sqrt{2}} - 2\right)$$

Evaluation:

From integrate by parts:

$$\int_{0}^{\frac{\pi}{4}} x^{2} \sin(x) dx = -x^{2} \cos(x) - \int -2x \cos(x) dx$$

From integrate by parts:

$$\int_{0}^{\frac{\pi}{4}} x^{2} \cos(x) dx = \left[-x^{2} \cos(x) + 2x \sin(x) + 2\cos(x)\right]$$

= $\left[2x \sin(x) + (2-x^{2}) \cos(x)\right]$
= $\left[\frac{\pi}{2} \sin\left(\frac{\pi}{4}\right) + \left(2 - \frac{\pi^{2}}{16}\right) \cos\left(\frac{\pi}{4}\right) - 2(0) \sin(0) - (2 - 0) \cos(0)\right]$
= $\left[\frac{\pi}{2\sqrt{2}} + \frac{2}{\sqrt{2}} - \frac{\pi^{2}}{16\sqrt{2}} + 0 - 0 - 2\right]$
= $\sqrt{2} + \frac{\pi}{2\sqrt{2}} - \frac{\pi^{2}}{16\sqrt{2}} - 2$

Question: 52

Evaluate:

Solution:

$$\frac{-\pi}{4}$$

Evaluation:

$$\begin{split} &\int_{0}^{\frac{\pi}{2}} x^{2} \cos(2x) dx = \frac{x^{2} \sin(2x)}{2} - \int x \sin(x) dx \\ &\int_{0}^{\frac{\pi}{2}} x^{2} \cos(x) dx = \left[\frac{x^{2} \sin(2x)}{2} - \frac{\sin(2x)}{4} + \frac{x \cos(2x)}{2} \right] \\ &= \left[\frac{(\frac{\pi}{2})^{2} \sin(\pi)}{2} - \frac{\sin(\pi)}{4} + \frac{(\frac{\pi}{2}) \cos(\pi)}{2} - \frac{(0)^{2} \sin(0)}{2} + \frac{\sin(0)}{4} - \frac{(0) \cos(0)}{2} \right] \\ &= \left[0 - 0 - \frac{\pi}{4} - 0 + 0 - 0 \right] \\ &= -\frac{\pi}{4} \end{split}$$

Question: 53

Evaluate:

Solution:

$$\left(\frac{2}{27} - \frac{\pi^2}{12}\right)$$

Evaluation:

$$\int_{0}^{\frac{\pi}{2}} x^{3} \sin(3x) dx = -\frac{x^{3} \cos(3x)}{3} - \int -x^{2} \cos(3x) dx$$
$$= -\frac{x^{3} \cos(3x)}{3} + \frac{x^{2} \sin(3x)}{3} - \int \frac{2x \sin(3x)}{3} dx$$
$$= -\frac{x^{3} \cos(3x)}{3} + \frac{x^{2} \sin(3x)}{3} + \frac{2x \cos(3x)}{9} + \frac{2}{3} \int -\frac{\cos(3x)}{3} dx$$

$$= -\frac{x^3 \cos(3x)}{3} + \frac{x^2 \sin(3x)}{3} + \frac{2x\cos(3x)}{9} - \frac{2\sin(3x)}{27}$$
$$= -0 + \frac{\left(\frac{\pi}{2}\right)^2 \sin\left(\frac{3\pi}{2}\right)}{3} + 0 - \frac{2\sin\left(\frac{3\pi}{2}\right)}{27} + 0 - 0 - 0 + 0$$
$$= \left(\frac{2}{27} - \frac{\pi^2}{12}\right)$$

Question: 54

Evaluate:

Solution:

$$\left(\frac{\pi^3}{48} - \frac{\pi}{8}\right)$$

Evaluation:

$$\begin{split} &\int_{0}^{\frac{\pi}{2}} x^{2} \cos^{2} x dx = \int_{0}^{\frac{\pi}{2}} \frac{x^{2}}{2} (\cos(2x) + 1) dx \\ &= \int_{0}^{\frac{\pi}{2}} \left(\frac{x^{2}}{2} \cos(2x) + \frac{x^{2}}{2} \right) dx \\ &\int_{0}^{\frac{\pi}{2}} \left(\frac{x^{2}}{2} \cos(2x) + \frac{x^{2}}{2} \right) dx = \frac{x^{2} \sin(2x)}{2} - \int x \sin(2x) dx + \frac{x^{3}}{6} \\ &= \frac{x^{2} \sin(2x)}{2} + \frac{x \cos(2x)}{4} + \int -\frac{\cos(2x)}{2} dx + \frac{x^{3}}{6} \\ &= \frac{x^{2} \sin(2x)}{2} + \frac{x \cos(2x)}{4} - \frac{\sin(2x)}{4} + \frac{x^{3}}{6} \\ &= \frac{x^{2} \sin(2x)}{2} + \frac{x \cos(2x)}{4} - \frac{\sin(2x)}{4} + \frac{x^{3}}{6} \\ &= 0 + \frac{\frac{\pi}{2} \cos(\pi)}{4} - 0 + \frac{\left(\frac{\pi}{2}\right)^{3}}{6} - 0 - 0 + 0 - 0 \\ &= \left(\frac{\pi^{3}}{48} - \frac{\pi}{8}\right) \end{split}$$

Question: 55

Evaluate:

Solution:

(2 log 2 - 1)

Evaluation:

$$\int_{1}^{2} log(x)dx = xlog(x) - (x)$$

= 2log(2) - (2) - 1log(1) + (1)
= 2log(2) - 1

Question: 56

Evaluate:

$$\frac{3}{4}\log 3 - \log 2$$

Evaluation:

$$\int_{1}^{3} \frac{\log(x)}{(1+x)^{2}} dx = -\frac{\log(x)}{1+x} - \int \left(-\frac{1}{x(1+x)}\right) dx$$

Now,

$$\int \left(-\frac{1}{x(1+x)}\right) dx = -\int \left(\frac{1}{x^2\left(\frac{1}{x}+1\right)}\right) dx$$

Let,

$$\frac{1}{x} + 1 = u$$

 $\therefore dx = -x^2 du$

$$\therefore -\int \left(\frac{1}{x^2\left(\frac{1}{x}+1\right)}\right) dx = \int \frac{1}{u} du$$

$$= log(u)$$

Undo substitution:

$$u = \frac{1}{x} + 1$$

$$\int_{1}^{3} \frac{\log(x)}{(1+x)^{2}} dx = -\frac{\log(x)}{1+x} + \log\left(\frac{1}{x} + 1\right)$$

$$= -\frac{\log(3)}{4} + \log\left(\frac{4}{3}\right) + \frac{\log(1)}{2} - \log(2)$$

$$= -\frac{\log(3)}{4} + \log(4) + \log(3) - \log 2$$

$$= \frac{3}{4}\log 3 - \log 2$$

Question: 57

Evaluate:

Solution:

$$\left(\frac{e^2}{2}-e\right)$$

Correct answer is $\frac{e^2}{2}$

Evaluation:

Let,

log(x)=u

 $\rightarrow x = e^u$

 \rightarrow dx=e^u du

$$\int \left\{\frac{1}{u} - \frac{1}{u^2}\right) e^u du = \frac{e^u}{u}$$

Undo substitution:

$$u = log(x)$$

$$\int_{0}^{e^{2}} \left\{ \frac{1}{log(x)} - \frac{1}{log(x)^{2}} \right\} dx = \frac{x}{log(x)}$$

$$= \frac{e^{2}}{log(e^{2})} - 0$$

$$= \frac{e^{2}}{2}$$

Question: 58

Evaluate:

Solution:

e^e

Evaluation:

$$\int_{1}^{e} e^{x} \left(\frac{\left(1 + x \log(x)\right)}{x} \right) dx = \int_{1}^{e} e^{x} \left(\frac{1}{x} + \log(x) \right) dx$$

 $=\log(x) e^x$

 $=\log(e) e^{e} \log(1) e^{1}$

 $=e^{e}$

Question: 59

Evaluate:

Solution:

$$\left(\frac{e}{2}-1\right)$$

Evaluation:

$$\int_0^1 \frac{x e^x}{(1+x)^2} dx$$

From Integrates by parts:

$$= -\frac{xe^x}{x+1} - \int \frac{-xe^x - e^x}{x+1} dx$$
$$\therefore \int \frac{-xe^x - e^x}{x+1} dx = \int -e^x dx$$

 $=-e^{x}$

$$\int_{0}^{1} \frac{xe^{x}}{(1+x)^{2}} dx = \left[-\frac{xe^{x}}{x+1} - e^{x} \right]$$
$$= \left[-\frac{1e^{1}}{1+1} - e^{1} - \frac{0}{1+0} + e^{0} \right]$$
$$= \left[-\frac{e}{2} + e + 0 - 1 \right]$$
$$= \left[\frac{e}{2} - 1 \right]$$

Question: 60

Evaluate:

Solution:

(1 - log 2)

Evaluation:

$$\int_{0}^{\frac{\pi}{2}} 2tan^{3}x dx = 2 \int_{0}^{\frac{\pi}{2}} tan^{2}x tanx dx$$
$$= 2 \int_{0}^{\frac{\pi}{2}} tan^{2}x tanx dx$$
$$= 2 \int_{0}^{\frac{\pi}{2}} (sec^{2}x - 1) tanx dx$$

Substitute:

$$sec(x) = u$$

$$\therefore dx = \frac{1}{sec(x)tan(x)} du$$

$$= 2 \int_{0}^{\frac{\pi}{2}} \frac{(u^{2} - 1)}{u} du$$

$$= 2 \int_{0}^{\frac{\pi}{2}} \left(u - \frac{1}{u}\right) du$$

$$= 2 \int_{0}^{\frac{\pi}{2}} \left(u - \frac{1}{u}\right) du$$

$$= 2 \left[\frac{u^{2}}{2} - \log u\right]$$

Undo substitution:

$$u = \sec(x)$$

$$\therefore \int_{0}^{\frac{\pi}{2}} 2tan^{3}x dx = 2\left[\frac{\sec^{2}x}{2} - \log(\sec)\right]$$

$$= 2\left[\frac{\sec^{2}\left(\frac{\pi}{2}\right)}{2} - \log\left(\sec\left(\frac{\pi}{2}\right)\right) - \frac{\sec^{2}(0)}{2} + \log(\sec(0))\right]$$

$$= 2\left[\frac{1}{2} - \log(1)\right]$$

$$= 1 - \log 2$$

Question: 61

Evaluate:

Solution:

$$5 - \frac{5}{2} \left(9 \log \frac{5}{4} - \log \frac{3}{2}\right)$$

Explanation:

$$\int_{1}^{2} \frac{5x^{2}}{(x^{2}+4x+3)} dx = 5\left[\int_{1}^{2} \frac{x^{2}}{(x+3)(x+1)} dx\right]$$
$$= 5\left[\int_{1}^{2} \left(1 - \frac{9}{2(x+3)} + \frac{1}{2(x+1)}\right) dx\right]$$

$$= 5 \left[x - \frac{9}{2} log(x+3) + \frac{1}{2} log(x+1) \right]_{1}^{2}$$

$$= 5 \left[2 - \frac{9}{2} log 5 + \frac{1}{2} log 3 - 1 + \frac{9}{2} log 4 - \frac{1}{2} log 2 \right]$$

$$= 5 \left[1 - \frac{9}{2} log \left(\frac{5}{4} \right) + \frac{1}{2} log \left(\frac{3}{2} \right) \right]$$

$$= 5 - \frac{5}{2} \left(9 log \left(\frac{5}{4} \right) - log \left(\frac{3}{2} \right) \right)$$

Exercise : 16B

Question: 1

Evaluate the foll

Solution:

Let $I = \int_0^1 \frac{1}{2x-3} dx$ Let 2x-3=t $\Rightarrow 2dx=dt$. Hence, $I = \frac{1}{2} \int_0^1 \frac{1}{t} dt = \frac{1}{2} \log_e |t|$ $= \frac{1}{2} \log_e |2x-3| \Big|_0^1$ $\Rightarrow I = \frac{1}{2} \log_e 1 - \frac{1}{2} \log_e 3 = \frac{1}{2} \log_e \frac{1}{3}$ $= -\frac{1}{2} \log_e 3$ (Since $\log_a \frac{1}{b} = -\log_a b$)

Question: 2

Evaluate the foll

Solution:

Let $I = \int_0^1 \frac{2x}{1+x^2} dx$ Let $1+x^2=t$ $\Rightarrow 2xdx=dt$. Also, when x=0, t=1and when x=1, t=2Hence, $I = \int_1^2 \frac{1}{t} dt = \log_e |t| |_1^2$ $= \log_e 2 - \log_e 1$ $= \log_e 2$

Question: 3

Evaluate the foll

Solution:

Let $I = \int_{1}^{2} \frac{3x}{9x^{2}-1} dx$ Let $9x^{2}-1=t$ $\Rightarrow 18xdx=dt$. Also, when x=1, t=8and when x=2, t=35. Hence,

$$I = \frac{1}{6} \int_{8}^{35} \frac{1}{t} dt = \frac{1}{6} \log_{e} t \Big|_{8}^{35} = \frac{1}{6} (\log_{e} 35 - \log_{e} 8)$$

Question: 4

Evaluate the foll

Solution:

Let
$$I = \int_0^1 \frac{tan^{-1}x}{1+x^2} dx$$

Let $tan^{-1}x=t$

$$\Rightarrow \frac{1}{1+x^2} dx = dt.$$

Also, when x=0, t=0

and when x=1, $t = \frac{\pi}{4}$

Hence,

$$I = \int_0^{\frac{\pi}{4}} t \, dt = \frac{1}{2} t^2 \left|_0^{\frac{\pi}{4}} = \frac{\pi^2}{32}\right|_0^{\frac{\pi}{4}} = \frac{\pi^2}{32}$$

Question: 5

Evaluate the foll

Solution:

Let $I = \int_0^1 \frac{e^x}{1+e^{2x}} dx$

Let $e^x = t$

 $\Rightarrow e^x dx = dt.$

Also,

when x=0, t=1

and

when x=1, t=e.

Hence,

$$I = \int_{1}^{e} \frac{1}{1+t^{2}} dt = tan^{-1}t \Big|_{1}^{e}$$
$$= tan^{-1}e - \frac{\pi}{4}$$

Question: 6

Evaluate the foll

Solution:

Let $I = \int_0^1 \frac{2x}{1+x^4} dx$ Let $x^2 = t$ $\Rightarrow 2xdx = dt$. Also, when x=0, t=0and when x=1, t=1. Hence, $I = \int_0^1 \frac{1}{1+t^2} dt$ $= tan^{-1}t \Big|_0^1$

$$=\frac{\pi}{4}$$

Question: 7

Evaluate the foll

Solution:

Let $I = \int_0^1 x e^{x^2} dx$ Let $x^2 = t$ $\Rightarrow 2x dx = dt.$

Also,

when x=0, t=0

 $\quad \text{and} \quad$

when x=1, t=1.

Hence,

$$I = \frac{1}{2} \int_0^1 e^t dt$$
$$= \frac{1}{2} e^t \Big|_0^1$$
$$= \frac{1}{2} (e - 1)$$

Question: 8

Evaluate the foll

Solution:

Let
$$I = \int_{1}^{2} \frac{e^{\frac{1}{x}}}{x^{2}} dx$$

Let $\frac{1}{x} = t$
 $\Rightarrow \frac{-1}{x^{2}} dx = dt.$

Also,

when x=1, t=1 and when x=2, $t = \frac{1}{2}$.

Hence,

$$I = -\int_{1}^{\frac{1}{2}} e^{t} dt$$
$$= -e^{t} \begin{vmatrix} \frac{1}{2} \\ 1 \end{vmatrix}$$

$$= e - \sqrt{e}$$

Question: 9

Evaluate the foll

Solution:

Let
$$I = \int_0^{\frac{\pi}{6}} \frac{\cos x}{3+4\sin x} dx$$

Let 3+4sinx=t

 \Rightarrow 4cosxdx=dt.

Also,

when x=0, t=3

 $\quad \text{and} \quad$

when $x = \frac{\pi}{6}$, t=5.

Hence,

$$I = \frac{1}{4} \int_3^5 \frac{1}{t} dt$$
$$= \frac{1}{4} \log_e t \Big|_3^5$$
$$= \frac{1}{4} (\log_e 5 - \log_e 3)$$

Question: 10

Evaluate the foll

Solution:

Let $I = \int_0^{\frac{\pi}{2}} \frac{\sin x}{1 + \cos^2 x} dx$ Let $\cos x = t$ $\Rightarrow -\sin x dx = dt$. Also, when x=0, t=1and when $x = \frac{\pi}{2}$, t=0.

Hence,

$$I = -\int_{1}^{0} \frac{1}{1+t^{2}} dt$$
$$= -tan^{-1}t \Big|_{1}^{0}$$
$$= \frac{\pi}{4}$$

Question: 11

Evaluate the foll

Solution:

Let
$$I = \int_0^1 \frac{1}{e^{x} + e^{-x}} dx = \int_0^1 \frac{e^x}{1 + e^{2x}} dx$$

Let $e^x = t$
 $\Rightarrow e^x dx = dt$.
Also,
when $x=0$, $t=1$
and
when $x=1$, $t=e$.
Hence,
 $I = \int_1^e \frac{1}{1 + t^2} dt$

$$= \tan^{-1}t \Big|_{1}^{e}$$
$$= \tan^{-1}e - \frac{\pi}{4}$$

Question: 12

Evaluate the foll

Solution:

Let $I = \int_{\frac{1}{e}}^{e} \frac{1}{x(\log_{e} x)^{\frac{1}{2}}} dx$ Let $\log_{e} x = t$ $\Rightarrow \frac{1}{x} dx = dt$. Also, when $x = \frac{1}{e}$, t=-1 and when x=e, t=1. Hence, $I = \int_{-1}^{1} \frac{1}{t^{\frac{1}{3}}} dt$ $= \frac{3}{2}t^{\frac{2}{3}} \Big|_{-1}^{1}$ $= \frac{3}{2}(1-1)$

=0

Question: 13

Evaluate the foll

Solution:

Let $I = \int_0^1 \frac{\sqrt{tan^{-1}x}}{1+x^2} dx$

Let $tan^{-1}x=t$

 $\Rightarrow \frac{1}{1+x^2}dx = dt.$

Also,

when x=0, t=0

 $\quad \text{and} \quad$

when x=1, $t = \frac{\pi}{4}$

Hence,

$$I = \int_{0}^{\frac{\pi}{4}} \sqrt{t} \, dt$$
$$= \frac{2}{3} t^{\frac{3}{2}} \bigg|_{0}^{\frac{\pi}{4}}$$
$$= \frac{\pi^{\frac{3}{2}}}{12}$$

Question: 14

Evaluate the foll

Solution:

Let $I = \int_0^{\frac{\pi}{2}} \frac{\sin x}{\sqrt{1 + \cos x}} dx$ Let 1+cos x=t

 \Rightarrow -sin x dx=dt.

Also, when x=0, t=2

and

when $x = \frac{\pi}{2}$, t=1

Hence,

$$I = -\int_{2}^{1} \frac{1}{\sqrt{t}} dt$$
$$= -2\sqrt{t} \Big|_{2}^{1}$$

 $=2(\sqrt{2-1})$

Question: 15

Evaluate the foll

Solution:

Let
$$I = \int_0^{\frac{\pi}{2}} \sqrt{\sin x} \cos^5 x dx$$

Let sinx=t

⇒ cos x dx=dt. Also, when x=0, t=0 and when $x = \frac{\pi}{2}$, t=1.

Consider $\cos^{5}x = \cos^{4}x \times \cos x = (1 - \sin^{2}x)^{2} \times \cos x$ (Using $\sin^{2}x + \cos^{2}x = 1$)

Hence,

$$I = \int_{0}^{1} \sqrt{x} (1 - x^{2})^{2} dx$$

= $\int_{0}^{1} \sqrt{x} dx + \int_{0}^{1} x^{\frac{9}{2}} dx - 2 \int_{0}^{1} x^{\frac{5}{2}} dx$
$$\Rightarrow I = \frac{2}{3} t^{\frac{3}{2}} \Big|_{0}^{1} + \frac{2}{11} t^{\frac{11}{2}} \Big|_{0}^{1} - \frac{4}{7} t^{\frac{7}{2}} \Big|_{0}^{1}$$

= $\frac{2}{3} + \frac{2}{11} - \frac{4}{7}$
= $\frac{64}{231}$

Question: 16

Evaluate the foll

Solution:

Let $I = \int_0^{\frac{\pi}{2}} \frac{sinxcosx}{1+sin^4x} dx$

Let $sin^2x=t$

```
\Rightarrow 2sin x cos x=dt.
```

Also,

when x=0, t=0

 $\quad \text{and} \quad$

when $x = \frac{\pi}{2}$, t=1.

Hence,

$$I = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \frac{1}{1+t^{2}} dt$$
$$= \frac{1}{2} tan^{-1} t \Big|_{0}^{1}$$
$$= \frac{\pi}{8}$$

Question: 17

Evaluate the foll

Solution:

Let
$$I = \int_0^a \sqrt{a^2 - x^2} dx$$

Let x=a sin t

 \Rightarrow a cos t dt=dx.

Also,

when x=0, t=0

and

when x=a, $t = \frac{\pi}{2}$.

Hence,

 $I = \int_{0}^{\frac{\pi}{2}} \sqrt{a^2 - a^2 \sin^2 t} \ a \cot t = a^2 \int_{0}^{\frac{\pi}{2}} \cos^2 t dt$ Using $\cos^2 t = \frac{1 + \cos 2t}{2}$, we get $I = \frac{a^2}{2} \int_{a}^{\frac{n}{2}} (1 + \cos 2t) dt$ $=\frac{a^2}{2}\left(t+\frac{\sin 2t}{2}\right)\left|\frac{\pi}{2}\right|$ $=\frac{\pi a^2}{4}$

Question: 18

Evaluate the foll

Solution:

Let $I = \int_{0}^{\sqrt{2}} \sqrt{2 - x^2} dx$ Consider, $I = \int_0^a \sqrt{a^2 - x^2} dx$ Let $x=a \sin t$ \Rightarrow a cos t dt=dx. Also, when x=0, t=0and when x=a, $t = \frac{\pi}{2}$. Hence.

 $I = \int_{0}^{\frac{\pi}{2}} \sqrt{a^{2} - a^{2} \sin^{2} t} \ a \cos t \ dt = a^{2} \int_{0}^{\frac{\pi}{2}} \cos^{2} t \ dt$ Using $\cos^2 t = \frac{1 + \cos 2t}{2}$, we get $I = \frac{a^2}{2} \int_{0}^{\frac{n}{2}} (1 + \cos 2t) dt$ $=\frac{a^2}{2}\left(t+\frac{\sin 2t}{2}\right)\left|\frac{\pi}{2}\right|$ $=\frac{\pi a^2}{4}$ Here $a = \sqrt{2}$, hence $I = \frac{\pi}{2}$

Question: 19

Evaluate the foll

Let
$$I = \int_0^a \frac{x^4}{\sqrt{a^2 - x^2}} dx$$

Let x=a sin t
 \Rightarrow a cos t dt=dx.
Also, when x=0, t=0
and when x=a, $t = \frac{\pi}{2}$.

Hence,

$$I = \int_0^{\frac{\pi}{2}} \frac{a^4 \sin^4 t}{\sqrt{a^2 - a^2 \sin^2 t}} a \cos t dt$$
$$= a^4 \int_0^{\frac{\pi}{2}} \sin^4 t dt$$

Using $sin^2 t = \frac{1-cos2t}{2}$, we get

$$I = a^{4} \int_{0}^{\frac{\pi}{2}} \left(\frac{1 - \cos 2t}{2}\right)^{2} dt$$

= $\frac{a^{4}}{4} \int_{0}^{\frac{\pi}{2}} (1 + \cos^{2} 2t - 2\cos 2t) dt$
= $I = \frac{a^{4}}{4} \left(t \Big|_{0}^{\frac{\pi}{2}} - \sin 2t \Big|_{0}^{\frac{\pi}{2}} + \int_{0}^{\frac{\pi}{2}} \left(\frac{1 + \cos 4t}{2}\right) dt\right)$
 $\left(Using \ \cos^{2} t = \frac{1 + \cos 2t}{2}\right)$

Hence,

$$I = \frac{\pi a^4}{8} + \frac{a^4}{4} \times \frac{t}{2} \Big|_0^{\frac{\pi}{2}} + \frac{a^4}{32} \sin 4t \Big|_0^{\frac{\pi}{2}} = \frac{3\pi a^4}{16}$$

Question: 20

Evaluate the foll

Solution:

Let
$$I = \int_0^a \frac{x}{\sqrt{a^2 + x^2}} dx$$

Let $a^2+x^2=t^2$

 \Rightarrow x dx=t dt.

Also, when x=0, t=a

and when x=a, $t = \sqrt{2}a$.

Hence,

$$I = \int_{a}^{\sqrt{2}a} \frac{t}{\sqrt{t^{2}}} dt$$
$$= t \begin{vmatrix} \sqrt{2}a \\ a \end{vmatrix}$$
$$= a(\sqrt{2}-1)$$

Question: 21

Evaluate the foll

Solution:

Let
$$I = \int_0^2 x \sqrt{2 - x} dx$$

Using the property that $\int_a^b f(x)dx = \int_a^b f(a+b-x)dx$, we get

$$I = \int_{0}^{2} (2 - x) \sqrt{x} dx$$
$$= \int_{0}^{2} 2\sqrt{x} dx - \int_{0}^{2} x^{\frac{3}{2}} dx$$
$$= 2 \times \frac{2}{3} x^{\frac{3}{2}} \Big|_{0}^{2} - \frac{2}{5} x^{\frac{5}{2}} \Big|_{0}^{2}$$

Hence,

$$I = 2\sqrt{2} \left(\frac{4}{3} - \frac{4}{5}\right)$$
$$= \frac{16}{15} \sqrt{2}$$

Question: 22

Evaluate the foll

Solution:

Let $I = \int_0^1 \sin^{-1}\left(\frac{2x}{1+x^2}\right) dx$ Let $f(x) = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$ Let $x = \tan\theta$ $\Rightarrow \theta = \tan^{-1}x$

$$\Rightarrow f(x) = \sin^{-1} \left(\frac{2\tan\theta}{1 + \tan^2\theta} \right)$$
$$= \sin^{-1} \left(\frac{2\tan\theta}{\sec^2\theta} \right)$$
$$= \sin^{-1} (2\sin\theta\cos\theta)$$
$$= \sin^{-1} (\sin2\theta)$$
Hence f(x)=20

 $=2\tan^{-1}x$

Hence
$$I = 2 \int_0^1 1 \times tan^{-1} x dx$$

Using integration by parts, we get

$$I = 2xtan^{-1}x \Big|_{0}^{1} - \int_{0}^{1} \frac{2x}{1+x^{2}} dx$$
$$= \frac{\pi}{2} - \int_{0}^{1} \frac{2x}{1+x^{2}} dx - (1)$$
Let $I' = \int_{0}^{1} \frac{2x}{1+x^{2}} dx$ Let $1+x^{2}=t$
$$\Rightarrow 2x dx = dt.$$

Also, when x=0, t=1and when x=1, t=2Hence,

$$I' = \int_{1}^{2} \frac{1}{t} dt = \log_{e} |t| \Big|_{1}^{2}$$

 $= \log_e 2 - \log_e 1$

 $= \log_e 2 - (2)$

Substituting value of (2) in (1), we get

$$I = \frac{\pi}{2} - \log_e 2$$

Question: 23

Evaluate the foll

Solution:

Let $I = \int_0^{\frac{\pi}{2}} \sqrt{1 + \cos x} \, dx$

Using $1 + \cos x = 2\cos^2 \frac{x}{2}$, we get

$$I = \sqrt{2} \int_0^{\frac{\pi}{2}} \cos\left(\frac{x}{2}\right) dx$$
$$= 2\sqrt{2} \sin\left(\frac{x}{2}\right) \left|\frac{\pi}{2}\right|_0^{\frac{\pi}{2}}$$

=2

Question: 24

Evaluate the foll

Solution:

Let
$$I = \int_{0}^{\frac{\pi}{2}} \sqrt{1 + \sin x} \, dx$$

Using $\sin^{2} \frac{x}{2} + \cos \frac{x}{2} = 1$ and $\sin x = 2\sin \frac{x}{2} \cos \frac{x}{2}$
 $I = \int_{0}^{\frac{\pi}{2}} \sqrt{\left(\sin\left(\frac{x}{2}\right) + \cos\left(\frac{x}{2}\right)\right)^{2}} \, dx$
 $= \int_{0}^{\frac{\pi}{2}} \left(\sin\left(\frac{x}{2}\right) + \cos\left(\frac{x}{2}\right)\right) dx$
 $= -2\cos\left(\frac{x}{2}\right) \left|\frac{\frac{\pi}{2}}{0} + 2\sin\left(\frac{x}{2}\right)\right|_{0}^{\frac{\pi}{2}}$
 $= -(\sqrt{2}-2) + (\sqrt{2})$
 $= 2$

Question: 25

Evaluate the foll

Solution:

Let $I=\int_0^{\frac{\pi}{2}}\frac{1}{a^2\cos^2x+b^2\sin^2x}dx$
Dividing by $\cos^2 x$ in numerator and denominator, we get

$$I = \int_0^{\frac{\pi}{2}} \frac{\sec^2 x}{a^2 + b^2 \tan^2 x} dx$$

Let $\tan x = t$

 $\Rightarrow \sec^2 x dx = dt$

$$I = \int_0^{\frac{\pi}{2}} \frac{1}{a^2 + b^2 t^2} dt = \frac{1}{b^2} \int_0^{\frac{\pi}{2}} \frac{1}{\frac{a^2}{b^2} + t^2} dt$$

Let
$$t = \frac{a}{b}tan\theta = tanx$$

$$I = \frac{1}{b^2} \int_0^{\frac{\pi}{2}} \frac{\frac{a}{b} \sec^2 \theta}{\frac{a^2}{b^2} + \frac{a^2}{b^2} \tan^2 \theta} d\theta$$
$$= \frac{1}{ab} \theta$$
$$= \frac{1}{ab} \tan^{-1} \left(\frac{b}{a} \tan x\right) \Big|_0^{\frac{\pi}{2}}$$
$$= \frac{\pi}{2ab}$$

Question: 26

Evaluate the foll

Solution:

Let
$$I = \int_0^{\frac{\pi}{2}} \frac{1}{1 + \cos^2 x} dx$$

Dividing by $\cos^2 x$ in numerator and denominator, we get

$$I = \int_0^{\frac{\pi}{2}} \frac{\sec^2 x}{\sec^2 x + \tan^2 x} dx = \int_0^{\frac{\pi}{2}} \frac{\sec^2 x}{1 + 2\tan^2 x} dx$$

Consider $I = \int_0^{\frac{\pi}{2}} \frac{\sec^2 x}{a^2 + b^2 \tan^2 x} dx$
Let $\tan x = t$
 $\Rightarrow \sec^2 x dx = dt$

$$I = \int_0^{\frac{\pi}{2}} \frac{1}{a^2 + b^2 t^2} dt$$
$$= \frac{1}{b^2} \int_0^{\frac{\pi}{2}} \frac{1}{\frac{a^2}{b^2} + t^2} dt$$

Let $t = \frac{a}{b} tan\theta$

=tan x

$$I = \frac{1}{b^2} \int_0^{\frac{\pi}{2}} \frac{\frac{a}{b} \sec^2 \theta}{\frac{a^2}{b^2} + \frac{a^2}{b^2} \tan^2 \theta} d\theta$$

$$= \frac{1}{ab} \theta = \frac{1}{ab} tan^{-1} \left(\frac{b}{a} tanx\right) \Big|_{0}^{\frac{\pi}{2}}$$
$$= \frac{\pi}{2ab}$$

Here, a=1 and b= $\sqrt{2}$

Hence,

$$I = \frac{\pi}{2\sqrt{2}}$$

Question: 27

Evaluate the foll

Solution:

Let
$$I = \int_0^{\frac{\pi}{2}} \frac{1}{4+9\cos^2 x} dx$$

Dividing by $\cos^2\!x$ in numerator and denominator, we get

$$I = \int_0^{\frac{\pi}{2}} \frac{\sec^2 x}{4\sec^2 x + 9\tan^2 x} dx$$
$$= \int_0^{\frac{\pi}{2}} \frac{\sec^2 x}{4 + 13\tan^2 x} dx$$

Consider
$$I = \int_0^{\frac{\pi}{2}} \frac{\sec^2 x}{a^2 + b^2 tan^2 x} dx$$

Let $\tan x = t$

 $\Rightarrow \sec^2 x dx = dt$

$$I = \int_{0}^{\frac{\pi}{2}} \frac{1}{a^{2} + b^{2}t^{2}} dt$$
$$= \frac{1}{b^{2}} \int_{0}^{\frac{\pi}{2}} \frac{1}{\frac{a^{2}}{b^{2}} + t^{2}} dt$$

Let $t = \frac{a}{b} tan\theta$

=tan x

$$I = \frac{1}{b^2} \int_0^{\frac{\pi}{2}} \frac{\frac{a}{b} \sec^2 \theta}{\frac{a^2}{b^2} + \frac{a^2}{b^2} \tan^2 \theta} d\theta$$
$$= \frac{1}{ab} \theta$$
$$= \frac{1}{ab} \tan^{-1} \left(\frac{b}{a} \tan x\right) \Big|_0^{\frac{\pi}{2}}$$
$$= \frac{\pi}{2ab}$$

Here, a=2 and $b=\sqrt{13}$

Hence,

$$I = \frac{\pi}{4\sqrt{13}}$$

Evaluate the foll

Solution:

Let
$$I = \int_{0}^{\frac{\pi}{2}} \frac{1}{1+\tan^{2}\left(\frac{x}{2}\right)} dx$$

Using $sinx = \frac{2\tan\left(\frac{x}{2}\right)}{1+\tan^{2}\left(\frac{x}{2}\right)}$, we get
 $I = \int_{0}^{\frac{\pi}{2}} \frac{1}{5+4\frac{2\tan\left(\frac{x}{2}\right)}{1+\tan^{2}\left(\frac{x}{2}\right)}} dx$
 $= \int_{0}^{\frac{\pi}{2}} \frac{\sec^{2}\left(\frac{x}{2}\right)}{5+5\tan^{2}\left(\frac{x}{2}\right)+8\tan\left(\frac{x}{2}\right)} dx$
Let $tan\left(\frac{x}{2}\right) = t$
 $= \frac{1}{2}sec^{2}\left(\frac{x}{2}\right)dx = dt$.
when $x=0$, $t=0$ and when $x = \frac{\pi}{2}$, $t=1$.
Hence, $I = \int_{0}^{1} \frac{2}{5+5t^{2}+8t} dt$
 $= \frac{2}{5}\int_{0}^{1} \frac{1}{t^{2}+\frac{8}{5}t+\frac{16}{25}+\frac{9}{25}} dt$
 $= \frac{2}{5}\int_{0}^{1} \frac{1}{\left(t+\frac{4}{5}\right)^{2}+\frac{9}{25}} dt$
Let $t + \frac{4}{5} = u$
 $\Rightarrow dt=du$.
When $t=0$, $u = \frac{4}{5}$ and when $t=1$, $u = \frac{9}{5}$.
 $I = \frac{2}{5}\int_{\frac{4}{5}}^{\frac{9}{5}} \frac{1}{(u)^{2}+\frac{9}{25}} du$
 $= \frac{2}{5} \times \frac{5}{3}tan^{-1}\left(\frac{5x}{3}\right) \bigg|_{\frac{5}{4}}^{\frac{9}{5}}$
 $= \frac{2}{3}\left(tan^{-1}3-tan^{-1}\left(\frac{4}{3}\right)\right)$
 $= \frac{2}{3} \times tan^{-1}\left(\frac{3-\frac{4}{3}}{5}\right)$

xy

Evaluate the foll

Solution:

Let
$$I = \int_0^{\pi} \frac{1}{6 - \cos x} dx$$

Using $\cos x = \frac{1 - \tan^2 \left(\frac{x}{2}\right)}{1 + \tan^2 \left(\frac{x}{2}\right)}$, we get
 $I = \int_0^{\pi} \frac{1}{6 - \frac{1 - \tan^2 \left(\frac{x}{2}\right)}{1 + \tan^2 \left(\frac{x}{2}\right)}} dx$
 $= \int_0^{\pi} \frac{\sec^2 \left(\frac{x}{2}\right)}{5 + 7 \tan^2 \left(\frac{x}{2}\right)} dx$
Let $\tan \left(\frac{x}{2}\right) = t$
 $\Rightarrow \frac{1}{2} \sec^2 \left(\frac{x}{2}\right) dx = dt$,
when $x=0$, $t=0$ and when $x=\pi$, $t=\infty$.
Hence, $I = \int_0^{\infty} \frac{2}{5 + 7t^2} dt$
 $= \frac{2}{7} \int_0^{\infty} \frac{1}{t^2 + \frac{5}{7}} dt$
 $= \frac{2}{7} \times \sqrt{\frac{7}{5}} \tan^{-1} \left(\sqrt{\frac{7}{5}x}\right) \Big|_0^{\infty}$
 $\Rightarrow I = \frac{2}{\sqrt{35}} \left(\frac{\pi}{2} - 0\right)$
 $= \frac{\pi}{\sqrt{35}}$

Question: 30

Evaluate the foll

Solution:

Let
$$I = \int_0^\pi \frac{1}{5+4\cos x} dx$$

Using $\cos x = \frac{1-\tan^2\left(\frac{x}{2}\right)}{1+\tan^2\left(\frac{x}{2}\right)}$, we get
 $I = \int_0^\pi \frac{1}{5+4 \times \frac{1-\tan^2\left(\frac{x}{2}\right)}{1+\tan^2\left(\frac{x}{2}\right)}} dx$
 $= \int_0^\pi \frac{\sec^2\left(\frac{x}{2}\right)}{9+\tan^2\left(\frac{x}{2}\right)} dx$
Let $\tan\left(\frac{x}{2}\right) = t$

$$\Rightarrow \frac{1}{2} \sec^2\left(\frac{x}{2}\right) dx = dt,$$

when x=0, t=0 and when x= π , t= ∞ .
Hence, $I = \int_0^\infty \frac{2}{9+t^2} dt$
= $2 \int_0^\infty \frac{1}{9+t^2} dt$
= $2 \times \frac{1}{3} \tan^{-1}\left(\frac{x}{3}\right) \Big|_0^\infty$
 $\Rightarrow I = \frac{2}{3}\left(\frac{\pi}{2} - 0\right)$
= $\frac{\pi}{3}$

Evaluate the foll

Solution:

Let
$$I = \int_0^{\frac{\pi}{2}} \frac{1}{\cos x + 2\sin x} dx$$

Using $\sin x = \frac{2 \tan\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)}$

And

$$cosx = \frac{1-\tan^2\left(\frac{x}{2}\right)}{1+\tan^2\left(\frac{x}{2}\right)},$$

we get

$$\Rightarrow I = \int_{0}^{\frac{\pi}{2}} \frac{1}{\frac{1 - \tan^{2}\left(\frac{x}{2}\right)}{1 + \tan^{2}\left(\frac{x}{2}\right)} + 2\frac{2\tan\left(\frac{x}{2}\right)}{1 + \tan^{2}\left(\frac{x}{2}\right)}} dx$$
$$= \int_{0}^{\frac{\pi}{2}} \frac{\sec^{2}\left(\frac{x}{2}\right)}{1 - \tan^{2}\left(\frac{x}{2}\right) + 4\tan\left(\frac{x}{2}\right)} dx$$
Let $\tan\left(\frac{x}{2}\right) = t$
$$\Rightarrow \frac{1}{2}\sec^{2}\left(\frac{x}{2}\right) dx = dt,$$
when x=0, t=0
and when $x = \frac{\pi}{2}$, t=1.

Hence,

$$I = \int_0^1 \frac{2}{1 - t^2 + 4t} dt$$

= $-2 \int_0^1 \frac{1}{t^2 - 4t + 4 - 5} dt$
= $-2 \int_0^1 \frac{1}{(t - 2)^2 - 5} dt$

Let t-2=u

 \Rightarrow dt=du.

Also, when t=0, u=-2

and when
$$t=1$$
, $u=-1$.

$$\Rightarrow I = -2 \int_{-2}^{-1} \frac{1}{u^2 - 5} dt$$

= $-2 \times \frac{1}{2\sqrt{5}} \log_e \left| \frac{x - \sqrt{5}}{x + \sqrt{5}} \right|_{-2}^{-1}$
(Using $\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \log_e \left| \frac{x - a}{x + a} \right|$)

Hence,

$$\begin{split} I &= -\frac{1}{\sqrt{5}} \left(\log_e \left| \frac{-1 - \sqrt{5}}{-1 + \sqrt{5}} \right| - \log_e \left| \frac{-2 - \sqrt{5}}{-2 + \sqrt{5}} \right| \right) \\ &= \frac{-1}{\sqrt{5}} \left(\log_e \left| \frac{\sqrt{5} + 1}{\sqrt{5} - 1} \right| \times \left| \frac{\sqrt{5} - 2}{2 + \sqrt{5}} \right| \right) \\ \left(\text{Using } \log_e a - \log_e b = \log_e \frac{a}{b} \right) \\ &\Rightarrow I = \frac{-1}{\sqrt{5}} \left(\log_e \left| \frac{3 - \sqrt{5}}{3 + \sqrt{5}} \right| \right) \\ &= \frac{-2}{\sqrt{5}} \left(\log_e \left(\frac{3 - \sqrt{5}}{2} \right) \right) \end{split}$$

 $(\text{Using } \log_e a^b = b \log_e a)$

Question: 32

Evaluate the foll

Solution:

Let
$$I = \int_0^{\pi} \frac{1}{3 + \cos x + 2\sin x} dx$$

Using $\sin x = \frac{2 \tan\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)}$

And

$$cosx = \frac{1 - \tan^2\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)},$$

we get

$$\Rightarrow I = \int_{0}^{\pi} \frac{1}{3 + \frac{1 - \tan^{2}\left(\frac{x}{2}\right)}{1 + \tan^{2}\left(\frac{x}{2}\right)} + 2\frac{2\tan\left(\frac{x}{2}\right)}{1 + \tan^{2}\left(\frac{x}{2}\right)}} dx$$
$$= \int_{0}^{\pi} \frac{\sec^{2}\left(\frac{x}{2}\right)}{4 + 2\tan^{2}\left(\frac{x}{2}\right) + 4\tan\left(\frac{x}{2}\right)} dx$$
Let $\tan\left(\frac{x}{2}\right) = t$
$$\Rightarrow \frac{1}{2}\sec^{2}\left(\frac{x}{2}\right) dx = dt,$$
when x=0, t=0

and when $x = \pi$, $t = \infty$.

Hence,

$$I = \int_0^\infty \frac{1}{(t+1)^2 + 1} dt$$

Let t+1=u

 \Rightarrow dt=du.

Also, when t=0, u=1

and when $t=\infty$, $u=\infty$.

$$I = \int_{1}^{\infty} \frac{1}{u^{2} + 1} dt$$
$$= tan^{-1}u \Big|_{1}^{\infty}$$
$$= \frac{\pi}{2} - \frac{\pi}{4}$$
$$= \frac{\pi}{4}$$

Question: 33

Evaluate the foll

Solution:

Let $I = \int_0^{\frac{\pi}{4}} \frac{tan^3 x}{1+cos2x} dx$

Using $1 + \cos 2x = 2\cos^2 x$, we get

$$I = \frac{1}{2} \int_0^{\frac{\pi}{4}} tan^3 x \sec^2 x \, dx$$

Let $\tan x = t$

 \Rightarrow sec²xdx=dt.

when x=0, t=0

and when $x = \frac{\pi}{4}$, t=1.

$$=\frac{1}{2}\int_{0}^{1}t^{3} dt = \frac{t^{4}}{8}\Big|_{0}^{1}$$
$$=\frac{1}{8}$$

Question: 34

Evaluate the foll

Solution:

Let $I = \int_{0}^{\frac{\pi}{2}} \frac{\sin x \cos x}{\cos^2 x + 3 \cos x + 2} dx$ Let $\cos x = t$ $\Rightarrow -\sin x \, dx = dt$. Also, when x = 0, t = 1and when $x = \frac{\pi}{2}$, t = 0. Hence,

$$I = -\int_{1}^{0} \frac{t}{t^{2} + 3t + 2} dt$$

= $-\int_{1}^{0} \frac{2(t+1) - (t+2)}{(t+1)(t+2)} dt$
= $-\int_{1}^{0} \frac{2}{(t+2)} dt + \int_{1}^{0} \frac{1}{(t+1)} dt$
 $\Rightarrow I = -2 \log_{e}(t+2) \Big|_{1}^{0} + \log_{e}(t+1) \Big|_{1}^{0}$
= $-2\log_{e}2 + 2\log_{e}3 - \log_{e}2$
Hence $I = \log_{e}9 - \log_{e}8$

(Using $blog_ea = log_ea^b$ and $log_ea + log_eb = log_eab$)

Question: 35

Evaluate the foll

Solution:

Let
$$I = \int_0^{\frac{\pi}{2}} \frac{\sin 2x}{\sin^4 x + \cos^4 x} dx$$

Using $\sin 2x = 2 \sin x \cos x$, we get

$$I = \int_0^{\frac{\pi}{2}} \frac{2sinxcosx}{cos^4 x (tan^4 x + 1)} dx$$
$$= 2 \int_0^{\frac{\pi}{2}} \frac{tanxsec^2 x}{(tan^4 x + 1)} dx$$

Let $\tan x = t$

- \Rightarrow sec²xdx=dt.
- Also, when x=0, t=0and when $x = \frac{\pi}{2}$, $t=\infty$.

Hence,
$$2\int_0^\infty \frac{t}{(t^4+1)}dt$$

Let $x^2 = t$

- \Rightarrow 2xdx=dt.
- Also, when x=0, t=0
- and when $x=\infty$, $t=\infty$.

Hence,
$$I = \int_0^\infty \frac{1}{1+t^2} dt$$
$$= tan^{-1}t \Big|_0^\infty$$
$$= \frac{\pi}{2}$$

Question: 36

Evaluate the foll

Solution:

Let
$$I = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sqrt{1 + \cos x}}{(1 - \cos x)^{\frac{5}{2}}} dx$$

Using $1 + cosx = 2cos^2 \left(\frac{x}{2}\right)$

And

$$1 - \cos x = 2\sin^2\left(\frac{x}{2}\right),$$

we get

$$I = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\sqrt{2}\cos\left(\frac{x}{2}\right)}{4\sqrt{2}\left(\sin\left(\frac{x}{2}\right)\right)^{5}} dx$$

$$= \frac{1}{4} \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \cot\left(\frac{x}{2}\right) cosec^{4}\left(\frac{x}{2}\right) dx$$

Let $\cot\left(\frac{x}{2}\right) = t$
 $\Rightarrow -\frac{1}{2} cosec^{2}\left(\frac{x}{2}\right) dx = dt.$
Also, when $x = \frac{\pi}{3}, t = \sqrt{3}$
and when $x = \frac{\pi}{2}, t = 1$
Hence,
 $I = -\frac{1}{2} \int_{\sqrt{3}}^{1} t (1 + t^{2}) dt$
 $= -\frac{1}{2} \frac{t^{2}}{2} \Big|_{\sqrt{3}}^{1} - \frac{1}{2} \frac{t^{4}}{4} \Big|_{\sqrt{3}}^{1}$
 $= \frac{1}{2} + 1$

$$=\frac{3}{2}$$

Question: 37

Evaluate the foll

Solution:

Let $I = \int_0^1 (\cos^{-1}x)^2 dx$

Let $x=\cos t \Rightarrow dx=-\sin t dt$.

Also, when x=0, $t = \frac{\pi}{2}$

and when x=1, t=0.

Hence,
$$I = -\int_{\frac{\pi}{2}}^{0} t^2 \sin t \, dt$$

Using integration by parts, we get

$$I = -\left(t^2 \times -\cos t \left|\frac{0}{\frac{\pi}{2}} + 2\int_{\frac{\pi}{2}}^{0} t c \dot{o} s t dt\right)$$
$$= -\left(0 - 0 + 2t \times sint \left|\frac{0}{\frac{\pi}{2}} - 2\int_{\frac{\pi}{2}}^{0} sint dt\right)$$
$$= -\left(-\pi + 2cost \left|\frac{0}{\frac{\pi}{2}}\right)$$

Hence, $I=\pi-2$

Question: 38

Evaluate the foll

Solution:

Let $I = \int_0^1 x(tan^{-1}x)^2 dx$

Using integration by parts, we get

$$I = \frac{(tan^{-1}x)^2 x^2}{2} \Big|_0^1 - \int_0^1 \frac{2tan^{-1}x}{1+x^2} \times \frac{x^2}{2} dx$$
$$= \frac{\pi^2}{32} - 0 - \int_0^1 \frac{tan^{-1}x}{1+x^2} \times (1+x^2-1) dx$$
$$= \frac{\pi^2}{32} - \int_0^1 tan^{-1}x dx + \int_0^1 \frac{tan^{-1}x}{1+x^2} dx$$

Let $tan^{-1}x=t$

$$\Rightarrow \frac{1}{1+x^2} dx = dt.$$

When x=0, t=0 and when x=1, $t = \frac{\pi}{4}$.

Hence

$$I = \frac{\pi^2}{32} - \tan^{-1}x \times x \Big|_0^1 + \int_0^1 \frac{x}{1+x^2} dx + \int_0^{\frac{\pi}{4}} t dt$$

$$= \frac{\pi^2}{32} - \frac{\pi}{4} + \frac{t^2}{2} \Big|_0^{\frac{\pi}{4}} + \int_0^1 \frac{x}{1+x^2} dx$$

Let $1 + x^2 = y$
 $\Rightarrow 2x dx = dy.$
Also, when $x = 0$, $y = 1$
and when $x = 1$, $y = 2$.
 $I = \frac{\pi^2}{16} - \frac{\pi}{4} + \frac{1}{2} \int_1^2 \frac{1}{y} dy$
 $= \frac{\pi}{4} \left(\frac{\pi}{4} - 1\right) + \frac{1}{2} \log_e y \Big|_1^2$

$$=\frac{\pi}{4}\left(\frac{\pi}{4}-1\right)+\frac{1}{2}\log_e 2.$$

Question: 39

Evaluate the foll

Solution:

Let $I = \int_0^1 \sin^{-1} \sqrt{x} \, dx$ Let $\sqrt{x} = t$

$$\Rightarrow \frac{1}{2\sqrt{x}}dx = dt$$

or

dx=2tdt.

When, x=0, t=0

and when x=1, t=1.

Hence,

$$I = 2 \int_0^1 t \sin^{-1} t \, dt$$

Using integration by parts, we get

$$I = 2\left(\sin^{-1}t \times \frac{t^2}{2}\Big|_0^1 - \int_0^1 \frac{1}{\sqrt{1 - t^2}} \times \frac{t^2}{2}dt\right)$$
$$= \frac{\pi}{2} - \int_0^1 \frac{t^2}{\sqrt{1 - t^2}}dt$$

Let t=sin y

$$\Rightarrow$$
 dt=cos y dy.

When t=0, y=0, when t=1, $y = \frac{\pi}{2}$.

$$I = \frac{\pi}{2} - \int_0^{\frac{\pi}{2}} \sin^2 y \, dy \quad \dots \quad (1)$$

Using, $\int_a^b f(x) \, dx = \int_a^b f(a+b-x) \, dx$, we get
 $I = \frac{\pi}{2} - \int_0^{\frac{\pi}{2}} \cos^2 y \, dy \quad \dots \dots (2)$

Adding (1) and (2), we get

$$2I = \pi - \int_0^{\frac{\pi}{2}} dy$$
$$= \pi - \frac{\pi}{2}$$

Hence,

$$I = \frac{\pi}{4}$$

Question: 40

Evaluate the foll

Solution:

Let
$$I = \int_0^a \sin^{-1} \sqrt{\frac{x}{a+x}} dx$$

Let $x = a \tan^2 y$

 \Rightarrow dx=2a tan y sec²y dy.

Also, when x=0, y=0

and when x=a, $y = \frac{\pi}{4}$

Hence
$$I = \int_0^{\frac{\pi}{4}} \sin^{-1} \left(\sqrt{\frac{a \tan^2 y}{a + a \tan^2 y}} \right) 2a \tan y \sec^2 y \, dy = 2a \int_0^{\frac{\pi}{4}} y \tan y \, \sec^2 y \, dy$$

Using integration by parts, we get

$$I = 2a\left(y\int_{0}^{\frac{\pi}{4}}tanysec^{2}ydy - \int_{0}^{\frac{\pi}{4}}\left(\int tanysec^{2}ydy\right)dy\right)$$

Let tan y=t

 \Rightarrow sec²ydy=dt.

Also, when y=0, t=0 and when $y = \frac{\pi}{4}$, t=1. Also, y=tan⁻¹t $\Rightarrow dy = \frac{dt}{1+t^2}$ $I = 2a \left(tan^{-1}t \int tdt \Big|_0^1 - \int_0^1 \left(\int tdt \right) \frac{dt}{1+t^2} \right)$ $= 2a \left(\frac{tan^{-1}t \times t^2}{2} \Big|_0^1 \right) - 2a \int_0^1 \frac{t^2}{2} \frac{dt}{1+t^2}$ $= \frac{a\pi}{4} - a \int_0^1 \frac{t^2}{1+t^2} dt$ Let $I' = \int_0^1 \frac{t^2}{1+t^2} dt$ $= \int_0^1 \frac{1+t^2-1}{1+t^2} dt$ $= \int_0^1 dt - \int_0^1 \frac{1}{1+t^2} dt$ $= t \Big|_0^1 - tan^{-1}t \Big|_0^1$

Hence $I' = 1 - \frac{\pi}{4}$

Substituting value of I^\prime in I, we get

$$I = \frac{a\pi}{4} - a\left(1 - \frac{\pi}{4}\right)$$
$$= a\left(\frac{\pi}{2} - 1\right)$$

Question: 41

Evaluate the foll

Solution:

Let $I = \int_0^9 \frac{1}{1+\sqrt{x}} dx$

Let $\sqrt{x=u}$

$$\Rightarrow \frac{1}{2\sqrt{x}}dx = du$$
$$= \frac{1}{2u}dx \text{ or } dx = 2udu.$$

Also, when x=0, u=0 and x=9, u=3.

Hence,

$$I = \int_{0}^{3} \frac{2u}{1+u} du$$

= $2\left(\int_{0}^{3} \frac{u+1-1}{1+u} du\right)$
= $2\left(\int_{0}^{3} du - \int_{0}^{3} \frac{1}{1+u} du\right)$

$$I = 2u \Big|_{0}^{3} - \log_{e}(1+u) \Big|_{0}^{3}$$
$$= 6 - 2\log_{e} 4$$
$$= 6 - 4\log_{e} 2$$
$$(Using \ \log_{e} a^{b} = b\log_{e} a)$$

Evaluate the foll

Solution:

Let
$$I = \int_0^1 x^3 \sqrt{1 + 3x^4} \, dx$$

Let $1+3x^4=t$

 $\Rightarrow 12x^3dx=dt.$

Also, when x=0, t=1 and when x=1, t=4.

$$I = \frac{1}{12} \int_{1}^{4} \sqrt{t} \, dt$$
$$= \frac{1}{12} \times \frac{2}{3} t^{\frac{3}{2}} \Big|_{1}^{4}$$
$$= \frac{7}{18}$$

Question: 43

Evaluate the foll

Solution:

Let
$$I = \int_0^1 \frac{1 - x^2}{(1 + x^2)^2} dx$$

Let $I' = \int_0^1 \frac{1}{(1 + x^2)^2} dx$

Let x=tan t

 \Rightarrow dx=sec²tdt.

Also when x=0, t=0 and when x=1, $t = \frac{\pi}{4}$.

Hence,
$$I' = \int_0^{\frac{\pi}{4}} \frac{\sec^2 t}{(1 + \tan^2 t)^2} dt$$

$$=\int_{0} \cos^{2} t dt$$

Using $\cos^2 t = \frac{1+\cos 2t}{2}$, we get

$$I' = \int_0^{\frac{\pi}{4}} \left(\frac{1+\cos 2t}{2}\right) dt$$
$$= \frac{t}{2} \left|\frac{\pi}{4} + \frac{\sin 2t}{4}\right| \frac{\pi}{4}$$
$$= \frac{\pi+2}{8}$$
Let $I'' = \int_0^1 \frac{x^2}{(1+x^2)^2} dx$

$$= \int_{0}^{1} x \times \frac{x}{(1+x^{2})^{2}} dx$$

= $x \int_{0}^{1} \frac{x}{(1+x^{2})^{2}} dx - \int_{0}^{1} \left(\int \frac{x}{(1+x^{2})^{2}} dx \right) dx$
Let $1+x^{2}=t \Rightarrow 2xdx=dt.$

When x=0, t=1 and when x=1, t=2.

$$I'' = \sqrt{t-1} \times \frac{1}{2} \int_{1}^{2} \frac{1}{t^{2}} dt - \int_{1}^{2} \frac{\left(\frac{1}{2} \int \frac{1}{t^{2}} dt\right) dt}{2\sqrt{t-1}}$$
$$= -\frac{\sqrt{t-1}}{2} \times \frac{1}{t} \Big|_{1}^{2} + \int_{1}^{2} \frac{dt}{4t\sqrt{t-1}}$$
$$= -\frac{1}{4} + \int_{1}^{2} \frac{dt}{4t\sqrt{t-1}}$$

Substituting t=1+ x^2

 \Rightarrow 2xdx=dt.

When t=1, x=0 and when t=2, x=1.

$$I'' = -\frac{1}{4} + \int_0^1 \frac{2xdx}{4x(1+x^2)}$$
$$= -\frac{1}{4} + \frac{1}{2}tan^{-1}x\Big|_0^1$$
$$= \frac{\pi - 2}{8}$$

Hence,

$$I = \frac{\pi + 2}{8} - \frac{\pi - 2}{8}$$
$$= \frac{1}{2}$$

Question: 44

Evaluate the foll

Solution:

Let
$$I = \int_{1}^{2} \frac{1}{(x+1)\sqrt{x^2-1}} dx$$

Let x=sect

 \Rightarrow dx=sec t tan t dt.

Also,

when x=1, t=0 and when x=2, $t = \frac{\pi}{3}$

Hence,

$$I = \int_0^{\frac{\pi}{3}} \frac{secttant}{(sect+1)\sqrt{sec^2t-1}} dt$$
$$= \int_0^{\frac{\pi}{3}} \frac{sect}{(sect+1)} dt$$
$$= \int_0^{\frac{\pi}{3}} \frac{1}{(1+cost)} dt$$

Using $1 + cost = 2cos^2 \left(\frac{t}{2}\right)$, we get

$$I = \frac{1}{2} \int_0^{\frac{\pi}{3}} \sec^2\left(\frac{t}{2}\right) dt$$
$$= \tan\left(\frac{t}{2}\right) \left|\frac{\pi}{3}\right|_0^{\frac{\pi}{3}}$$
$$= \frac{1}{\sqrt{3}}$$

Question: 45

Evaluate the foll

Solution:

Let
$$I = \int_0^{\frac{\pi}{2}} (\sqrt{tanx} + \sqrt{cotx}) dx = \int_0^{\frac{\pi}{2}} \frac{sinx+cosx}{\sqrt{sinxcosx}} dx$$

Let sin x- cos x=t
 $\Rightarrow (\cos x + \sin x) dx = dt.$
When x=0, t=-1 and $x = \frac{\pi}{2}$, t=1.
Also, t²=(sin x - cos x)²
 $= \sin^2 x + \cos^2 x \cdot 2 \sin x \cos x$
 $= 1 \cdot 2 \sin x \cos x$
or
 $sincosx = \frac{1-t^2}{2}$
Hence $I = \sqrt{2} \int_{-1}^{1} \frac{1}{\sqrt{1-t^2}} dt$
Let t=sin y
 $\Rightarrow dt = \cos y dy.$
Also, when t=-1, $y = -\frac{\pi}{2}$
and when t=1, $y = \frac{\pi}{2}$.

$$I = \sqrt{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos y}{\sqrt{1 - \sin^2 y}} dy$$
$$= \sqrt{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} dy = \pi\sqrt{2}$$

Question: 46

Evaluate the foll

Solution:

Let
$$I = \int_2^3 \frac{2-x}{\sqrt{5x-6-x^2}} dx$$

Let,

$$2 - x = a \frac{d}{dx} (5x - 6 - x^2) + b$$
$$= -2ax + 5a + b$$

Hence -2a=-1 and 5a+b=2.

Solving these equations,

we get $a = \frac{1}{2}$ and $b = -\frac{1}{2}$. We get, $I = \frac{1}{2} \int_{2}^{3} \frac{-2x+5}{\sqrt{5x-6-x^{2}}} dx - \frac{1}{2} \int_{2}^{3} \frac{1}{\sqrt{5x-6-x^{2}}} dx$ Let $I' = \int_{2}^{3} \frac{-2x+5}{\sqrt{5x-6-x^{2}}} dx$ Let $5x-6-x^{2}=t$ $\Rightarrow (5-2x) dx=dt$. When x=2, t=0 and when x=3, y=0. Hence $I' = \int_{0}^{0} \frac{1}{\sqrt{t}} dt = 0$

$$\left(Since \int_{a}^{a} f(x)dx = 0\right)$$

Let,

$$I'' = \int_{2}^{3} \frac{1}{\sqrt{5x-6-x^{2}}} dx$$
$$= \int_{2}^{3} \frac{1}{\sqrt{\frac{1}{4} - \left(x - \frac{5}{2}\right)^{2}}}$$
$$= \sin^{-1}\left(\frac{x - \frac{5}{2}}{\frac{1}{2}}\right)$$
$$= \sin^{-1}(2x - 5) \Big|_{2}^{3}$$
$$= \pi$$

Hence,

$$I = \frac{1}{2} \times 0 - \frac{1}{2} \times \pi$$
$$= -\frac{\pi}{2}$$

Question: 47

Evaluate the foll

Solution:

Let
$$I = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos x}{\left(\cos\left(\frac{x}{2}\right) + \sin\left(\frac{x}{2}\right)\right)^2} dx$$

Using $\cos x = \cos^2\left(\frac{x}{2}\right) - \sin^2\left(\frac{x}{2}\right)$, we get
 $I = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos\left(\frac{x}{2}\right) - \sin\left(\frac{x}{2}\right)}{\left(\cos\left(\frac{x}{2}\right) + \sin\left(\frac{x}{2}\right)\right)^2} dx$
Let $\cos\left(\frac{x}{2}\right) + \sin\left(\frac{x}{2}\right) = t$

 $\Rightarrow \frac{1}{2} \left(\cos\left(\frac{x}{2}\right) - \sin\left(\frac{x}{2}\right) \right) dx = dt.$ Also, when $x = \frac{\pi}{4}$, $t = \cos\left(\frac{\pi}{8}\right) + \sin\left(\frac{\pi}{8}\right) = \alpha$ (Let) and when $x = \frac{\pi}{2}$, $t = \sqrt{2}$

$$I = \int_{\alpha} \frac{1}{t^2} dt$$
$$= -2 \times \frac{1}{t} \Big|_{\alpha}^{\sqrt{2}}$$
$$= \frac{2}{\cos\left(\frac{\pi}{8}\right) + \sin\left(\frac{\pi}{8}\right)} - \sqrt{2}$$

Question: 48

Evaluate the foll

Solution:

Let
$$I = \int_0^{\left(\frac{\pi}{2}\right)^{\frac{1}{2}}} x^2 \sin(x^3) dx$$

Let $x^3 = t$

$$\Rightarrow 3x^2 = dt$$

Also, when x=0, t=0 and when $x = \left(\frac{\pi}{2}\right)^{\frac{1}{2}}$, $t = \frac{\pi}{2}$.

Hence,
$$I = \frac{1}{3} \int_{0}^{\frac{\pi}{2}} \sin(t) dt$$

= $\frac{-1}{3} cost \Big|_{0}^{\frac{\pi}{2}}$
= $-\frac{1}{3} (0-1)$
= $\frac{1}{3}$

Question: 49

Evaluate the foll

Solution:

Let $I = \int_{1}^{2} \frac{1}{x(1+\log_{e}x)^{2}} dx$ Let $1 + \log_{e} x = t$ $\Rightarrow \frac{1}{x} dx = dt$. Also, when x=1, t=1 and when x=2, $t = 1 + \log_{e} 2$ Hence $I = \int_{1}^{1+\log_{e} 2} \frac{1}{t^{2}} dt$ $= -\frac{1}{t} |1 + \log_{e} 2|$

$$\begin{aligned} & = t & | & 1 \\ & = 1 - \frac{1}{1 + \log_e 2} \end{aligned}$$

 $=\frac{\log_e 2}{1+\log_e 2}$

Question: 50

Evaluate the foll

Solution:

Let
$$I = \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{\cos excotx}{1 + \cos e^2 x} dx = \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{\cos x}{1 + \sin^2 x} dx$$

Let sinx=t

 $\Rightarrow \cos x \, dx = dt.$

Also, when $x = \frac{\pi}{6}$, $t = \frac{1}{2}$ and when $x = \frac{\pi}{2}$, t=1. $I = \int_{\frac{1}{2}}^{1} \frac{1}{1+t^2} dt$ $= tan^{-1}t \left| \frac{1}{2} \right|$ $= tan^{-1}1 - tan^{-1} \left(\frac{1}{2} \right)$ $= tan^{-1} \left(\frac{1-\frac{1}{2}}{1+\frac{1}{2}} \right)$ $= tan^{-1} \left(\frac{1}{3} \right)$

(Using
$$tan^{-1}a - tan^{-1}b = tan^{-1}\left(\frac{a-b}{1+ab}\right)$$
)

Exercise : 16C

Question: 1

Prove that

Solution:

$$y = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \frac{2 \cos x}{\sin x + \cos x} dx$$

= $\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \frac{\cos x + \cos x - \sin x + \sin x}{\sin x + \cos x} dx$
= $\frac{1}{2} \int_{0}^{\frac{\pi}{2}} 1 + \frac{\cos x - \sin x}{\sin x + \cos x} dx$
= $\frac{1}{2} \left((x)_{0}^{\frac{\pi}{2}} + \int_{0}^{\frac{\pi}{2}} \frac{\cos x - \sin x}{\sin x + \cos x} dx \right)$

Let, $\sin x + \cos x = t$

 \Rightarrow (cos x - sin x) dx = dt

At x = 0, t = 1

At
$$x = \pi/2$$
, $t = 1$

$$y = \frac{1}{2} \left(\frac{\pi}{2} + \int_{1}^{1} \frac{1}{t} dt \right)$$

$$y = \frac{1}{2} \left(\frac{\pi}{2} + (\ln t) \right)^{1}$$

$$y = \frac{\pi}{4}$$

Prove that

Solution:

$$y = \int_0^{\pi/2} \frac{\sqrt{\sin x}}{(\sqrt{\sin x} + \sqrt{\cos x})} dx \dots (1)$$

Use King theorem of definite integral

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$
$$y = \int_{0}^{\pi/2} \frac{\sqrt{\sin\left(\frac{\pi}{2}-x\right)}}{\left(\sqrt{\sin\left(\frac{\pi}{2}-x\right)} + \sqrt{\cos\left(\frac{\pi}{2}-x\right)}\right)} dx$$
$$y = \int_{0}^{\pi/2} \frac{\sqrt{\cos x}}{\left(\sqrt{\cos x} + \sqrt{\sin x}\right)} dx \dots (2)$$

Adding eq.(1) and eq.(2)

$$2y = \int_0^{\pi/2} \frac{\sqrt{\sin x}}{(\sqrt{\sin x} + \sqrt{\cos x})} dx + \int_0^{\pi/2} \frac{\sqrt{\cos x}}{(\sqrt{\cos x} + \sqrt{\sin x})} dx$$
$$= \int_0^{\pi/2} \frac{\sqrt{\sin x} + \sqrt{\cos x}}{(\sqrt{\sin x} + \sqrt{\cos x})} dx$$
$$= \int_0^{\pi/2} 1 dx$$
$$= (x)_0^{\frac{\pi}{2}}$$
$$y = \frac{\pi}{4}$$

Question: 3 A

Prove that

Solution:

$$y = \int_0^{\pi/2} \frac{\sin^3 x}{\sin^3 x + \cos^3 x} dx \dots (1)$$

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$
$$y = \int_{0}^{\pi/2} \frac{\sin^{3}\left(\frac{\pi}{2} - x\right)}{\sin^{3}\left(\frac{\pi}{2} - x\right) + \cos^{3}\left(\frac{\pi}{2} - x\right)} dx$$

$$y = \int_0^{\pi/2} \frac{\cos^3 x}{\sin^3 x + \cos^3 x} dx \dots (2)$$

Adding eq.(1) and eq.(2)

$$2y = \int_{0}^{\pi/2} \frac{\sin^{3} x}{\sin^{3} x + \cos^{3} x} dx + \int_{0}^{\pi/2} \frac{\cos^{3} x}{\sin^{3} x + \cos^{3} x} dx$$
$$= \int_{0}^{\pi/2} \frac{\sin^{3} x + \cos^{3} x}{\sin^{3} x + \cos^{3} x} dx$$
$$= \int_{0}^{\pi/2} 1 dx$$
$$2y = (x)_{0}^{\frac{\pi}{2}}$$
$$y = \frac{\pi}{4}$$

Question: 3 B

Prove that

Solution:

$$y = \int_0^{\pi/2} \frac{\cos^3 x}{\sin^3 x + \cos^3 x} dx \dots (1)$$

Use King theorem of definite integral

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$
$$y = \int_{0}^{\pi/2} \frac{\cos^{3}\left(\frac{\pi}{2} - x\right)}{\sin^{3}\left(\frac{\pi}{2} - x\right) + \cos^{3}\left(\frac{\pi}{2} - x\right)} dx$$
$$y = \int_{0}^{\pi/2} \frac{\sin^{3}x}{\sin^{3}x + \cos^{3}x} dx \dots (2)$$

Adding eq.(1) and eq.(2)

$$2y = \int_{0}^{\pi/2} \frac{\cos^{3} x}{\sin^{3} x + \cos^{3} x} dx + \int_{0}^{\pi/2} \frac{\sin^{3} x}{\sin^{3} x + \cos^{3} x} dx$$
$$2y = \int_{0}^{\pi/2} \frac{\cos^{3} x + \sin^{3} x}{\sin^{3} x + \cos^{3} x} dx$$
$$2y = \int_{0}^{\pi/2} 1 dx$$
$$2y = (x)_{0}^{\frac{\pi}{2}}$$
$$y = \frac{\pi}{4}$$

Question: 4 A

Prove that

Solution:

$$y = \int_0^{\pi/2} \frac{\sin^7 x}{\sin^7 x + \cos^7 x} dx \dots (1)$$

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$
$$y = \int_{0}^{\pi/2} \frac{\sin^{7}\left(\frac{\pi}{2} - x\right)}{\sin^{7}\left(\frac{\pi}{2} - x\right) + \cos^{7}\left(\frac{\pi}{2} - x\right)} dx$$
$$y = \int_{0}^{\pi/2} \frac{\cos^{7}x}{\sin^{7}x + \cos^{7}x} dx \dots (2)$$

Adding eq.(1) and eq.(2)

$$2y = \int_{0}^{\pi/2} \frac{\sin^{7} x}{\sin^{7} x + \cos^{7} x} dx + \int_{0}^{\pi/2} \frac{\cos^{7} x}{\sin^{7} x + \cos^{7} x} dx$$
$$2y = \int_{0}^{\pi/2} \frac{\sin^{7} x + \cos^{7} x}{\sin^{7} x + \cos^{7} x} dx$$
$$2y = \int_{0}^{\pi/2} 1 dx$$
$$2y = (x)_{0}^{\frac{\pi}{2}}$$
$$y = \frac{\pi}{4}$$

Question: 4 B

Prove that

Solution:

 $y = \int_0^{\pi/2} \frac{\cos^4 x}{\sin^4 x + \cos^4 x} dx \dots (1)$

Use King theorem of definite integral

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$
$$y = \int_{0}^{\pi/2} \frac{\cos^{4}\left(\frac{\pi}{2} - x\right)}{\sin^{4}\left(\frac{\pi}{2} - x\right) + \cos^{4}\left(\frac{\pi}{2} - x\right)} dx$$
$$y = \int_{0}^{\pi/2} \frac{\sin^{4}x}{\sin^{4}x + \cos^{4}x} dx \dots (2)$$

Adding eq.(1) and eq.(2)

$$2y = \int_{0}^{\pi/2} \frac{\cos^{4}x}{\sin^{4}x + \cos^{4}x} dx + \int_{0}^{\pi/2} \frac{\sin^{4}x}{\sin^{4}x + \cos^{4}x} dx$$
$$2y = \int_{0}^{\pi/2} \frac{\cos^{4}x + \sin^{4}x}{\sin^{4}x + \cos^{4}x} dx$$
$$2y = \int_{0}^{\pi/2} 1 dx$$
$$2y = (x)_{0}^{\frac{\pi}{2}}$$
$$y = \frac{\pi}{4}$$

Question: 5

Prove that

Solution:

$$y = \int_0^{\pi/2} \frac{\cos^4 x}{\sin^4 x + \cos^4 x} dx \dots (1)$$

Use King theorem of definite integral

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$
$$y = \int_{0}^{\pi/2} \frac{\cos^{4}\left(\frac{\pi}{2} - x\right)}{\sin^{4}\left(\frac{\pi}{2} - x\right) + \cos^{4}\left(\frac{\pi}{2} - x\right)} dx$$
$$y = \int_{0}^{\pi/2} \frac{\sin^{4}x}{\sin^{4}x + \cos^{4}x} dx \dots (2)$$

Adding eq.(1) and eq.(2)

$$2y = \int_{0}^{\pi/2} \frac{\cos^{4}x}{\sin^{4}x + \cos^{4}x} dx + \int_{0}^{\pi/2} \frac{\sin^{4}x}{\sin^{4}x + \cos^{4}x} dx$$
$$2y = \int_{0}^{\pi/2} \frac{\cos^{4}x + \sin^{4}x}{\sin^{4}x + \cos^{4}x} dx$$
$$2y = \int_{0}^{\pi/2} 1 dx$$
$$2y = (x)_{0}^{\frac{\pi}{2}}$$
$$y = \frac{\pi}{4}$$

Question: 6

Prove that

Solution:

$$y = \int_0^{\pi/2} \frac{\cos^{\frac{1}{4}x}}{\sin^{\frac{1}{4}x} + \cos^{\frac{1}{4}x}} dx \dots (1)$$

Use King theorem of definite integral

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$
$$y = \int_{0}^{\pi/2} \frac{\cos^{\frac{1}{4}}(\frac{\pi}{2}-x)}{\sin^{\frac{1}{4}}(\frac{\pi}{2}-x) + \cos^{\frac{1}{4}}(\frac{\pi}{2}-x)} dx$$
$$y = \int_{0}^{\pi/2} \frac{\sin^{\frac{1}{4}x}}{\sin^{\frac{1}{4}x} + \cos^{\frac{1}{4}x}} dx \dots (2)$$

$$2y = \int_{0}^{\pi/2} \frac{\cos^{\frac{1}{4}x}}{\sin^{\frac{1}{4}x} + \cos^{\frac{1}{4}x}} dx + \int_{0}^{\pi/2} \frac{\sin^{\frac{1}{4}x}}{\sin^{\frac{1}{4}x} + \cos^{\frac{1}{4}x}} dx$$
$$2y = \int_{0}^{\pi/2} \frac{\cos^{\frac{1}{4}x} + \sin^{\frac{1}{4}x}}{\sin^{\frac{1}{4}x} + \cos^{\frac{1}{4}x}} dx$$
$$2y = \int_{0}^{\pi/2} 1 dx$$

$$2y = (x)_0^{\frac{\pi}{2}}$$
$$y = \frac{\pi}{4}$$

Prove that

Solution:

$$y = \int_0^{\pi/2} \frac{\sin^2 x}{\sin^2 x + \cos^2 x} dx \dots (1)$$

Use King theorem of definite integral

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$
$$y = \int_{0}^{\pi/2} \frac{\sin^{\frac{3}{2}}\left(\frac{\pi}{2}-x\right)}{\sin^{\frac{3}{2}}\left(\frac{\pi}{2}-x\right) + \cos^{\frac{3}{2}}\left(\frac{\pi}{2}-x\right)} dx$$
$$y = \int_{0}^{\pi/2} \frac{\cos^{\frac{3}{2}x}}{\sin^{\frac{3}{2}x} + \cos^{\frac{3}{2}x}} dx \dots (2)$$

Adding eq.(1) and eq.(2)

$$2y = \int_{0}^{\pi/2} \frac{\sin^{\frac{3}{2}x}}{\sin^{\frac{3}{2}x} + \cos^{\frac{3}{2}x}} dx + \int_{0}^{\pi/2} \frac{\cos^{\frac{3}{2}x}}{\sin^{\frac{3}{2}x} + \cos^{\frac{3}{2}x}} dx$$

$$2y = \int_{0}^{\pi/2} \frac{\sin^{\frac{3}{2}x} + \cos^{\frac{3}{2}x}}{\sin^{\frac{3}{2}x} + \cos^{\frac{3}{2}x}} dx$$

$$2y = \int_{0}^{\pi/2} 1 dx$$

$$2y = (x)_{0}^{\frac{\pi}{2}}$$

$$y = \frac{\pi}{4}$$

Question: 8

Prove that

Solution:

$$y = \int_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx \dots (1)$$

Use King theorem of definite integral

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$
$$y = \int_{0}^{\pi/2} \frac{\sin^{n}\left(\frac{\pi}{2} - x\right)}{\sin^{n}\left(\frac{\pi}{2} - x\right) + \cos^{n}\left(\frac{\pi}{2} - x\right)} dx$$
$$y = \int_{0}^{\pi/2} \frac{\cos^{n}x}{\sin^{n}x + \cos^{n}x} dx \dots (2)$$

$$2y = \int_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx + \int_0^{\pi/2} \frac{\cos^n x}{\sin^n x + \cos^n x} dx$$
$$2y = \int_0^{\pi/2} \frac{\sin^n x + \cos^n x}{\sin^n x + \cos^n x} dx$$
$$2y = \int_0^{\pi/2} 1 dx$$
$$2y = (x)_0^{\frac{\pi}{2}}$$
$$y = \frac{\pi}{4}$$

Prove that

Solution:

$$y = \int_0^{\frac{\pi}{2}} \frac{\sqrt{\frac{\sin x}{\cos x}}}{\sqrt{\frac{\sin x}{\cos x} + \sqrt{\frac{\cos x}{\sin x}}}} dx$$
$$y = \int_0^{\frac{\pi}{2}} \frac{\sin x}{\sin x + \cos x} dx \dots (1)$$

Use King theorem of definite integral

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$
$$y = \int_{0}^{\pi/2} \frac{\sin(\frac{\pi}{2}-x)}{\sin(\frac{\pi}{2}-x) + \cos(\frac{\pi}{2}-x)} dx$$
$$y = \int_{0}^{\pi/2} \frac{\cos x}{\sin x + \cos x} dx \dots (2)$$

Adding eq.(1) and eq.(2)

$$2y = \int_{0}^{\pi/2} \frac{\sin x}{\sin x + \cos x} \, dx + \int_{0}^{\pi/2} \frac{\cos x}{\sin x + \cos x} \, dx$$
$$2y = \int_{0}^{\pi/2} \frac{\sin x + \cos x}{\sin x + \cos x} \, dx$$
$$2y = \int_{0}^{\pi/2} 1 \, dx$$
$$2y = (x)_{0}^{\frac{\pi}{2}}$$
$$y = \frac{\pi}{4}$$

Question: 10

Prove that

Solution:

$$y = \int_0^{\frac{\pi}{2}} \frac{\sqrt{\frac{\cos x}{\sin x}}}{\sqrt{\frac{\sin x}{\cos x}} + \sqrt{\frac{\cos x}{\sin x}}} dx$$
$$y = \int_0^{\frac{\pi}{2}} \frac{\cos x}{\sin x + \cos x} dx \dots (1)$$

Use King theorem of definite integral

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$
$$y = \int_{0}^{\pi/2} \frac{\cos\left(\frac{\pi}{2} - x\right)}{\sin\left(\frac{\pi}{2} - x\right) + \cos\left(\frac{\pi}{2} - x\right)} dx$$
$$y = \int_{0}^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx \dots (2)$$
Adding eq.(1) and eq.(2)

$$2y = \int_0^{\pi/2} \frac{\cos x}{\sin x + \cos x} \, dx + \int_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} \, dx$$
$$2y = \int_0^{\pi/2} \frac{\sin x + \cos x}{\sin x + \cos x} \, dx$$
$$2y = \int_0^{\pi/2} 1 \, dx$$
$$2y = (x)_0^{\frac{\pi}{2}}$$
$$y = \frac{\pi}{4}$$

Question: 11

Prove that

Solution:

$$y = \int_0^{\frac{\pi}{2}} \frac{1}{1 + \frac{\sin x}{\cos x}} dx$$
$$y = \int_0^{\frac{\pi}{2}} \frac{\cos x}{\sin x + \cos x} dx \dots (1)$$

Use King theorem of definite integral

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$
$$y = \int_{0}^{\pi/2} \frac{\cos\left(\frac{\pi}{2} - x\right)}{\sin\left(\frac{\pi}{2} - x\right) + \cos\left(\frac{\pi}{2} - x\right)} dx$$
$$y = \int_{0}^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx \dots (2)$$

$$2y = \int_{0}^{\pi/2} \frac{\cos x}{\sin x + \cos x} \, dx + \int_{0}^{\pi/2} \frac{\sin x}{\sin x + \cos x} \, dx$$
$$2y = \int_{0}^{\pi/2} \frac{\sin x + \cos x}{\sin x + \cos x} \, dx$$
$$2y = \int_{0}^{\pi/2} 1 \, dx$$
$$2y = (x)_{0}^{\frac{\pi}{2}}$$
$$y = \frac{\pi}{4}$$

Prove that

Solution:

$$y = \int_0^{\frac{\pi}{2}} \frac{1}{1 + \frac{\cos x}{\sin x}} dx$$
$$y = \int_0^{\frac{\pi}{2}} \frac{\sin x}{\sin x + \cos x} dx \dots (1)$$

Use King theorem of definite integral

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$
$$y = \int_{0}^{\pi/2} \frac{\sin\left(\frac{\pi}{2} - x\right)}{\sin\left(\frac{\pi}{2} - x\right) + \cos\left(\frac{\pi}{2} - x\right)} dx$$
$$y = \int_{0}^{\pi/2} \frac{\cos x}{\sin x + \cos x} dx \dots (2)$$

Adding eq.(1) and eq.(2)

$$2y = \int_{0}^{\pi/2} \frac{\sin x}{\sin x + \cos x} \, dx + \int_{0}^{\pi/2} \frac{\cos x}{\sin x + \cos x} \, dx$$
$$2y = \int_{0}^{\pi/2} \frac{\sin x + \cos x}{\sin x + \cos x} \, dx$$
$$2y = \int_{0}^{\pi/2} 1 \, dx$$
$$2y = (x)_{0}^{\frac{\pi}{2}}$$
$$y = \frac{\pi}{4}$$

Question: 13

Prove that

Solution:

$$y = \int_0^{\frac{\pi}{2}} \frac{1}{1 + \frac{\sin^2 x}{\cos^2 x}} dx$$
$$y = \int_0^{\frac{\pi}{2}} \frac{\cos^2 x}{\sin^2 x + \cos^2 x} dx \dots (1)$$

Use King theorem of definite integral

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$

$$y = \int_{0}^{\pi/2} \frac{\cos^{3}\left(\frac{\pi}{2} - x\right)}{\sin^{3}\left(\frac{\pi}{2} - x\right) + \cos^{3}\left(\frac{\pi}{2} - x\right)} dx$$

$$y = \int_{0}^{\pi/2} \frac{\sin^{2}x}{\sin^{3}x + \cos^{3}x} dx \dots (2)$$

$$2y = \int_0^{\pi/2} \frac{\cos^3 x}{\sin^3 x + \cos^3 x} dx + \int_0^{\pi/2} \frac{\sin^3 x}{\sin^3 x + \cos^3 x} dx$$

$$2y = \int_0^{\pi/2} \frac{\cos^3 x + \sin^3 x}{\sin^3 x + \cos^3 x} dx$$
$$2y = \int_0^{\pi/2} 1 dx$$
$$2y = (x)_0^{\frac{\pi}{2}}$$
$$y = \frac{\pi}{4}$$

Prove that

Solution:

$$y = \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \frac{\cos^{2}x}{\sin^{2}x}} dx$$
$$y = \int_{0}^{\frac{\pi}{2}} \frac{\sin^{2}x}{\sin^{2}x + \cos^{2}x} dx \dots (1)$$

Use King theorem of definite integral

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$
$$y = \int_{0}^{\pi/2} \frac{\sin^{3}\left(\frac{\pi}{2} - x\right)}{\sin^{3}\left(\frac{\pi}{2} - x\right) + \cos^{3}\left(\frac{\pi}{2} - x\right)} dx$$
$$y = \int_{0}^{\pi/2} \frac{\cos^{3}x}{\sin^{3}x + \cos^{3}x} dx \dots (2)$$

Adding eq.(1) and eq.(2)

$$2y = \int_{0}^{\pi/2} \frac{\sin^{3} x}{\sin^{3} x + \cos^{3} x} dx + \int_{0}^{\pi/2} \frac{\cos^{3} x}{\sin^{3} x + \cos^{3} x} dx$$
$$2y = \int_{0}^{\pi/2} \frac{\sin^{3} x + \cos^{3} x}{\sin^{3} x + \cos^{3} x} dx$$
$$2y = \int_{0}^{\pi/2} 1 dx$$
$$2y = (x)_{0}^{\frac{\pi}{2}}$$
$$y = \frac{\pi}{4}$$

Question: 15

Prove that

Solution:

$$y = \int_0^{\frac{\pi}{2}} \frac{1}{1 + \sqrt{\frac{\sin x}{\cos x}}} dx$$
$$y = \int_0^{\frac{\pi}{2}} \frac{\sqrt{\cos x}}{(\sqrt{\sin x} + \sqrt{\cos x})} dx \dots (1)$$

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$

$$y = \int_0^{\pi/2} \frac{\sqrt{\cos\left(\frac{\pi}{2} - x\right)}}{\left(\sqrt{\sin\left(\frac{\pi}{2} - x\right)} + \sqrt{\cos\left(\frac{\pi}{2} - x\right)}\right)} dx$$
$$y = \int_0^{\pi/2} \frac{\sqrt{\sin x}}{\left(\sqrt{\cos x + \sqrt{\sin x}}\right)} dx \dots (2)$$

Adding eq.(1) and eq.(2)

$$2y = \int_{0}^{\pi/2} \frac{\sqrt{\cos x}}{(\sqrt{\sin x} + \sqrt{\cos x})} dx + \int_{0}^{\pi/2} \frac{\sqrt{\sin x}}{(\sqrt{\cos x} + \sqrt{\sin x})} dx$$
$$2y = \int_{0}^{\pi/2} \frac{\sqrt{\sin x} + \sqrt{\cos x}}{(\sqrt{\sin x} + \sqrt{\cos x})} dx$$
$$2y = \int_{0}^{\pi/2} 1 dx$$
$$2y = (x)_{0}^{\frac{\pi}{2}}$$
$$y = \frac{\pi}{4}$$

Question: 16

Prove that

Solution:

$$y = \int_0^{\frac{\pi}{2}} \frac{\sqrt{\frac{\cos x}{\sin x}}}{1 + \sqrt{\frac{\cos x}{\sin x}}} dx$$
$$y = \int_0^{\frac{\pi}{2}} \frac{\sqrt{\cos x}}{(\sqrt{\sin x} + \sqrt{\cos x})} dx \dots (1)$$

Use King theorem of definite integral

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$
$$y = \int_{0}^{\pi/2} \frac{\sqrt{\cos\left(\frac{\pi}{2}-x\right)}}{\left(\sqrt{\sin\left(\frac{\pi}{2}-x\right)} + \sqrt{\cos\left(\frac{\pi}{2}-x\right)}\right)} dx$$

$$y = \int_0^{\pi/2} \frac{\sqrt{\sin x}}{(\sqrt{\cos x} + \sqrt{\sin x})} dx \dots (2)$$

$$2y = \int_{0}^{\pi/2} \frac{\sqrt{\cos x}}{(\sqrt{\sin x} + \sqrt{\cos x})} dx + \int_{0}^{\pi/2} \frac{\sqrt{\sin x}}{(\sqrt{\cos x} + \sqrt{\sin x})} dx$$
$$2y = \int_{0}^{\pi/2} \frac{\sqrt{\sin x} + \sqrt{\cos x}}{(\sqrt{\sin x} + \sqrt{\cos x})} dx$$
$$2y = \int_{0}^{\pi/2} 1 dx$$
$$2y = (x) \int_{0}^{\frac{\pi}{2}}$$
$$y = \frac{\pi}{4}$$

Prove that

Solution:

$$y = \int_0^{\frac{\pi}{2}} \frac{\sqrt{\frac{\sin x}{\cos x}}}{1 + \sqrt{\frac{\sin x}{\cos x}}} dx$$
$$y = \int_0^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{(\sqrt{\sin x} + \sqrt{\cos x})} dx \dots (1)$$

Use King theorem of definite integral

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$

$$y = \int_0^{\pi/2} \frac{\sqrt{\sin\left(\frac{\pi}{2} - x\right)}}{\left(\sqrt{\sin\left(\frac{\pi}{2} - x\right)} + \sqrt{\cos\left(\frac{\pi}{2} - x\right)}\right)} dx$$
$$y = \int_0^{\pi/2} \frac{\sqrt{\cos x}}{\left(\sqrt{\cos x} + \sqrt{\sin x}\right)} dx \dots (2)$$

Adding eq.(1) and eq.(2)

$$2y = \int_{0}^{\pi/2} \frac{\sqrt{\sin x}}{(\sqrt{\sin x} + \sqrt{\cos x})} dx + \int_{0}^{\pi/2} \frac{\sqrt{\cos x}}{(\sqrt{\cos x} + \sqrt{\sin x})} dx$$
$$2y = \int_{0}^{\pi/2} \frac{\sqrt{\sin x} + \sqrt{\cos x}}{(\sqrt{\sin x} + \sqrt{\cos x})} dx$$
$$2y = \int_{0}^{\pi/2} 1 dx$$
$$2y = (x)_{0}^{\frac{\pi}{2}}$$
$$y = \frac{\pi}{4}$$

Question: 18

Prove that

Solution:

$$y = \int_0^{\frac{\pi}{2}} \frac{\sin x - \cos x}{1 + \sin x \cos x} dx \dots (1)$$

Use King theorem of definite integral

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$
$$y = \int_{0}^{\frac{\pi}{2}} \frac{\sin\left(\frac{\pi}{2} - x\right) - \cos\left(\frac{\pi}{2} - x\right)}{1 + \sin\left(\frac{\pi}{2} - x\right)\cos\left(\frac{\pi}{2} - x\right)} dx$$
$$y = \int_{0}^{\frac{\pi}{2}} \frac{\cos x - \sin x}{1 + \cos x \sin x} dx \dots (2)$$

$$2y = \int_{0}^{\frac{\pi}{2}} \frac{\sin x - \cos x}{1 + \sin x \cos x} dx + \int_{0}^{\frac{\pi}{2}} \frac{\cos x - \sin x}{1 + \cos x \sin x} dx$$
$$2y = \int_{0}^{\frac{\pi}{2}} \frac{\sin x - \cos x + \cos x - \sin x}{1 + \cos x \sin x} dx$$
$$2y = \int_{0}^{\frac{\pi}{2}} 0 dx$$
$$y = 0$$

Prove that

Solution:

$$y = \int_0^1 x(1-x)^5 dx$$

Use King theorem of definite integral

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$
$$y = \int_{0}^{1} (1-x)x^{5} dx$$
$$y = \int_{0}^{1} x^{5} - x^{6} dx$$
$$y = \left(\frac{x^{6}}{6} - \frac{x^{7}}{7}\right)_{0}^{1}$$
$$y = \frac{1}{6} - \frac{1}{7}$$
$$= \frac{1}{42}$$

Question: 20

Prove that

Solution:

$$y = \int_0^2 x \sqrt{2 - x} \, dx$$

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$
$$y = \int_{0}^{2} (2-x)\sqrt{x} dx$$
$$y = \int_{0}^{2} 2x^{\frac{1}{2}} - x^{\frac{3}{2}} dx$$

$$y = \left(2\frac{x^{\frac{3}{2}}}{\frac{3}{2}} - \frac{x^{\frac{5}{2}}}{\frac{5}{2}}\right)_{0}^{2}$$
$$y = \frac{8\sqrt{2}}{3} - \frac{8\sqrt{2}}{5} = \frac{16\sqrt{2}}{15}$$

Prove that

Solution:

$$y = \int_0^{\pi} x \cos^2 x \, dx \dots (1)$$

Use King theorem of definite integral

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$
$$y = \int_{0}^{\pi} (\pi - x) \cos^{2}(\pi - x) dx$$
$$y = \int_{0}^{\pi} \pi \cos^{2} x - x \cos^{2} x dx \dots (2)$$

Adding eq.(1) and eq.(2)

$$2y = \int_{0}^{\pi} x \cos^{2} x \, dx + \int_{0}^{\pi} \pi \cos^{2} x - x \cos^{2} x \, dx$$

$$2y = \int_{0}^{\pi} \pi \cos^{2} x \, dx$$

$$y = \frac{\pi}{2} \int_{0}^{\pi} \frac{1 + \cos 2x}{2} \, dx$$

$$y = \frac{\pi}{2} \left(\frac{x}{2} + \frac{\sin 2x}{4}\right)_{0}^{\pi}$$

$$y = \frac{\pi}{2} \left(\frac{\pi}{2} + \frac{\sin 2\pi}{4}\right) = \frac{\pi^{2}}{4}$$

Question: 22

Question: 22

Prove that

Solution:

$$y = \int_0^\pi \frac{x \tan x}{\sec x \csc x} dx \dots (1)$$

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$
$$y = \int_{0}^{\pi} \frac{(\pi-x)\tan(\pi-x)}{\sec(\pi-x) \csc(\pi-x)} dx$$
$$y = \int_{0}^{\pi} \frac{-(\pi-x)\tan x}{-\sec x \csc x} dx$$

$$y = \int_0^\pi \frac{\pi \tan x - x \tan x}{\sec x \csc x} dx \dots (2)$$

Adding eq.(1) and eq.(2)

$$2y = \int_{0}^{\pi} \frac{x \tan x}{\sec x \ cosec \ x} dx + \int_{0}^{\pi} \frac{\pi \tan x - x \tan x}{\sec x \ cosec \ x} dx$$
$$2y = \int_{0}^{\pi} \frac{\pi \tan x}{\sec x \ cosec \ x} dx$$
$$y = \frac{\pi}{2} \int_{0}^{\pi} \frac{\frac{\sin x}{\cos x}}{\frac{1}{\cos x} \times \frac{1}{\sin x}} dx$$
$$y = \frac{\pi}{2} \int_{0}^{\pi} \frac{1 - \cos 2x}{2} dx$$
$$y = \frac{\pi}{2} \left(\frac{x}{2} - \frac{\sin 2x}{4}\right)_{0}^{\pi}$$
$$y = \frac{\pi}{2} \left(\frac{\pi}{2} - \frac{\sin 2\pi}{4}\right) = \frac{\pi^{2}}{4}$$

Prove that

Solution:

 $y = \int_0^{\frac{\pi}{2}} \frac{\cos^2 x}{\sin x + \cos x} dx \dots (1)$

Use King theorem of definite integral

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$
$$y = \int_{0}^{\frac{\pi}{2}} \frac{\cos^{2}\left(\frac{\pi}{2}-x\right)}{\sin\left(\frac{\pi}{2}-x\right) + \cos\left(\frac{\pi}{2}-x\right)} dx$$
$$y = \int_{0}^{\frac{\pi}{2}} \frac{\sin^{2}x}{\sin x + \cos x} dx \dots (2)$$

$$2y = \int_{0}^{\frac{\pi}{2}} \frac{\cos^{2} x}{\sin x + \cos x} dx + \int_{0}^{\frac{\pi}{2}} \frac{\sin^{2} x}{\sin x + \cos x} dx$$
$$2y = \int_{0}^{\frac{\pi}{2}} \frac{1}{\sin x + \cos x} dx$$
$$2y = \frac{1}{\sqrt{2}} \int_{0}^{\frac{\pi}{2}} \frac{1}{\frac{1}{\sqrt{2}} \sin x + \frac{1}{\sqrt{2}} \cos x} dx$$
$$2y = \frac{1}{\sqrt{2}} \int_{0}^{\frac{\pi}{2}} \frac{1}{\frac{1}{\sin \left(x + \frac{\pi}{4}\right)}} dx$$

$$y = \frac{1}{2\sqrt{2}} \int_{0}^{\frac{\pi}{2}} cosec \left(x + \frac{\pi}{4}\right) dx$$

$$y = \frac{1}{2\sqrt{2}} \left(\ln\left(cosec\left(x + \frac{\pi}{4}\right) - cot\left(x + \frac{\pi}{4}\right) \right) \right)_{0}^{\frac{\pi}{2}}$$

$$y = \frac{1}{2\sqrt{2}} \left(\ln\left(cosec\frac{3\pi}{4} - cot\frac{3\pi}{4} \right) - \ln\left(cosec\frac{\pi}{4} - cot\frac{\pi}{4} \right) \right)$$

$$y = \frac{1}{2\sqrt{2}} \ln\frac{\sqrt{2} + 1}{\sqrt{2} - 1}$$

$$y = \frac{1}{2\sqrt{2}} \ln(\sqrt{2} + 1)^{2} = \frac{1}{\sqrt{2}} \ln(\sqrt{2} + 1)$$

Prove that

Solution:

$$y = \int_0^\pi \frac{x \frac{\sin x}{\cos x}}{\frac{1}{\cos x} + \cos x} dx$$
$$y = \int_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx \dots (1)$$

Use King theorem of definite integral

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$
$$y = \int_{0}^{\pi} \frac{(\pi-x)\sin(\pi-x)}{1+\cos^{2}(\pi-x)} dx$$
$$y = \int_{0}^{\pi} \frac{\pi \sin x - x \sin x}{1+\cos^{2} x} dx \dots (2)$$

$$2y = \int_{0}^{\pi} \frac{x \sin x}{1 + \cos^{2} x} dx + \int_{0}^{\pi} \frac{\pi \sin x - x \sin x}{1 + \cos^{2} x} dx$$

$$2y = \int_{0}^{\pi} \frac{\pi \sin x}{1 + \cos^{2} x} dx$$

Let, $\cos x = t$
 $\Rightarrow -\sin x \, dx = dt$
At $x = 0$, $t = 1$
At $x = \pi$, $t = -1$

$$y = -\frac{\pi}{2} \int_{1}^{-1} \frac{1}{1 + t^{2}} dt$$

$$y = -\frac{\pi}{2} (\tan^{-1} t)_{1}^{-1}$$

$$y = -\frac{\pi}{2} (\tan^{-1} (-1) - \tan^{-1} 1)$$

$$y = \frac{\pi^{2}}{4}$$

Prove that

Solution:

 $y = \int_0^{\pi} \frac{x \sin x}{1 + \sin x} dx \dots (1)$

Use King theorem of definite integral

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$
$$y = \int_{0}^{\pi} \frac{(\pi-x)\sin(\pi-x)}{1+\sin(\pi-x)} dx$$
$$y = \int_{0}^{\pi} \frac{\pi \sin x}{1+\sin x} - \frac{x \sin x}{1+\sin x} dx \dots (2)$$

Adding eq.(1) and eq.(2)

$$2y = \int_{0}^{\pi} \frac{x \sin x}{1 + \sin x} dx + \int_{0}^{\pi} \frac{\pi \sin x}{1 + \sin x} - \frac{x \sin x}{1 + \sin x} dx$$

$$2y = \int_{0}^{\pi} \frac{\pi (\sin x + 1 - 1)}{1 + \sin x} dx$$

$$y = \frac{\pi}{2} \int_{0}^{\pi} 1 - \frac{1}{1 + \sin x} dx$$

$$y = \frac{\pi}{2} \int_{0}^{\pi} 1 - \frac{1 - \sin x}{\cos^{2} x} dx$$

$$y = \frac{\pi}{2} \int_{0}^{\pi} 1 - \sec^{2} x + \frac{\sin x}{\cos^{2} x} dx$$

Let, $\cos x = t$
 $\Rightarrow -\sin x \, dx = dt$
At $x = 0$, $t = 1$
At $x = \pi$, $t = -1$

$$y = \frac{\pi}{2} \left((x - \tan x))_{0}^{\pi} - \int_{1}^{-1} \frac{1}{t^{2}} dt \right)$$

$$y = \frac{\pi}{2} \left(\pi - \tan \pi - \left(\frac{-1}{t}\right)_{1}^{-1} \right)$$

$$y = \frac{\pi}{2} (\pi - 2) = \pi \left(\frac{\pi}{2} - 1\right)$$

Question: 26

Prove that

Solution:

$$y = \int_0^{\pi} \frac{x}{1 + \sin^2 x} dx \dots (1)$$

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$
$$y = \int_{0}^{\pi} \frac{(\pi-x)}{1+\sin^{2}(\pi-x)} dx$$
$$y = \int_{0}^{\pi} \frac{\pi}{1+\sin^{2}x} - \frac{x}{1+\sin^{2}x} dx \dots (2)$$

Adding eq.(1) and eq.(2)

$$2y = \int_{0}^{\pi} \frac{x}{1+\sin^{2}x} dx + \int_{0}^{\pi} \frac{\pi}{1+\sin^{2}x} - \frac{x}{1+\sin^{2}x} dx$$
$$y = \frac{\pi}{2} \int_{0}^{\pi} \frac{1}{1+\sin^{2}x} dx$$
$$y = \frac{\pi}{2} \int_{0}^{\pi} \frac{\frac{1}{\cos^{2}x}}{\frac{1+\sin^{2}x}{\cos^{2}x}} dx$$
$$y = \frac{\pi}{2} \int_{0}^{\pi} \frac{\sec^{2}x}{\sec^{2}x + \tan^{2}x} dx$$

We break it in two parts

$$y = \frac{\pi}{2} \int_{0}^{\pi} \frac{\sec^2 x}{\sec^2 x + \tan^2 x} dx$$

Let, $\tan x = t$
 $\Rightarrow \sec^2 x \, dx = dt$
At $x = 0$, $t = 0$
At $x = \pi$, $t = 0$
 $y = \frac{\pi}{2} \int_{0}^{0} \frac{1}{1 + 2t^2} dt$

We know that when upper and lower limit is same in definite

integral then value of integration is 0.

So, y = 0

Question: 27

Prove that

Solution:

$$y = \int_0^{\frac{\pi}{2}} \log \frac{\cos^2 x}{\sin 2x} dx$$
$$y = \int_0^{\frac{\pi}{2}} \log \frac{\cos^2 x}{2\sin x \cos x} dx$$
$$y = \int_0^{\frac{\pi}{2}} \log \left(\frac{1}{2} \cot x\right) dx \dots (1)$$

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$
$$y = \int_{0}^{\frac{\pi}{2}} \log\left(\frac{1}{2}\cot\left(\frac{\pi}{2}-x\right)\right) dx$$
$$y = \int_{0}^{\frac{\pi}{2}} \log\left(\frac{1}{2}\tan x\right) dx \dots (2)$$
Adding eq.(1) and eq.(2)

$$2y = \int_{0}^{\frac{\pi}{2}} \log\left(\frac{1}{2}\cot x\right) dx + \int_{0}^{\frac{\pi}{2}} \log\left(\frac{1}{2}\tan x\right) dx$$

$$y = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \log\left(\frac{1}{4}\cot x\tan x\right) dx \text{ [Use } \cot x \tan x = 1]$$

$$y = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \log\left(\frac{1}{4}\right) dx$$

$$y = \frac{1}{2} \log\left(\frac{1}{4}\right) (x)_{0}^{\frac{\pi}{2}}$$

$$y = -\frac{\pi}{4} \log 4$$

$$y = -\frac{1}{4}\log 4$$

Prove that

Solution:

$$y = \int_0^\infty \frac{x}{(1+x)(1+x^2)} dx$$

Let, x = tan t
$$\Rightarrow dx = \sec^2 t dt$$

At x = 0, t = 0
At x = ∞, t = π/2
$$y = \int_0^{\frac{\pi}{2}} \frac{\tan t}{(1+\tan t)(1+\tan^2 t)} \sec^2 t dt$$
$$y = \int_0^{\frac{\pi}{2}} \frac{\tan t}{(1+\tan t)} dt$$
$$y = \int_0^{\frac{\pi}{2}} \frac{\sin t}{(\cos t + \sin t)} dt \dots (1)$$

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$
$$y = \int_{0}^{\pi/2} \frac{\sin\left(\frac{\pi}{2} - t\right)}{\sin\left(\frac{\pi}{2} - t\right) + \cos\left(\frac{\pi}{2} - t\right)} dt$$
$$y = \int_0^{\pi/2} \frac{\cos t}{\sin t + \cos t} dt \dots (2)$$

Adding eq.(1) and eq.(2)

$$2y = \int_0^{\pi/2} \frac{\sin t}{\sin t + \cos t} dx + \int_0^{\pi/2} \frac{\cos t}{\sin t + \cos t} dx$$
$$2y = \int_0^{\pi/2} \frac{\sin t + \cos t}{\sin t + \cos t} dx$$
$$2y = \int_0^{\pi/2} 1 dx$$
$$2y = (x)_0^{\frac{\pi}{2}}$$
$$y = \frac{\pi}{4}$$

Question: 29

Prove that

Solution:

Let, $x = a \sin t$ \Rightarrow dx = a cos t dt At x = 0, t = 0At x = a, $t = \pi/2$ $y = \int_{0}^{\frac{\pi}{2}} \frac{a \cos t}{a \sin t + \sqrt{a^2 - a^2 \sin^2 t}} dt$ $y = \int_{-\infty}^{\frac{\pi}{2}} \frac{\cos t}{\sin t + \cos t} dt$ $y = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \frac{\cos t + \cos t - \sin t + \sin t}{\sin t + \cos t} dt$ $y = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} 1 + \frac{\cos t - \sin t}{\sin t + \cos t} dt$ $y = \frac{1}{2} \left((t)_0^{\frac{\pi}{2}} + \int_0^{\frac{\pi}{2}} \frac{\cos t - \sin t}{\sin t + \cos t} dt \right)$ Again, $\sin t + \cos t = z$ \Rightarrow (cos t - sin t) dt = dz At t = 0, z = 1At $t = \pi/2$, z = 1 $y = \frac{1}{2} \left(\frac{\pi}{2} + \int_{1}^{1} \frac{1}{z} dz \right)$

$$y = \frac{1}{2}(\frac{\pi}{2} + (\ln z))^{1}$$

$$y = \int_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a-x}} dx \dots (1)$$

Use King theorem of definite integral

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$
$$y = \int_{0}^{a} \frac{\sqrt{a-x}}{\sqrt{a-x} + \sqrt{x}} dx \dots (2)$$

Adding eq.(1) and eq.(2)

$$2y = \int_{0}^{a} \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx + \int_{0}^{a} \frac{\sqrt{a - x}}{\sqrt{a - x} + \sqrt{x}} dx$$
$$2y = \int_{0}^{a} \frac{\sqrt{x} + \sqrt{a - x}}{\sqrt{a - x} + \sqrt{x}} dx$$
$$y = \frac{1}{2} \int_{0}^{a} dx$$
$$y = \frac{1}{2} (x)_{0}^{a}$$
$$y = \frac{a}{2}$$

Question: 31

Prove that

Solution:

$$y = \int_0^{\pi} \sin^2 x \cos^3 x \, dx \dots (1)$$

Use King theorem of definite integral

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$
$$y = \int_{0}^{\pi} \sin^{2}(\pi-x) \cos^{3}(\pi-x) dx$$
$$y = -\int_{0}^{\pi} \sin^{2}x \cos^{3}x dx \dots (2)$$

Adding eq.(1) and eq.(2)

$$2y = \int_{0}^{\pi} \sin^{2}x \cos^{3}x \, dx + \left(-\int_{0}^{\pi} \sin^{2}x \cos^{3}x \, dx\right)$$

$$y = 0$$

Question: 32

Prove that

Solution:

$$y = \int_0^{\pi} \sin^{2m} x \cos^{2m+1} x \, dx \dots (1)$$

Use King theorem of definite integral

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$
$$y = \int_{0}^{\pi} sin^{2m}(\pi-x) cos^{2m+1}(\pi-x) dx$$
$$y = -\int_{0}^{\pi} sin^{2m}x cos^{2m+1}x dx \dots (2)$$

Adding eq.(1) and eq.(2)

$$2y = \int_{0}^{\pi} \sin^{2m}x \cos^{2m+1}x \, dx + \left(-\int_{0}^{\pi} \sin^{2m}x \cos^{2m+1}x \, dx\right)$$

$$y = 0$$

Question: 33

Prove that

Solution:

Let, $\sin x + \cos x = t$ $\Rightarrow \cos x - \sin x \, dx = dt$ At x = 0, t = 1At $x = \pi/2$, t = 1 $y = \int_{1}^{1} -\log t \, dt$

We know that when upper and lower limit in definite integral is

equal then value of integration is zero.

So, y = 0

Question: 34

Prove that

Solution:

$$y = \int_0^{\frac{\pi}{2}} \log(2\sin x \cos x) dx$$
$$y = \int_0^{\frac{\pi}{2}} \log 2 + \log\sin x + \log\cos x dx$$
Let, $I = \int_0^{\frac{\pi}{2}} \log\sin x dx \dots (1)$

Use King theorem of definite integral

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$
$$I = \int_{0}^{\frac{\pi}{2}} \log \sin\left(\frac{\pi}{2} - x\right) dx$$

$$I = \int_{0}^{\frac{\pi}{2}} \log \cos x \, dx \dots (2)$$

Adding eq.(1) and eq.(2)
$$2I = \int_{0}^{\frac{\pi}{2}} \log \sin x \, dx + \int_{0}^{\frac{\pi}{2}} \log \cos x \, dx$$

$$2I = \int_{0}^{\frac{\pi}{2}} \log \frac{2 \sin x \cos x}{2} \, dx$$

$$2I = \int_{0}^{\frac{\pi}{2}} \log \sin 2x - \log 2 \, dx$$

Let, 2x = t
= 2 dx = dt
At x = 0, t = 0
At x = \pi/2, t = \pi
$$2I = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \log \sin t \, dt - \frac{\pi}{2} \log 2$$

$$2I = \frac{2}{2} \int_{0}^{\frac{\pi}{2}} \log \sin x \, dx - \frac{\pi}{2} \log 2$$

$$2I = I - \frac{\pi}{2} \log 2$$

$$I = \int_{0}^{\frac{\pi}{2}} \log \sin x \, dx = -\frac{\pi}{2} \log 2$$

Similarly, $\int_{0}^{\frac{\pi}{2}} \log \cos x \, dx = -\frac{\pi}{2} \log 2$
$$y = \int_{0}^{\frac{\pi}{2}} \log 2 - \frac{\pi}{2} \log 2 - \frac{\pi}{2} \log 2$$

$$y = -\frac{\pi}{2} \log 2$$

Prove that

Solution:

$$y = \int_0^{\pi} x \log \sin x \, dx \dots (1)$$

Use King theorem of definite integral

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$

$$y = \int_{0}^{\pi} (\pi - x) \log \sin(\pi - x) dx$$
$$y = \int_{0}^{\pi} \pi \log \sin x - x \log \sin x dx \dots (2)$$
Adding eq.(1) and eq.(2)

$$2y = \int_{0}^{\pi} x \log \sin x \, dx + \int_{0}^{\pi} \pi \log \sin x - x \log \sin x \, dx$$
$$y = \frac{\pi}{2} \int_{0}^{\pi} \log \sin x \, dx$$
$$y = \frac{2\pi}{2} \int_{0}^{\frac{\pi}{2}} \log \sin x \, dx \dots (3)$$

Use King theorem of definite integral

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$
$$y = \pi \int_{0}^{\frac{\pi}{2}} \log \sin \left(\frac{\pi}{2} - x\right) dx$$
$$y = \pi \int_{0}^{\frac{\pi}{2}} \log \cos x \, dx \dots (4)$$

Adding eq.(3) and eq.(4)

$$2y = \pi \left(\int_{0}^{\frac{\pi}{2}} \log \sin x \, dx + \int_{0}^{\frac{\pi}{2}} \log \cos x \, dx \right)$$

$$2y = \pi \left(\int_{0}^{\frac{\pi}{2}} \log \frac{2 \sin x \cos x}{2} \, dx \right)$$

$$2y = \pi \left(\int_{0}^{\frac{\pi}{2}} \log \sin 2x - \log 2 \, dx \right)$$
Let, $2x = t$

$$\Rightarrow 2 \, dx = dt$$
At $x = 0$, $t = 0$
At $x = \pi/2$, $t = \pi$

$$2y = \frac{\pi}{2} \int_{0}^{\pi} \log \sin t \, dt - \frac{\pi^{2}}{2} \log 2$$

$$2y = \frac{2\pi}{2} \int_{0}^{\frac{\pi}{2}} \log \sin x \, dx - \frac{\pi^{2}}{2} \log 2$$

$$2y = y - \frac{\pi^{2}}{2} \log 2$$

$$y = -\frac{\pi^2}{2}\log 2$$

Prove that

Solution:

$$y = \int_0^{\pi} \log(1 + \cos x) \, dx \, \dots (1)$$

Use King theorem of definite integral

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$
$$y = \int_{0}^{\pi} \log(1+\cos(\pi-x)) dx$$
$$y = \int_{0}^{\pi} \log(1-\cos x) dx \dots (2)$$
Adding eq.(1) and eq.(2)
$$\pi \qquad \pi$$

$$2y = \int_{0}^{\pi} \log(1 + \cos x) \, dx + \int_{0}^{\pi} \log(1 - \cos x) \, dx$$
$$2y = \int_{0}^{\pi} \log \sin^{2} x \, dx$$
$$y = 2 \int_{0}^{\frac{\pi}{2}} \log \sin x \, dx \dots (3)$$

Use King theorem of definite integral

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$
$$y = 2 \int_{0}^{\frac{\pi}{2}} \log \sin \left(\frac{\pi}{2} - x\right) dx$$
$$y = 2 \int_{0}^{\frac{\pi}{2}} \log \cos x \, dx \dots (4)$$

Adding eq.(3) and eq.(4)

$$2y = 2\left(\int_{0}^{\frac{\pi}{2}} \log \sin x \, dx + \int_{0}^{\frac{\pi}{2}} \log \cos x \, dx\right)$$
$$2y = 2\left(\int_{0}^{\frac{\pi}{2}} \log \frac{2 \sin x \cos x}{2} \, dx\right)$$
$$2y = 2\left(\int_{0}^{\frac{\pi}{2}} \log \sin 2x - \log 2 \, dx\right)$$
Let, 2x = t
= 2 dx = dt

At x = 0, t = 0
At x =
$$\pi/2$$
, t = π
 $2y = \frac{2}{2} \int_{0}^{\pi} \log \sin t \, dt - \frac{2\pi}{2} \log 2$
 $2y = \frac{4}{2} \int_{0}^{\frac{\pi}{2}} \log \sin x \, dx - \frac{2\pi}{2} \log 2$
 $2y = y - \pi \log 2$
 $y = -\pi \log 2$

Prove that

Solution:

$$y = \int_{0}^{\frac{\pi}{2}} \log\left(\frac{\sin x}{\cos x} + \frac{\cos x}{\sin x}\right) dx$$
$$y = \int_{0}^{\frac{\pi}{2}} \log\frac{1}{\sin x \cos x} dx$$
$$y = -\left(\int_{0}^{\frac{\pi}{2}} \log\sin x \, dx + \int_{0}^{\frac{\pi}{2}} \log\cos x \, dx\right)$$
Let, $I = \int_{0}^{\frac{\pi}{2}} \log\sin x \, dx \dots (1)$

Use King theorem of definite integral

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a + b - x) dx$$
$$I = \int_{0}^{\frac{\pi}{2}} \log \sin \left(\frac{\pi}{2} - x\right) dx$$
$$I = \int_{0}^{\frac{\pi}{2}} \log \cos x \, dx \dots (2)$$

Adding eq.(1) and eq.(2)

$$2I = \int_{0}^{\frac{\pi}{2}} \log \sin x \, dx + \int_{0}^{\frac{\pi}{2}} \log \cos x \, dx$$
$$2I = \int_{0}^{\frac{\pi}{2}} \log \frac{2 \sin x \cos x}{2} \, dx$$
$$2I = \int_{0}^{\frac{\pi}{2}} \log \sin 2x - \log 2 \, dx$$
Let, $2x = t$
$$\Rightarrow 2 \, dx = dt$$

At x = 0, t = 0
At x =
$$\pi/2$$
, t = π
 $2I = \frac{1}{2} \int_{0}^{\pi} \log \sin t \, dt - \frac{\pi}{2} \log 2$
 $2I = \frac{2}{2} \int_{0}^{\frac{\pi}{2}} \log \sin x \, dx - \frac{\pi}{2} \log 2$
 $2I = I - \frac{\pi}{2} \log 2$
 $I = \int_{0}^{\frac{\pi}{2}} \log \sin x \, dx = -\frac{\pi}{2} \log 2$
Similarly, $\int_{0}^{\frac{\pi}{2}} \log \cos x \, dx = -\frac{\pi}{2} \log 2$
 $y = -\left(\int_{0}^{\frac{\pi}{2}} \log \sin x \, dx + \int_{0}^{\frac{\pi}{2}} \log \cos x \, dx\right)$
 $y = \frac{\pi}{2} \log 2 + \frac{\pi}{2} \log 2$
 $y = \pi \log 2$

Prove that

Solution:

$$y = \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} \frac{\cos x}{\cos x + \sin x} dx \dots (1)$$

Use King theorem of definite integral

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$

$$y = \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} \frac{\cos\left(\frac{3\pi}{8} + \frac{\pi}{8} - x\right)}{\sin\left(\frac{3\pi}{8} + \frac{\pi}{8} - x\right) + \cos\left(\frac{3\pi}{8} + \frac{\pi}{8} - x\right)} dx$$

$$y = \int_{\frac{\pi}{8}}^{\frac{2\pi}{8}} \frac{\sin x}{\sin x + \cos x} dx \dots (2)$$

Adding eq.(1) and eq.(2)

$$2y = \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} \frac{\cos x}{\sin x + \cos x} dx + \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} \frac{\sin x}{\sin x + \cos x} dx$$
$$2y = \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} \frac{\sin x + \cos x}{\sin x + \cos x} dx$$
$$2y = \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} 1 dx$$

$$2y = (x)\frac{\frac{3\pi}{8}}{\frac{\pi}{8}}$$
$$2y = \frac{3\pi}{8} - \frac{\pi}{8}$$
$$y = \frac{\pi}{8}$$

Prove that

Solution:

$$y = \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{\sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$$

Use King theorem of definite integral

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$
$$y = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\cos\left(\frac{\pi}{3} + \frac{\pi}{6} - x\right)}}{\left(\sqrt{\sin\left(\frac{\pi}{3} + \frac{\pi}{6} - x\right)} + \sqrt{\cos\left(\frac{\pi}{3} + \frac{\pi}{6} - x\right)}\right)} dx$$
$$y = \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{(\sqrt{\cos x} + \sqrt{\sin x})} dx \dots (2)$$

Adding eq.(1) and eq.(2)

$$2y = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\cos x}}{(\sqrt{\sin x} + \sqrt{\cos x})} dx + \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\sin x}}{(\sqrt{\cos x} + \sqrt{\sin x})} dx$$
$$2y = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\sin x} + \sqrt{\cos x}}{(\sqrt{\sin x} + \sqrt{\cos x})} dx$$
$$2y = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} 1 dx$$
$$2y = (x)_{\frac{\pi}{6}}^{\frac{\pi}{3}}$$
$$y = \frac{\pi}{12}$$

Question: 40

Prove that

Solution:

$$y = \int_{\frac{\pi}{4}}^{\frac{2\pi}{4}} \frac{1}{2\cos^2\frac{x}{2}} dx$$
$$y = \frac{1}{2} \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \sec^2\frac{x}{2} dx$$
$$y = \frac{1}{2} \left(\frac{\tan\frac{x}{2}}{\frac{1}{2}}\right)_{\frac{\pi}{4}}^{\frac{3\pi}{4}}$$

$$y = \tan\frac{3\pi}{8} - \tan\frac{\pi}{8}$$
$$y = (\sqrt{2} + 1) - (\sqrt{2} - 1) = 2$$

Prove that

Solution:

$$y = \int_{\frac{\pi}{4}}^{\frac{2\pi}{4}} \frac{x}{1+\sin x} dx \dots (1)$$

Use King theorem of definite integral

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$
$$y = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{\left(\frac{3\pi}{4} + \frac{\pi}{4} - x\right)}{1 + \sin\left(\frac{3\pi}{4} + \frac{\pi}{4} - x\right)} dx$$
$$y = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{\pi - x}{1 + \sin x} dx \dots (2)$$

Adding eq.(1) and eq.(2)

$$2y = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{x}{1+\sin x} dx + \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{\pi - x}{1+\sin x} dx$$
$$y = \frac{\pi}{2} \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{1}{1+\sin x} dx$$
$$y = \frac{\pi}{2} \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{1}{1+\sin x} \times \frac{1-\sin x}{1-\sin x} dx$$
$$y = \frac{\pi}{2} \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{1-\sin x}{\cos^2 x} dx$$
$$y = \frac{\pi}{2} \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{\sin x}{\cos^2 x} dx$$
Let, $\cos x = t$
$$\Rightarrow -\sin x \, dx = dt$$
At $x = \pi/4$, $t = \frac{1}{\sqrt{2}}$ At $x = 3\pi/4$, $t = \frac{-1}{\sqrt{2}}$

$$y = \frac{\pi}{2} \left((\tan x)_{\frac{\pi}{4}}^{\frac{3\pi}{4}} + \int_{\frac{1}{\sqrt{2}}}^{\frac{-1}{\sqrt{2}}} \frac{1}{t^2} dt \right)$$
$$y = \frac{\pi}{2} (\tan \frac{3\pi}{4} - \tan \frac{\pi}{4} + \left(\frac{-1}{t}\right)_{\frac{1}{\sqrt{2}}}^{\frac{-1}{\sqrt{2}}}$$
$$y = \frac{\pi}{2} \left(-1 - 1 + \sqrt{2} + \sqrt{2}\right) = \pi \left(\sqrt{2} - 1\right)$$

Prove that

Solution:

$$y = \int_{\frac{a}{4}}^{\frac{3a}{4}} \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a-x}} dx \dots (1)$$

Use King theorem of definite integral

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$
$$y = \int_{\frac{a}{4}}^{\frac{3a}{4}} \frac{\sqrt{\frac{3a}{4} + \frac{a}{4} - x}}{\sqrt{\frac{3a}{4} + \frac{a}{4} - x} + \sqrt{x}} dx$$
$$y = \int_{\frac{a}{4}}^{\frac{3a}{4}} \frac{\sqrt{a-x}}{\sqrt{a-x} + \sqrt{x}} dx$$

Adding eq.(1) and eq.(2)

$$2y = \int_{\frac{a}{4}}^{\frac{3a}{4}} \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx + \int_{\frac{a}{4}}^{\frac{3a}{4}} \frac{\sqrt{a - x}}{\sqrt{a - x} + \sqrt{x}} dx$$
$$2y = \int_{\frac{a}{4}}^{\frac{3a}{4}} \frac{\sqrt{x} + \sqrt{a - x}}{\sqrt{a - x} + \sqrt{x}} dx$$
$$y = \frac{1}{2} \int_{\frac{a}{4}}^{\frac{3a}{4}} 1 dx$$
$$y = \frac{1}{2} (x) \frac{\frac{3a}{4}}{\frac{a}{4}}$$
$$y = \frac{a}{4}$$

Question: 43

Prove that

Solution:

$$y = \int_{1}^{4} \frac{\sqrt{x}}{\sqrt{5-x} + \sqrt{x}} dx$$

Use King theorem of definite integral

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$
$$y = \int_{1}^{4} \frac{\sqrt{4+1-x}}{\sqrt{4+1-x} + \sqrt{x}} dx$$
$$y = \int_{1}^{4} \frac{\sqrt{5-x}}{\sqrt{5-x} + \sqrt{x}} dx$$

Adding eq.(1) and eq.(2)

$$2y = \int_{1}^{4} \frac{\sqrt{x}}{\sqrt{x} + \sqrt{5 - x}} dx + \int_{1}^{4} \frac{\sqrt{5 - x}}{\sqrt{5 - x} + \sqrt{x}} dx$$
$$2y = \int_{1}^{4} \frac{\sqrt{x} + \sqrt{5 - x}}{\sqrt{5 - x} + \sqrt{x}} dx$$
$$y = \frac{1}{2} \int_{1}^{4} 1 dx$$
$$y = \frac{1}{2} (x)_{1}^{4}$$
$$y = \frac{3}{2}$$

Question: 44

Prove that

Solution:

Use integration by parts

$$\int I \times II \, dx = I \int II \, dx - \int \frac{d}{dx} I \left(\int II \, dx \right) dx$$
$$y = x \int \cot x \, dx - \int \frac{d}{dx} x \left(\int \cot x \, dx \right) dx$$
$$y = (x \log \sin x)_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} \log \sin x \, dx$$
Let, $I = \int_0^{\frac{\pi}{2}} \log \sin x \, dx \dots (1)$

Use King theorem of definite integral

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$
$$I = \int_{0}^{\frac{\pi}{2}} \log \sin \left(\frac{\pi}{2} - x\right) dx$$
$$I = \int_{0}^{\frac{\pi}{2}} \log \cos x \, dx \dots (2)$$

Adding eq.(1) and eq.(2)

$$2I = \int_{0}^{\frac{\pi}{2}} \log \sin x \, dx + \int_{0}^{\frac{\pi}{2}} \log \cos x \, dx$$

$$2I = \int_{0}^{\frac{\pi}{2}} \log \frac{2 \sin x \cos x}{2} \, dx$$

$$2I = \int_{0}^{\frac{\pi}{2}} \log \sin 2x - \log 2 \, dx$$

Let, $2x = t$
 $\Rightarrow 2 \, dx = dt$
At $x = 0$, $t = 0$
At $x = \pi/2$, $t = \pi$

$$2I = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \log \sin x \, dx - \frac{\pi}{2} \log 2$$

$$2I = \frac{2}{2} \int_{0}^{\frac{\pi}{2}} \log \sin x \, dx - \frac{\pi}{2} \log 2$$

$$2I = I - \frac{\pi}{2} \log 2$$

$$I = \int_{0}^{\frac{\pi}{2}} \log \sin x \, dx = -\frac{\pi}{2} \log 2$$

$$y = (x \log \sin x)_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} \log \sin x \, dx$$

$$y = \frac{\pi}{2} \log \sin \frac{\pi}{2} - (-\frac{\pi}{2} \log 2)$$

$$y = \frac{\pi}{2} \log 2$$

Question: 45
Prove that

Solution:

Let, $x = \sin t$ $\Rightarrow dx = \cos t dt$ At x = 0, t = 0At x = 1, $t = \pi/2$ $y = \int_{0}^{\frac{\pi}{2}} \frac{\sin^{-1} \sin t}{\sin t} \cos t dt$ $y = \int_{0}^{\frac{\pi}{2}} \frac{t \cos t}{\sin t} dt$

$$y = \int_{0}^{\frac{\pi}{2}} t \cot t \, dt$$

Use integration by parts

$$\int I \times II \, dt = I \int II \, dt - \int \frac{d}{dt} I\left(\int II \, dt\right) dt$$
$$y = t \int \cot t \, dt - \int \frac{d}{dt} t\left(\int \cot t \, dt\right) dt$$
$$y = (t \log \sin t)_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} \log \sin t \, dt$$
Let, $I = \int_0^{\frac{\pi}{2}} \log \sin t \, dt \dots (1)$

Use King theorem of definite integral

$$\int_{a}^{b} f(t) dt = \int_{a}^{b} f(a+b-t) dt$$
$$I = \int_{0}^{\frac{\pi}{2}} \log \sin \left(\frac{\pi}{2} - t\right) dt$$
$$I = \int_{0}^{\frac{\pi}{2}} \log \cos t \, dt \dots (2)$$

Adding eq.(1) and eq.(2)

$$2I = \int_{0}^{\frac{\pi}{2}} \log \sin t \, dt + \int_{0}^{\frac{\pi}{2}} \log \cos t \, dt$$
$$2I = \int_{0}^{\frac{\pi}{2}} \log \frac{2 \sin t \cos t}{2} \, dt$$
$$2I = \int_{0}^{\frac{\pi}{2}} \log \sin 2t - \log 2 \, dt$$
Let, $2t = z$
 $\Rightarrow 2 \, dt = dz$
At $t = 0, z = 0$
At $t = \pi/2, z = \pi$
$$2I = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \log \sin z \, dz - \frac{\pi}{2} \log 2$$
$$2I = \frac{2}{2} \int_{0}^{\frac{\pi}{2}} \log \sin z \, dz - \frac{\pi}{2} \log 2$$
$$2I = I - \frac{\pi}{2} \log 2$$

$$I = \int_{0}^{\frac{\pi}{2}} \log \sin z \, dz = -\frac{\pi}{2} \log 2$$
$$y = (t \log \sin t)_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} \log t \, dt$$
$$y = \frac{\pi}{2} \log \sin \frac{\pi}{2} - \left(-\frac{\pi}{2} \log 2\right)$$
$$y = \frac{\pi}{2} \log 2$$

Prove that

Solution:

Use integration by parts

$$\int I \times II \, dx = I \int II \, dx - \int \frac{d}{dx} I\left(\int II \, dx\right) dx$$

$$y = \log x \int \frac{1}{\sqrt{1 - x^2}} dx - \int \frac{d}{dx} \log x \left(\int \frac{1}{\sqrt{1 - x^2}} dx\right) dx$$

$$y = (\log x \sin^{-1} x)_0^1 - \int_0^1 \frac{\sin^{-1} x}{x} dx$$

$$y = -\int_0^1 \frac{\sin^{-1} x}{x} dx$$
Let, x = sin t
$$\Rightarrow dx = \cos t \, dt$$
At x = 0, t = 0
At x = 1, t = \pi/2
$$y = -\int_0^{\frac{\pi}{2}} \frac{\sin^{-1} \sin t}{\sin t} \cos t \, dt$$

$$y = -\int_0^{\frac{\pi}{2}} \frac{t \cos t}{\sin t} dt$$

$$y = -\int_0^{\frac{\pi}{2}} t \cot t \, dt$$

Use integration by parts

$$\int I \times II \, dt = I \int II \, dt - \int \frac{d}{dt} I\left(\int II \, dt\right) dt$$
$$y = -\left(t \int \cot t \, dt - \int \frac{d}{dt} t\left(\int \cot t \, dt\right) dt\right)$$

$$y = -\left((t \log \sin t)_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} \log \sin t \, dt \right)$$

Let,
$$I = \int_0^{\frac{\pi}{2}} \log \sin t \, dt \dots (1)$$

Use King theorem of definite integral

$$\int_{a}^{b} f(t) dt = \int_{a}^{b} f(a+b-t) dt$$
$$I = \int_{0}^{\frac{\pi}{2}} \log \sin \left(\frac{\pi}{2} - t\right) dt$$
$$I = \int_{0}^{\frac{\pi}{2}} \log \cos t \, dt \dots (2)$$

Adding eq.(1) and eq.(2)

$$2I = \int_{0}^{\frac{\pi}{2}} \log \sin t \, dt + \int_{0}^{\frac{\pi}{2}} \log \cos t \, dt$$

$$2I = \int_{0}^{\frac{\pi}{2}} \log \frac{2 \sin t \cos t}{2} \, dt$$

$$2I = \int_{0}^{\frac{\pi}{2}} \log \sin 2t - \log 2 \, dt$$

Let, $2t = z$
 $\Rightarrow 2 \, dt = dz$
At $t = 0, z = 0$
At $t = \pi/2, z = \pi$

$$2I = \frac{1}{2} \int_{0}^{\pi} \log \sin z \, dz - \frac{\pi}{2} \log 2$$

$$2I = \frac{2}{2} \int_{0}^{\frac{\pi}{2}} \log \sin z \, dz - \frac{\pi}{2} \log 2$$

$$2I = I - \frac{\pi}{2} \log 2$$

$$I = \int_{0}^{\frac{\pi}{2}} \log \sin z \, dz = -\frac{\pi}{2} \log 2$$

$$y = -\left((t \log \sin t)_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} \log t \, dt\right)$$

$$y = \frac{-\pi}{2} \log \sin \frac{\pi}{2} + \left(-\frac{\pi}{2} \log 2\right)$$

$$y = \frac{-\pi}{2} \log 2$$

Prove that

Solution:

Let $x = \tan t$ $\Rightarrow dx = \sec^2 t dt$

At x = 0, t = 0

At
$$x = 1$$
, $t = \pi/4$

$$y = \int_{0}^{\frac{\pi}{4}} \frac{\log(1 + \tan t)}{1 + \tan^{2}t} \sec^{2}t \, dt$$
$$y = \int_{0}^{\frac{\pi}{4}} \log(1 + \tan t) \, dt \dots (1)$$

Use King theorem of definite integral

$$\int_{a}^{b} f(t) dt = \int_{a}^{b} f(a+b-t) dt$$

$$y = \int_{0}^{\frac{\pi}{4}} \log\left(1 + \tan\left(\frac{\pi}{4} - t\right)\right) dt$$

$$y = \int_{0}^{\frac{\pi}{4}} \log\left(1 + \frac{1 - \tan t}{1 + \tan t}\right) dt$$

$$y = \int_{0}^{\frac{\pi}{4}} \log\left(\frac{2}{1 + \tan t}\right) dt \dots (2)$$

Adding eq.(1) and eq.(2)

$$2y = \int_{0}^{\frac{\pi}{4}} \log(1 + \tan t) dt + \int_{0}^{\frac{\pi}{4}} \log\left(\frac{2}{1 + \tan t}\right) dt$$
$$2y = \int_{0}^{\frac{\pi}{4}} \log(1 + \tan t) \left(\frac{2}{1 + \tan t}\right) dt$$
$$2y = \int_{0}^{\frac{\pi}{4}} \log 2 dt$$
$$y = \frac{\pi}{8} \log 2$$

Question: 48

Prove that

Solution:

$$y = \int_{-a}^{a} x^3 \sqrt{a^2 - x^2} \, dx \dots (1)$$

Use King theorem of definite integral

$$\int_{a}^{b} f(t) dt = \int_{a}^{b} f(a+b-t) dt$$
$$y = \int_{-a}^{a} (a-a-x)^{3} \sqrt{a^{2}-(a-a-x)^{2}} dx$$
$$y = \int_{-a}^{a} -x^{3} \sqrt{a^{2}-x^{2}} dx \dots (2)$$

Adding eq.(1) and eq.(2)

$$2y = \int_{-a}^{a} x^3 \sqrt{a^2 - x^2} \, dx + \left(-\int_{-a}^{a} x^3 \sqrt{a^2 - x^2} \, dx \right)$$

y = 0

Question: 49

Prove that

Solution:

$$y = \int_{-\pi}^{\pi} \sin^{75} x + x^{125} \, dx \, \dots(1)$$

Use King theorem of definite integral

$$\int_{a}^{b} f(t) dt = \int_{a}^{b} f(a+b-t) dt$$

$$y = \int_{-\pi}^{\pi} sin^{75}(\pi - \pi - x) + (\pi - \pi - x)^{125} dx$$

$$y = \int_{-\pi}^{\pi} -sin^{75}x - x^{125} dx \dots (2)$$

Adding eq.(1) and eq.(2)

$$2y = \int_{-\pi}^{\pi} \sin^{75}x + x^{125} dx + \left(-\int_{-\pi}^{\pi} \sin^{75}x + x^{125} dx\right)$$

$$y = 0$$

Question: 50

Prove that

Solution:

$$y = \int_{-\pi}^{\pi} x^{12} \sin^9 x \, dx \dots (1)$$

Use King theorem of definite integral

$$\int_{a}^{b} f(t) dt = \int_{a}^{b} f(a+b-t) dt$$
$$y = \int_{-\pi}^{\pi} (\pi - \pi - x)^{12} sin^{9} (\pi - \pi - x) dx$$
$$y = \int_{-\pi}^{\pi} -x^{12} sin^{9} x dx \dots (2)$$

Adding eq.(1) and eq.(2)

$$2y = \int_{-\pi}^{\pi} x^{12} \sin^9 x \, dx + \left(-\int_{-\pi}^{\pi} x^{12} \sin^9 x \, dx \right)$$
$$y = 0$$

Prove that

Solution:

We know that

$$|\mathbf{x}| = -\mathbf{x} \text{ in } [-1, 0)$$

$$|\mathbf{x}| = \mathbf{x} \text{ in } [0, 1]$$

$$y = \int_{-1}^{0} e^{|\mathbf{x}|} dx + \int_{0}^{1} e^{|\mathbf{x}|} dx$$

$$y = \int_{-1}^{0} e^{-x} dx + \int_{0}^{1} e^{x} dx$$

$$y = (-e^{-x})_{-1}^{0} + (e^{x})_{0}^{1}$$

$$y = -(1-e) + (e-1)$$

$$y = -(1-e)+(e-1)$$

$$y = 2(e - 1)$$

Question: 52

$$|x+1| = -(x+1) \text{ in } [-2, -1)$$

$$|x+1| = (x+1) \text{ in } [-1, 2]$$

$$y = \int_{-2}^{-1} |x+1| \, dx + \int_{-1}^{2} |x+1| \, dx$$

$$= -\int_{-2}^{-1} (x+1) \, dx + \int_{-1}^{2} (x+1) \, dx$$

$$= -\left(\frac{x^2}{2} + x\right)_{-2}^{-1} + \left(\frac{x^2}{2} + x\right)_{-1}^{2}$$

$$= -\left(\frac{1}{2} - 1 - 2 + 2\right) + \left(2 + 2 - \frac{1}{2} + 1\right)$$

$$= 5$$

Question: 53

Prove that

Solution:

We know that

$$|x - 5| = -(x - 5) \text{ in } [0, 5)$$
$$|x - 5| = (x - 5) \text{ in } [5, 8]$$
$$y = \int_{0}^{5} |x - 5| \, dx + \int_{5}^{8} |x - 5| \, dx$$

$$y = -\int_{0}^{5} (x-5) dx + \int_{5}^{8} (x-5) dx$$
$$y = -\left(\frac{x^{2}}{2} - 5x\right)_{0}^{5} + \left(\frac{x^{2}}{2} - 5x\right)_{5}^{8}$$
$$y = -\left(\frac{25}{2} - 25\right) + \left(32 - 40 - \frac{25}{2} + 25\right)_{5}^{8}$$
$$= 17$$

Prove that

Solution:

We know that

 $|\cos x| = \cos x \text{ in } [0, \pi/2)$ $|\cos x| = -\cos x \text{ in } [\pi/2, 3\pi/2)$

 $|\cos x| = \cos x \text{ in } [3\pi/2, 2\pi]$

$$y = \int_{0}^{\frac{\pi}{2}} |\cos x| \, dx + \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} |\cos x| \, dx + \int_{\frac{3\pi}{2}}^{2\pi} |\cos x| \, dx$$
$$y = \int_{0}^{\frac{\pi}{2}} \cos x \, dx - \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \cos x \, dx + \int_{\frac{3\pi}{2}}^{2\pi} \cos x \, dx$$
$$y = (\sin x)_{0}^{\frac{\pi}{2}} - (\sin x)_{\frac{\pi}{2}}^{\frac{3\pi}{2}} + (\sin x)_{\frac{3\pi}{2}}^{2\pi}$$
$$y = (1-0) - 1 - 1 + (0+1)$$
$$= 4$$

Question: 55

Prove that

Solution:

We know that

 $|\sin x| = -\sin x \text{ in } [-\pi/4, 0)$

 $|\sin x| = \sin x \text{ in } [0, \pi/4]$

$$y = \int_{\frac{-\pi}{4}}^{0} |\sin x| \, dx + \int_{0}^{\frac{\pi}{4}} |\sin x| \, dx$$
$$y = -\int_{\frac{-\pi}{4}}^{0} \sin x \, dx + \int_{0}^{\frac{\pi}{4}} \sin x \, dx$$
$$y = -(-\cos x)_{-\frac{\pi}{4}}^{0} + (-\cos x)_{0}^{\frac{\pi}{4}}$$

$$y = \left(1 - \frac{1}{\sqrt{2}}\right) - \left(\frac{1}{\sqrt{2}} - 1\right)$$

$$= 2 - \frac{1}{\sqrt{2}}$$

Prove that

Solution:

$$y = \int_{1}^{3} f(x) dx$$

$$y = \int_{1}^{2} f(x) dx + \int_{2}^{3} f(x) dx$$

$$y = \int_{1}^{2} 2x + 1 dx + \int_{2}^{3} x^{2} + 1 dx$$

$$y = (x^{2} + x)_{1}^{2} + \left(\frac{x^{3}}{3} + x\right)_{2}^{3}$$

$$y = (4 + 2 - 1 - 1) + \left(9 + 3 - \frac{8}{3} - 2\right)$$

$$= \frac{34}{3}$$

Question: 57

Prove that

Solution:

$$y = \int_{0}^{4} f(x) dx$$

$$y = \int_{0}^{2} f(x) dx + \int_{2}^{4} f(x) dx$$

$$y = \int_{0}^{2} 3x^{2} + 4 dx + \int_{2}^{4} 9x - 2 dx$$

$$y = (x^{3} + 4x)_{0}^{2} + \left(\frac{9x^{2}}{2} - 2x\right)_{2}^{4}$$

$$y = (8+8) + (72-8-18+4)$$

=66

Question: 58

Prove that

Solution:

$$y = \int_{0}^{4} |x| + |x - 2| + |x - 4| dx$$

$$y = \int_{0}^{2} |x| + |x - 2| + |x - 4| dx + \int_{2}^{4} |x| + |x - 2| + |x - 4| dx$$

$$y = \int_{0}^{2} x - (x - 2) - (x - 4) dx + \int_{2}^{4} x + (x - 2) - (x - 4) dx$$

$$y = \left(-\frac{x^2}{2} + 6x\right)_0^2 + \left(\frac{x^2}{2} + 2x\right)_2^4$$

y=(-2+12)+(8+8-2-4) =20

Exercise : 16D

Question: 1

Evaluate each of

Solution:

f(x) is continuous in [0,2]

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} h \sum_{r=0}^{n-1} f(a+rh), \text{ where } h = (b-a)/n$$

here h=2/n

$$\int_{0}^{2} (x+4)dx = \lim_{n \to \infty} \left(\frac{2}{n}\right) \sum_{r=0}^{n-1} f(2r/n)$$
$$= \lim_{n \to \infty} \left(\frac{2}{n}\right) \sum_{r=0}^{n-1} \left(\frac{2r}{n}\right) + 4$$
$$= \lim_{n \to \infty} \left(\frac{2}{n}\right) \left(\frac{(n-1)(n)}{n} + 4(n-1)\right)$$
$$= \lim_{n \to \infty} \frac{2}{n} \frac{n^{2} - n + 4n^{2} - 4n}{n}$$
$$= \lim_{n \to \infty} \frac{2}{n} \frac{5n^{2} - 5n}{n}$$
$$= \lim_{n \to \infty} \frac{10n^{2} - 10n}{n^{2}}$$
$$= \lim_{n \to \infty} 10 - (10/n)$$

=10

Question: 2

Evaluate each of

Solution:

f(x) is continuous in [1,2]

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} h \sum_{r=0}^{n-1} f(a+rh), \text{ where } h = (b-a)/n$$

here h=1/n

$$\int_{1}^{2} (3x-2)dx = \lim_{n \to \infty} \left(\frac{1}{n}\right) \sum_{r=0}^{n-1} f\left(1 + \left(\frac{r}{n}\right)\right)$$
$$= \lim_{n \to \infty} \left(\frac{1}{n}\right) \sum_{r=0}^{n-1} (3+3\frac{r}{n}-2)$$
$$\lim_{n \to \infty} \left(\frac{1}{n}\right) \left(n + \frac{3(n-1)(n)}{2n}\right)$$
$$= \lim_{n \to \infty} \left(\frac{1}{n}\right) \left(\frac{2n^2 + 3n^2 - 3n}{2n}\right)$$
$$= \lim_{n \to \infty} \left(\frac{5n^2 - 3n}{2n^2}\right)$$
$$= \lim_{n \to \infty} \left(\frac{5}{2}\right) - \left(\frac{3}{2n}\right)$$

Evaluate each of

Solution:

f(x) is continuous in [1,3]

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} h \sum_{r=0}^{n-1} f(a+rh), \text{ where } h = (b-a)/n$$

here h=2/n

$$\int_{1}^{3} (x^2) dx = \lim_{n \to \infty} \left(\frac{2}{n} \right) \sum_{r=0}^{n-1} f\left(1 + \left(\frac{2r}{n} \right) \right)$$

$$= \lim_{n \to \infty} \left(\frac{2}{n}\right) \sum_{r=0}^{n-1} \left(1 + \left(\frac{2r}{n}\right)\right)^2$$

$$= \lim_{n \to \infty} \left(\frac{2}{n}\right) \sum_{r=0}^{n-1} \left(\frac{4r^2}{n^2} + 1 + \frac{4r}{n}\right)$$

$$= \lim_{n \to \infty} \frac{2}{n} \left(\frac{4(n-1)(n)(2n-1)}{6n^2} + n + \frac{4(n-1)(n)}{2n}\right)$$

$$= \lim_{n \to \infty} \frac{2}{n} \left(\frac{4(2n^3 - 2n^2 - n^2 + n)}{6n^2} + n + \frac{2(n^2 - n)}{n}\right)$$

$$= \lim_{n \to \infty} \frac{2}{n} \left(\frac{(8n^3 - 12n^2 + 4n) + (6n^3) + (12n^3 - 12n^2)}{6n^2}\right)$$

$$= \lim_{n \to \infty} \frac{2}{n} \left(\frac{26n^3 - 24n^2 + 4n}{6n^2} \right)$$
$$= \lim_{n \to \infty} \left(\frac{52n^3 - 48n^2 + 8n}{6n^3} \right)$$
$$= \lim_{n \to \infty} \left(\frac{52}{6} \right) - \left(\frac{26}{6n} \right) + \left(\frac{8}{6n^2} \right)$$

=26/3

Question: 4

Evaluate each of

Solution:

f(x) is continuous in [0,3]

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} h \sum_{r=0}^{n-1} f(a+rh), \text{ where } h = (b-a)/n$$

here h=3/n

$$\begin{split} &\int_{0}^{3} (x^{2}+1) dx = \lim_{n \to \infty} \left(\frac{3}{n}\right) \sum_{r=0}^{n-1} f\left(\left(\frac{3r}{n}\right)\right) \\ &= \lim_{n \to \infty} \left(\frac{3}{n}\right) \sum_{r=0}^{n-1} \left(\left(\frac{3r}{n}\right)^{2}+1\right) \\ &= \lim_{n \to \infty} \left(\frac{3}{n}\right) \sum_{r=0}^{n-1} \left(\frac{9r^{2}}{n^{2}}+1\right) \\ &= \lim_{n \to \infty} \frac{3}{n} \left(\frac{9(n-1)(n)(2n-1)}{6n^{2}}+n\right) \\ &= \lim_{n \to \infty} \frac{3}{n} \left(\frac{9(n^{2}-n)(2n-1)}{6n^{2}}+n\right) \\ &= \lim_{n \to \infty} \frac{3}{n} \left(\frac{9(2n^{3}-2n^{2}-n^{2}+n)}{6n^{2}}+n\right) \\ &= \lim_{n \to \infty} \frac{3}{n} \left(\frac{(18n^{3}-27n^{2}+9n)+(6n^{3})}{6n^{2}}\right) \\ &= \lim_{n \to \infty} \frac{3}{n} \left(\frac{24n^{3}-27n^{2}+9n}{6n^{2}}\right) \\ &= \lim_{n \to \infty} \frac{3}{n} \left(\frac{72n^{3}-81n^{2}+27n}{6n^{3}}\right) \end{split}$$

$$= \lim_{n \to \infty} \left(\frac{72}{6}\right) - \left(\frac{81}{6n}\right) + \left(\frac{27}{6n^2}\right)$$

=12

Question: 5

Evaluate each of

Solution:

f(x) is continuous in [2,5]

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} h \sum_{r=0}^{n-1} f(a+rh), \text{ where } h = (b-a)/n$$

here h=3/n

$$\begin{split} &\int_{2}^{5} (3x^2 - 5)dx = \lim_{n \to \infty} \left(\frac{3}{n}\right) \sum_{r=0}^{n-1} f\left(\left(2 + \frac{3r}{n}\right)\right) \\ &= \lim_{n \to \infty} \left(\frac{3}{n}\right) \sum_{r=0}^{n-1} \left(3\left(2 + \frac{3r}{n}\right)^2 - 5\right) \\ &= \lim_{n \to \infty} \left(\frac{3}{n}\right) \sum_{r=0}^{n-1} 3\left(\frac{9r^2}{n^2} + 4 + \frac{12r}{n}\right) - 5 \\ &= \lim_{n \to \infty} \frac{3}{n} \left(\frac{27(n-1)(n)(2n-1)}{6n^2} + 12n + \frac{18n(n-1)}{n} - 5n\right) \\ &= \lim_{n \to \infty} \frac{3}{n} \left(\frac{27(n^2 - n)(2n-1)}{6n^2} + 12n + \frac{18n(n-1)}{n} - 5n\right) \\ &= \lim_{n \to \infty} \frac{3}{n} \left(\frac{27(2n^3 - 2n^2 - n^2 + n)}{6n^2} + 12n + \frac{18n(n-1)}{n} - 5n\right) \\ &= \lim_{n \to \infty} \frac{3}{n} \left(\frac{(54n^3 - 81n^2 + 27n) + (42n^3) + (108n^3 - 108n^2)}{6n^2}\right) \\ &= \lim_{n \to \infty} \frac{3}{n} \left(\frac{204n^3 - 189n^2 + 27n}{6n^2}\right) \\ &= \lim_{n \to \infty} \left(\frac{612n^3 - 567n^2 + 27n}{6n^3}\right) \\ &= \lim_{n \to \infty} \left(\frac{612n^3 - 567n^2 + 27n}{6n^3}\right) \end{split}$$

=102

Question: 6

Evaluate each of

Solution:

f(x) is continuous in [2,5]

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} h \sum_{r=0}^{n-1} f(a+rh), \text{ where } h = (b-a)/n$$

here h=3/n

$$\begin{split} &\int_{0}^{3} (x^{2} + 2x) dx = \lim_{n \to \infty} \left(\frac{3}{n}\right) \sum_{r=0}^{n-1} f\left(\left(\frac{3r}{n}\right)\right) \\ &= \lim_{n \to \infty} \left(\frac{3}{n}\right) \sum_{r=0}^{n-1} \left(\left(\frac{3r}{n}\right)^{2} + \frac{6r}{n}\right) \\ &= \lim_{n \to \infty} \left(\frac{3}{n}\right) \sum_{r=0}^{n-1} \left(\frac{9r^{2}}{n^{2}} + \frac{6r}{n}\right) \\ &= \lim_{n \to \infty} \frac{3}{n} \left(\frac{9(n-1)(n)(2n-1)}{6n^{2}} + \frac{3n(n-1)}{n}\right) \\ &= \lim_{n \to \infty} \frac{3}{n} \left(\frac{9(n^{2} - n)(2n-1)}{6n^{2}} + \frac{3n(n-1)}{n}\right) \\ &= \lim_{n \to \infty} \frac{3}{n} \left(\frac{9(2n^{3} - 2n^{2} - n^{2} + n)}{6n^{2}} + \frac{3n(n-1)}{n}\right) \\ &= \lim_{n \to \infty} \frac{3}{n} \left(\frac{(18n^{3} - 27n^{2} + 9n) + (18n^{3} - 18n^{2})}{6n^{2}}\right) \\ &= \lim_{n \to \infty} \frac{3}{n} \left(\frac{36n^{3} - 45n^{2} + 9n}{6n^{2}}\right) \\ &= \lim_{n \to \infty} \left(\frac{108n^{3} - 135n^{2} + 27n}{6n^{3}}\right) \\ &= \lim_{n \to \infty} \left(\frac{108n^{3} - 135n^{2} + 27n}{6n^{3}}\right) \end{split}$$

=18

Question: 7

Evaluate each of

Solution:

f(x) is continuous in [1,4]

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} h \sum_{r=0}^{n-1} f(a+rh), \text{ where } h = (b-a)/n$$

here h=3/n

$$\begin{split} &\int_{1}^{4} (3x^{2} + 2x)dx = \lim_{n \to \infty} \left(\frac{3}{n}\right) \sum_{r=0}^{n-1} f\left(\left(1 + \frac{3r}{n}\right)\right) \\ &= \lim_{n \to \infty} \left(\frac{3}{n}\right) \sum_{r=0}^{n-1} \left(3\left(1 + \frac{3r}{n}\right)^{2} + 2\left(1 + \frac{3r}{n}\right)\right) \\ &= \lim_{n \to \infty} \left(\frac{3}{n}\right) \sum_{r=0}^{n-1} 3\left(\frac{9r^{2}}{n^{2}} + 1 + \frac{6r}{n}\right) + 2\left(1 + \frac{3r}{n}\right) \\ &= \lim_{n \to \infty} \frac{3}{n} \left(\frac{27(n-1)(n)(2n-1)}{6n^{2}} + 3n + \frac{9n(n-1)}{n} + 2n + \frac{3n(n-1)}{n}\right) \\ &= \lim_{n \to \infty} \frac{3}{n} \left(\frac{27(n^{2} - n)(2n-1)}{6n^{2}} + 5n + \frac{12n(n-1)}{n}\right) \\ &= \lim_{n \to \infty} \frac{3}{n} \left(\frac{27(2n^{3} - 2n^{2} - n^{2} + n)}{6n^{2}} + 5n + \frac{12n(n-1)}{n}\right) \\ &= \lim_{n \to \infty} \frac{3}{n} \left(\frac{(54n^{3} - 81n^{2} + 27n) + (30n^{3}) + (72n^{3} - 72n^{2})}{6n^{2}}\right) \\ &= \lim_{n \to \infty} \frac{3}{n} \left(\frac{156n^{3} - 153n^{2} + 27n}{6n^{2}}\right) \\ &= \lim_{n \to \infty} \left(\frac{468n^{3} - 459n^{2} + 81n}{6n^{3}}\right) \\ &= \lim_{n \to \infty} \left(\frac{468n^{3} - 459n^{2} + 81n}{6n^{3}}\right) \\ &= \lim_{n \to \infty} \left(\frac{468n^{3} - 459n^{2} + 81n}{6n^{3}}\right) \end{split}$$

=78

Question: 8

Evaluate each of

Solution:

f(x) is continuous in [1,3]

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} h \sum_{r=0}^{n-1} f(a+rh), \text{ where } h = (b-a)/n$$

here h=3/n

$$\int_{1}^{3} (x^{2} + 5x) dx = \lim_{n \to \infty} \left(\frac{2}{n}\right) \sum_{r=0}^{n-1} f\left(\left(1 + \frac{2r}{n}\right)\right)$$
$$= \lim_{n \to \infty} \left(\frac{2}{n}\right) \sum_{r=0}^{n-1} \left(\left(1 + \frac{2r}{n}\right)^{2} + 5\left(1 + \frac{2r}{n}\right)\right)$$

$$= \lim_{n \to \infty} \left(\frac{2}{n}\right) \sum_{r=0}^{n-1} \left(1 + \frac{4r^2}{n^2} + \frac{4r}{n} + 5 + \frac{10r}{n}\right)$$

$$= \lim_{n \to \infty} \left(\frac{2}{n}\right) \sum_{r=0}^{n-1} \left(1 + \frac{4r^2}{n^2} + \frac{4r}{n} + 5 + \frac{10r}{n}\right)$$

$$= \lim_{n \to \infty} \frac{2}{n} \left(\frac{4(n-1)(n)(2n-1)}{6n^2} + 6n + \frac{7n(n-1)}{n}\right)$$

$$= \lim_{n \to \infty} \frac{2}{n} \left(\frac{4(n^2 - n)(2n-1)}{6n^2} + 6n + \frac{7n(n-1)}{n}\right)$$

$$= \lim_{n \to \infty} \frac{2}{n} \left(\frac{4(2n^3 - 2n^2 - n^2 + n)}{6n^2} + 6n + \frac{7n(n-1)}{n}\right)$$

$$= \lim_{n \to \infty} \frac{2}{n} \left(\frac{(8n^3 - 12n^2 + 4n) + (42n^3 - 42n^2) + (36n^3)}{6n^2}\right)$$

$$= \lim_{n \to \infty} \frac{2}{n} \left(\frac{86n^3 - 54n^2 + 4n}{6n^2}\right)$$

$$= \lim_{n \to \infty} \left(\frac{172n^3 - 108n^2 + 8n}{6n^3}\right)$$

=86/3

Question: 9

Evaluate each of

Solution:

f(x) is continuous in [1,3]

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} h \sum_{r=0}^{n-1} f(a+rh), \text{ where } h = (b-a)/n$$

here h=2/n

$$\int_{1}^{3} (2x^{2} + 5x) dx = \lim_{n \to \infty} (\frac{2}{n}) \sum_{r=0}^{n-1} f\left((1 + \frac{2r}{n})\right)$$

$$= \lim_{n \to \infty} \left(\frac{2}{n}\right) \sum_{r=0}^{n-1} \left(2\left(1 + \frac{2r}{n}\right)^2 + 5\left(1 + \frac{2r}{n}\right)\right)$$
$$= \lim_{n \to \infty} \left(\frac{2}{n}\right) \sum_{r=0}^{n-1} \left(2 + \frac{8r^2}{n^2} + \frac{8r}{n} + 5 + \frac{10r}{n}\right)$$

$$\begin{split} &= \lim_{n \to \infty} \left(\frac{2}{n}\right) \sum_{r=0}^{n-1} \left(7 + \frac{8r^2}{n^2} + \frac{18r}{n}\right) \\ &= \lim_{n \to \infty} \frac{2}{n} \left(\frac{8(n-1)(n)(2n-1)}{6n^2} + 7n + \frac{9n(n-1)}{n}\right) \\ &= \lim_{n \to \infty} \frac{2}{n} \left(\frac{8(n^2-n)(2n-1)}{6n^2} + 7n + \frac{9n(n-1)}{n}\right) \\ &= \lim_{n \to \infty} \frac{2}{n} \left(\frac{8(2n^3 - 2n^2 - n^2 + n)}{6n^2} + 7n + \frac{9n(n-1)}{n}\right) \\ &= \lim_{n \to \infty} \frac{2}{n} \left(\frac{(16n^3 - 24n^2 + 8n) + (54n^3 - 54n^2) + (42n^3)}{6n^2}\right) \\ &= \lim_{n \to \infty} \frac{2}{n} \left(\frac{112n^3 - 78n^2 + 8n}{6n^2}\right) \\ &= \lim_{n \to \infty} \left(\frac{224n^3 - 156n^2 + 8n}{6n^3}\right) \\ &= \lim_{n \to \infty} \left(\frac{224}{6}\right) - \left(\frac{156}{6n}\right) + \left(\frac{8}{6n^2}\right) \end{split}$$

=112/3

Question: 10

Evaluate each of

Solution:

f(x) is continuous in [0,2]

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} h \sum_{r=0}^{n-1} f(a+rh), \text{ where } h = (b-a)/n$$

here h=2/n

$$\int_{0}^{2} (x^{3}) dx = \lim_{n \to \infty} \left(\frac{2}{n}\right) \sum_{r=0}^{n-1} f\left(\frac{2r}{n}\right)$$

$$= \lim_{n \to \infty} \left(\frac{2}{n}\right) \sum_{r=0}^{n-1} \left(\frac{2r}{n}\right)^3$$

$$= \lim_{n \to \infty} \left(\frac{2}{n}\right) \sum_{r=0}^{n-1} \left(\frac{8r^3}{n^3}\right)$$

$$= \lim_{n \to \infty} \frac{2}{n} \left(\frac{8(n-1)^2(n)^2}{4n^3} \right)$$

$$= \lim_{n \to \infty} \frac{2}{n} \left(\frac{8(n^2 - 2n + 1)(n^2)}{4n^3} \right)$$
$$= \lim_{n \to \infty} \frac{2}{n} \left(\frac{8(n^4 - 2n^3 + n^2)}{4n^3} \right)$$
$$= \lim_{n \to \infty} \left(\frac{16n^4 - 32n^3 + 16n^2}{4n^4} \right)$$
$$= \lim_{n \to \infty} \left(\frac{16}{4} \right) - \left(\frac{32}{4n} \right) + \left(\frac{16}{4n^2} \right)$$

=4

Question: 11

Evaluate each of

Solution:

f(x) is continuous in [2,4]

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} h \sum_{r=0}^{n-1} f(a+rh), \text{ where } h = (b-a)/n$$

here h=3/n

$$\begin{split} &\int_{2}^{4} (x^{2} - 3x + 2) dx = \lim_{n \to \infty} \left(\frac{2}{n}\right) \sum_{r=0}^{n-1} f\left(\left(2 + \frac{2r}{n}\right)\right) \\ &= \lim_{n \to \infty} \left(\frac{2}{n}\right) \sum_{r=0}^{n-1} \left(\left(2 + \frac{2r}{n}\right)^{2} - 3\left(2 + \frac{2r}{n}\right) + 2\right) \\ &= \lim_{n \to \infty} \left(\frac{2}{n}\right) \sum_{r=0}^{n-1} \left(\frac{4r^{2}}{n^{2}} + \frac{8r}{n} + 4 - 6 - \frac{6r}{n} + 2\right) \\ &= \lim_{n \to \infty} \frac{2}{n} \left(\frac{4(n-1)(n)(2n-1)}{6n^{2}} + \frac{n(n-1)}{n}\right) \\ &= \lim_{n \to \infty} \frac{2}{n} \left(\frac{4(n^{2} - n)(2n-1)}{6n^{2}} + \frac{n(n-1)}{n}\right) \\ &= \lim_{n \to \infty} \frac{2}{n} \left(\frac{4(2n^{3} - 2n^{2} - n^{2} + n)}{6n^{2}} + \frac{n(n-1)}{n}\right) \\ &= \lim_{n \to \infty} \frac{2}{n} \left(\frac{(8n^{3} - 12n^{2} + 4n) + (6n^{3} - 6n^{2})}{6n^{2}}\right) \\ &= \lim_{n \to \infty} \frac{2}{n} \left(\frac{14n^{3} - 18n^{2} + 4n}{6n^{2}}\right) \\ &= \lim_{n \to \infty} \left(\frac{28n^{3} - 36n^{2} + 8n}{6n^{3}}\right) \end{split}$$

$$= \lim_{n \to \infty} \left(\frac{28}{6}\right) - \left(\frac{36}{6n}\right) + \left(\frac{8}{6n^2}\right)$$

=14/3

Question: 12

Evaluate each of

Solution:

f(x) is continuous in [0,2]

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} h \sum_{r=0}^{n-1} f(a+rh), \text{ where } h = (b-a)/n$$

here h=2/n

$$\begin{split} &\int_{0}^{2} (x^{2} + x) dx = \lim_{n \to \infty} \left(\frac{2}{n}\right) \sum_{r=0}^{n-1} f\left(\frac{2r}{n}\right) \\ &= \lim_{n \to \infty} \left(\frac{2}{n}\right) \sum_{r=0}^{n-1} \left(\left(\frac{2r}{n}\right)^{2} + \left(\frac{2r}{n}\right)\right) \\ &= \lim_{n \to \infty} \left(\frac{2}{n}\right) \sum_{r=0}^{n-1} \left(\frac{4r^{2}}{n^{2}} + \frac{2r}{n}\right) \\ &= \lim_{n \to \infty} \frac{2}{n} \left(\frac{4(n-1)(n)(2n-1)}{6n^{2}} + \frac{n(n-1)}{n}\right) \\ &= \lim_{n \to \infty} \frac{2}{n} \left(\frac{4(n^{2} - n)(2n-1)}{6n^{2}} + \frac{n(n-1)}{n}\right) \\ &= \lim_{n \to \infty} \frac{2}{n} \left(\frac{4(2n^{3} - 2n^{2} - n^{2} + n)}{6n^{2}} + \frac{n(n-1)}{n}\right) \\ &= \lim_{n \to \infty} \frac{2}{n} \left(\frac{(8n^{3} - 12n^{2} + 4n) + (6n^{3} - 6n^{2})}{6n^{2}}\right) \\ &= \lim_{n \to \infty} \frac{2}{n} \left(\frac{14n^{3} - 18n^{2} + 4n}{6n^{2}}\right) \\ &= \lim_{n \to \infty} \left(\frac{28n^{3} - 36n^{2} + 8n}{6n^{3}}\right) \\ &= \lim_{n \to \infty} \left(\frac{28n^{3} - 36n^{2} + 8n}{6n^{3}}\right) \\ &= \lim_{n \to \infty} \left(\frac{28}{6}\right) - \left(\frac{36}{6n}\right) + \left(\frac{8}{6n^{2}}\right) \end{split}$$

=14/3

Question: 13

Evaluate each of

Solution:

f(x) is continuous in [0,3]

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} h \sum_{r=0}^{n-1} f(a+rh), \text{ where } h = (b-a)/n$$

here h=3/n

$$\begin{split} &\int_{0}^{3} (2x^{2} + 3x + 5)dx = \lim_{n \to \infty} \left(\frac{3}{n}\right) \sum_{r=0}^{n-1} f\left(\frac{3r}{n}\right) \\ &= \lim_{n \to \infty} \left(\frac{3}{n}\right) \sum_{r=0}^{n-1} (2\left(\frac{3r}{n}\right)^{2} + 3\left(\frac{3r}{n}\right) + 5) \\ &= \lim_{n \to \infty} \left(\frac{3}{n}\right) \sum_{r=0}^{n-1} (\frac{18r^{2}}{n^{2}} + \frac{9r}{n} + 5) \\ &= \lim_{n \to \infty} \frac{3}{n} \left(\frac{18(n-1)(n)(2n-1)}{6n^{2}} + \frac{9n(n-1)}{2n} + 5n\right) \\ &= \lim_{n \to \infty} \frac{3}{n} \left(\frac{18(n^{2} - n)(2n-1)}{6n^{2}} + \frac{9n(n-1)}{2n} + 5n\right) \\ &= \lim_{n \to \infty} \frac{3}{n} \left(\frac{18(2n^{3} - 2n^{2} - n^{2} + n)}{6n^{2}} + \frac{9n(n-1)}{2n} + 5n\right) \\ &= \lim_{n \to \infty} \frac{3}{n} \left(\frac{(36n^{3} - 54n^{2} + 18n) + (27n^{3} - 27n^{2}) + 30n^{3}}{6n^{2}}\right) \\ &= \lim_{n \to \infty} \frac{3}{n} \left(\frac{93n^{3} - 81n^{2} + 18n}{6n^{2}}\right) \\ &= \lim_{n \to \infty} \left(\frac{279n^{3} - 243n^{2} + 54n}{6n^{3}}\right) \\ &= \lim_{n \to \infty} \left(\frac{279}{6}\right) - \left(\frac{243}{6n}\right) + \left(\frac{54}{6n^{2}}\right) \end{split}$$

=93/2

Question: 14

Evaluate each of

Solution:

Since it is modulus function so we need to break the function and then solve it

$$f(x) = \int_{0}^{\frac{1}{3}} (1 - 3x) dx + \int_{\frac{1}{3}}^{1} (3x - 1) dx$$

it is continuous in [0,1]

let
$$g(x) = \int_0^{\frac{1}{3}} (1 - 3x) dx$$
 and $h(x) = \int_{\frac{1}{3}}^{1} (3x - 1) dx$

$$g(x) = \int_{0}^{\frac{1}{3}} (1 - 3x) dx$$

here h=1/3n

$$\int_{0}^{\frac{1}{3}} (1 - 3x) dx = \lim_{n \to \infty} \left(\frac{1}{3n}\right) \sum_{r=0}^{n-1} f(r/3n)$$

$$= \lim_{n \to \infty} \left(\frac{1}{3n}\right) \sum_{r=0}^{n-1} \left(1 - 3\left(\frac{r}{3n}\right)\right)$$

$$= \lim_{n \to \infty} \left(\frac{1}{3n}\right) \left(n - \frac{3(n-1)(n)}{6n}\right)$$

$$= \lim_{n \to \infty} \frac{1}{3n} \frac{6n^2 - 3n^2 + 3n}{3n}$$

$$= \lim_{n \to \infty} \frac{1}{3n} \frac{3n^2 + 3n}{3n}$$

$$= \lim_{n \to \infty} \frac{3n^2 + 3n}{9n^2}$$

$$= \lim_{n \to \infty} \frac{1}{3} + \left(\frac{3}{9n}\right)$$

$$= 1/3$$

$$h(x) = \int_{\frac{1}{3}}^{1} (3x - 1) dx$$
here h=2/3n

$$\int_{\frac{1}{3}}^{1} (3x-1)dx = \lim_{n \to \infty} \left(\frac{2}{3n}\right) \sum_{r=0}^{n-1} f\left(\left(\frac{1}{3}\right) + \left(\frac{2r}{3n}\right)\right)$$

$$= \lim_{n \to \infty} \left(\frac{2}{3n}\right) \sum_{r=0}^{n-1} \left(3\left(\frac{1}{3} + \frac{2r}{3n}\right) - 1\right)$$
$$= \lim_{n \to \infty} \left(\frac{2}{3n}\right) \left(\frac{(n-1)(n)}{n}\right)$$
$$= \lim_{n \to \infty} \frac{2}{3n} \cdot \frac{n^2 - n}{n}$$
$$= \lim_{n \to \infty} \frac{2}{3n} \cdot \frac{n^2 - n}{n}$$

$$= \lim_{n \to \infty} \frac{2n^2 - 2n}{3n^2}$$
$$= \lim_{n \to \infty} \frac{2}{3} - \left(\frac{2}{3n}\right)$$
$$= 2/3$$
$$f(x) = g(x) + h(x)$$
$$= (1/3) + (2/3)$$
$$= 3/3$$
$$= 1$$

Evaluate each of

Solution:

f(x) is continuous in [0,2]

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} h \sum_{r=0}^{n-1} f(a+rh), \text{ where } h = (b-a)/n$$

here h=2/n

$$\int_{0}^{2} (e^{x}) dx = \lim_{n \to \infty} \left(\frac{2}{n}\right) \sum_{r=0}^{n-1} f\left(\frac{2r}{n}\right)$$

$$= \lim_{n \to \infty} \left(\frac{2}{n}\right) \sum_{r=0}^{n-1} e^{\frac{2r}{n}}$$
$$= \lim_{n \to \infty} \left(\frac{2}{n}\right) \left(e^{0} + e^{h} + e^{2h} + \dots + e^{nh}\right)$$
sum of $e^{0} + e^{h} + e^{2h} + \dots + e^{nh}$

Which is g.p with common ratio $e^{1/n} % \left({{{\left({{{{{\bf{n}}}} \right)}_{n}}}_{n}} \right)} \right)$

Whose sum is
$$= \frac{e^{h}(1-e^{nh})}{1-e^{h}}$$

 $= \lim_{n \to \infty} \left(\frac{2}{n}\right) \left(\frac{e^{h}(1-e^{nh})}{1-e^{h}}\right)$
 $= \lim_{n \to \infty} \left(\frac{2}{n}\right) \left(\frac{e^{h}(1-e^{nh})}{\frac{1-e^{h}.h}{h}}\right)$
 $\lim_{h \to 0} \frac{1-e^{h}}{h} = -1$
 $= \lim_{n \to \infty} \left(\frac{2}{n}\right) \cdot \frac{e^{h}(1-e^{nh})}{-h}$
As h=2/n
 $= \lim_{n \to \infty} \left(\frac{2}{n}\right) \cdot \frac{e^{(\frac{2}{n})}(1-e^{n*(2/n)})}{-2/n}$
 $= e^{2}-1$

Evaluate each of

Solution:

f(x) is continuous in [1,3]

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} h \sum_{r=0}^{n-1} f(a+rh), \text{ where } h = (b-a)/n$$

here h=2/n

$$\int_{1}^{3} (e^{-x})dx = \lim_{n \to \infty} \left(\frac{2}{n}\right) \sum_{r=0}^{n-1} f\left(1 + \left(\frac{2r}{n}\right)\right)$$

$$= \lim_{n \to \infty} \left(\frac{2}{n}\right) \sum_{r=0}^{n-1} e^{-(1 + \frac{2r}{n})}$$
$$= \lim_{n \to \infty} \left(\frac{2}{n}\right) \sum_{r=0}^{n-1} e^{-1} \cdot e^{-\frac{2r}{n}}$$

Common ratio is
$$h = -2/n$$

 $sum = e^{-1}(e^0 + e^h + e^{2h} + \dots + e^{nh})$ (2 e^{-1})

$$=\lim_{n\to\infty}\left(\frac{2e^{-1}}{n}\right)(e^{0}+e^{h}+e^{2h}+\cdots\ldots\ldots+e^{nh}$$

sum of $= e^0 + e^h + e^{2h} + \cdots \dots + e^{nh}$

Which is g.p. with common ratio $e^{1/n} % \left({{{\mathbf{n}}_{n}}} \right) = {{\mathbf{n}}_{n}} \left({{\mathbf{n}}_{n}} \right)$

Whose sum is
$$= \frac{e^{h}(1-e^{nh})}{1-e^{h}}$$
$$= \lim_{n \to \infty} \left(\frac{2e^{-1}}{n}\right) \left(\frac{e^{h}(1-e^{nh})}{1-e^{h}}\right)$$
$$= \lim_{n \to \infty} \left(\frac{2e^{-1}}{n}\right) \left(\frac{e^{h}(1-e^{nh})}{\frac{1-e^{h}}{h}}\right)$$
$$\lim_{h \to 0} \frac{1-e^{h}}{h} = -1$$
$$= \lim_{n \to \infty} \left(\frac{2e^{-1}}{n}\right) \left(\frac{e^{h}(1-e^{nh})}{-h}\right)$$
As h=-2/n
$$= \lim_{n \to \infty} \left(\frac{2e^{-1}}{n}\right) \left(\frac{e^{(-\frac{2}{n})}(1-e^{nn})}{2/n}\right)$$

$$=\frac{(1-e^{-2})}{e}$$
$$=\frac{(e^2-1)}{e^3}$$

-2/n

Question: 17

Evaluate each of

Solution:

f(x) is continuous in [a,b]

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} h \sum_{r=0}^{n-1} f(a+rh), \text{ where } h = (b-a)/n$$

here h=(b-a)/n

$$\int_{a}^{b} (\cos x) dx = \lim_{n \to \infty} \left(\frac{b-a}{n} \right) \sum_{r=0}^{n-1} f(a+rh)$$

$$= \lim_{n \to \infty} \left(\frac{b-a}{n}\right) \sum_{r=0}^{n-1} \cos(a+rh)$$

 $S = \cos(a) + \cos(a+h) + \cos(a+2h) + \cos(a+3h) + \dots + \cos(a+(n-1)h) = \frac{\sin(\frac{nh}{2})\cos(a+\frac{(n-1)h}{2})}{\sin(\frac{h}{2})}$

Putting h=(b-a)/n

$$= \lim_{n \to \infty} \left(\frac{b-a}{n}\right) \frac{\sin\left(\frac{n(b-a)}{2n}\right)\cos\left(a + \frac{(n-1)(b-a)}{2n}\right)}{\frac{\sin\left(\frac{b-a}{2n}\right)}{\frac{b-a}{2n}} \cdot \frac{b-a}{2n}}$$

As we know

$$\lim_{h \to 0} \left(\frac{\sinh}{h}\right) = 1$$
$$= \lim_{n \to \infty} 2\sin\left(\frac{(b-a)}{2}\right)\cos\left(a + \left(\frac{1}{2} - \frac{1}{2n}\right)(b-a)\right)$$
$$= 2\sin\left(\frac{b-a}{2}\right)\cos\left(\frac{b+a}{2}\right)$$

Which is trigonometry formula of sin(b)-sin(a)

Final answer is sin(b)-sin(a)

Exercise : OBJECTIVE QUESTIONS

Question: 1

Mark (\checkmark) against

Solution:

$$y = \int_{1}^{4} x \sqrt{x} \, dx$$
$$= \int_{1}^{4} x^{\frac{3}{2}} dx$$
$$= \left(\frac{x^{\frac{3}{2}+1}}{\frac{3}{2}+1}\right)_{1}^{4}$$
$$= \frac{2}{5} \left(4^{\frac{5}{2}} - 1^{\frac{5}{2}}\right)$$
$$= \frac{2}{5}(32 - 1)$$
$$= \frac{62}{5}$$
$$= 12.4$$

Mark (\checkmark) against

Solution:

$$y = \int_0^2 \sqrt{6x + 4} \, dx$$
$$= \left(\frac{(6x + 4)^{\frac{1}{2} + 1}}{6\left(\frac{1}{2} + 1\right)}\right)_0^2$$
$$= \frac{2}{6 \times 3} \left(16^{\frac{3}{2}} - 4^{\frac{3}{2}}\right)$$
$$= \frac{2}{6 \times 3} (64 - 8)$$
$$= \frac{56}{9}$$

Question: 3

Mark (\checkmark) against

Solution:

$$y = \int_0^1 \frac{dx}{\sqrt{5x+3}}$$
$$= \left(\frac{(5x+3)^{\frac{-1}{2}+1}}{5(\frac{-1}{2}+1)}\right)_0^1$$
$$= \frac{2}{5}\left(8^{\frac{1}{2}} - 3^{\frac{1}{2}}\right)$$
$$= \frac{2}{5}\left(\sqrt{8} - \sqrt{3}\right)$$

Question: 4

Mark ($\sqrt{}$) against

Solution:

$$y = \int_0^1 \frac{1}{1+x^2} dx$$

= $(\tan^{-1} x)_0^1$
= $\tan^{-1} 1 - \tan^{-1} 0$
= $\frac{\pi}{4} - 0$
= $\frac{\pi}{4}$

Question: 5

Mark (\checkmark) against

$$y = \int_0^2 \frac{dx}{\sqrt{4-x^2}}$$

Use formula $\int \frac{dx}{\sqrt{a^2-x^2}} = \sin^{-1}\frac{x}{a}$
$$y = \left(\sin^{-1}\frac{x}{2}\right)_0^2$$
$$= \sin^{-1}1 - \sin^{-1}0$$
$$= \frac{\pi}{2}$$

Mark ($\sqrt{}$) against

Solution:

 $y = \int_{\sqrt{3}}^{\sqrt{8}} x \sqrt{1 + x^2} \, dx$ Let, $x^2 = t$

Differentiating both side with respect to t

$$2x \frac{dx}{dt} = 1$$

$$\Rightarrow xdx = \frac{1}{2} dt$$

At $x = \sqrt{3}$, $t = 3$
At $x = \sqrt{8}$, $t = 8$

$$y = \frac{1}{2} \int_{3}^{8} \sqrt{1 + t} dt$$

$$= \frac{1}{2} \left(\frac{(1 + t)^{\frac{1}{2} + 1}}{(\frac{1}{2} + 1)} \right)_{3}^{8}$$

$$= \frac{1}{3} \left(9^{\frac{3}{2}} - 4^{\frac{3}{2}} \right)$$

$$= \frac{19}{3}$$

Question: 7

Mark ($\sqrt{}$) against

Solution:

Let, $x^4 = t$

Differentiating both side with respect to t

$$4x^{3}\frac{dx}{dt} = 1$$

$$\Rightarrow x^{3}dx = \frac{1}{4}dt$$

At x = 0, t = 0
At x = 1, t = 1

$$y = \frac{1}{4} \int_{0}^{1} \frac{1}{1 + t^{2}} dt$$

= $\frac{1}{4} (\tan^{-1} t)_{0}^{1}$
= $\frac{1}{4} (\tan^{-1} 1 - \tan^{-1} 0)$
= $\frac{\pi}{16}$

Mark ($\sqrt{}$) against

Solution:

Let, $\log x = t$

Differentiating both side with respect to t

$$\frac{1}{x}\frac{dx}{dt} = 1$$

$$\Rightarrow \frac{1}{x}dx = dt$$

At x = 1, t = 0
At x = e, t = 1

$$y = \int_{0}^{1} t^{2} dt$$

$$= \left(\frac{t^{3}}{3}\right)_{0}^{1}$$

$$= \frac{1}{3}$$

Question: 9

Mark ($\sqrt{}$) against

Solution:

$$y = (\ln(\sin x))\frac{\pi}{\frac{\pi}{4}}$$
$$= \ln(\sin\frac{\pi}{2}) - \ln(\sin\frac{\pi}{4})$$
$$= \ln 1 - \ln\frac{1}{\sqrt{2}}$$
$$= \frac{1}{2}\ln 2$$

Question: 10

Mark ($\sqrt{}$) against

$$y = \int_{0}^{\frac{\pi}{4}} (\sec^{2} x - 1) \, dx$$
$$= (\tan x - x)_{0}^{\frac{\pi}{4}}$$

$$= \left(\tan\frac{\pi}{4} - \frac{\pi}{4}\right) - (\tan 0 - 0)$$
$$= 1 - \frac{\pi}{4}$$

Mark (\checkmark) against

Solution:

$$y = \int_0^{\frac{\pi}{2}} \frac{1 + \cos 2x}{2} dx$$
$$= \left(\frac{x}{2} + \frac{\sin 2x}{4}\right)_0^{\frac{\pi}{2}}$$
$$= \left(\frac{\frac{\pi}{2}}{2} + \frac{\sin \pi}{4}\right) - \left(\frac{0}{2} + \frac{\sin 0}{4}\right)$$
$$= \frac{\pi}{4}$$

Question: 12

Mark (\checkmark) against

Solution:

$$y = (\ln(\operatorname{cosec} x - \operatorname{cot} x))_{\frac{\pi}{3}}^{\frac{\pi}{3}}$$
$$= \ln\left(\operatorname{cosec} \frac{\pi}{2} - \operatorname{cot} \frac{\pi}{2}\right) - \ln\left(\operatorname{cosec} \frac{\pi}{3} - \operatorname{cot} \frac{\pi}{3}\right)$$
$$= \ln(1 - 0) - \ln\left(\frac{2}{\sqrt{3}} - \frac{1}{\sqrt{3}}\right)$$
$$= \frac{1}{2}\log 3$$

Question: 13

Mark ($\sqrt{}$) against

Solution:

$$y = \int_0^{\frac{\pi}{2}} \cos x (1 - \sin^2 x) dx$$

Let, sin x = t

Differentiating both side with respect to t

$$\cos x \frac{dx}{dt} = 1$$

$$\Rightarrow \cos x \, dx = dt$$

At $x = 0, t = 0$
At $x = \frac{\pi}{2}, t = 1$
 $y = \int_{0}^{1} 1 - t^{2} dt$
 $= \left(t - \frac{t^{3}}{3}\right)_{0}^{1}$

 $= 1 - \frac{1}{3}$ $= \frac{2}{3}$

Question: 14

Mark (\checkmark) against

Solution:

$$y = \int_0^{\frac{\pi}{4}} e^{\tan x} \sec^2 x \, dx$$

Let, $\tan x = t$

Differentiating both side with respect to t

$$sec^{2}x \frac{dx}{dt} = 1$$

$$\Rightarrow sec^{2}x dx = dt$$

At $x = 0$, $t = 0$
At $x = \frac{\pi}{4}$, $t = 1$
 $y = \int_{0}^{1} e^{t} dt$
 $= e^{t} = e^{0}$
 $= e^{-1}$

Question: 15

Mark (\checkmark) against

Solution:

Let, $\sin x = t$

Differentiating both side with respect to t

$$Cos x \frac{dx}{dt} = 1$$

$$\Rightarrow cos x dx = dt$$

At x = 0, t = 0
At x = $\frac{\pi}{2}$, t = 1

$$y = \int_{0}^{1} \frac{1}{1+t^{2}} dt$$

$$= (tan^{-1}t)_{0}^{1}$$

$$= tan^{-1}1 - tan^{-1}0$$

$$= \pi/4$$

Question: 16

Mark (\checkmark) against

Let, 1/x = t

Differentiating both side with respect to t

$$\frac{-1}{x^2} \frac{dx}{dt} = 1$$

$$\Rightarrow \frac{1}{x^2} dx = -dt$$

At x = 1/π, t = π
At x = 2/π, t = π/2

$$y = \int_{\pi}^{\frac{\pi}{2}} sint dt$$

$$= (-cos t)_{\pi}^{\frac{\pi}{2}}$$

= 1

Question: 17

Mark (\checkmark) against

Solution:

$$y = \int_0^{\pi} \frac{1}{1+\sin x} \times \frac{1-\sin x}{1-\sin x} dx$$
$$= \int_0^{\pi} \frac{1-\sin x}{\cos^2 x} dx$$
$$= \int_0^{\pi} \frac{1}{\cos^2 x} - \frac{\sin x}{\cos^2 x} dx$$
$$= \int_0^{\pi} \sec^2 x \, dx - \int_0^{\pi} \frac{\sin x}{\cos^2 x} dx$$

Let, $\cos x = t$

Differentiating both side with respect to t

$$-\sin x \frac{dx}{dt} = 1$$

$$\Rightarrow \sin x \, dx = -dt$$

At x = 0, t = 1
At x = π , t = -1

$$y = (\tan x)_0^{\pi} + \int_1^{-1} \frac{1}{t^2} dt$$

$$= (\tan \pi - \tan 0) + \left(\frac{t^{-1}}{-1}\right)_1^{-1}$$

=2

Question: 18

Mark (\checkmark) against

$$y = \int_0^{\frac{\pi}{2}} \sin^{\frac{3}{2}} x \cos^3 x \, dx$$
$$y = \int_0^{\frac{\pi}{2}} \sin^{\frac{3}{2}} x \cos x \, (1 - \sin^2 x) \, dx$$

Let, $\sin x = t$

Differentiating both side with respect to t

$$Cos x \frac{dx}{dt} = 1$$

$$\Rightarrow cos x dx = dt$$

At x = 0, t = 0
At x = $\pi/2$, t = 1

$$y = \int_{0}^{1} t^{\frac{3}{2}} - t^{\frac{7}{2}} dt$$

$$= \left(\frac{t^{\frac{5}{2}}}{\frac{5}{2}} - \frac{t^{\frac{9}{2}}}{\frac{9}{2}}\right)_{0}^{1}$$

$$= \frac{2}{5} - \frac{2}{9}$$

$$= \frac{8}{45}$$

Question: 19

Mark (\checkmark) against

Solution:

$$y = \int_0^1 \frac{e^x (x+1-1)}{(1+x)^2} dx$$
$$= \int_0^1 e^x \left(\frac{1}{1+x} - \frac{1}{(1+x)^2}\right) dx$$

Use formula $\int e^{x}(f(x) + f'(x))dx = e^{x} f(x)$

If
$$f(x) = \frac{1}{1+x}$$

then $f'(x) = -\frac{1}{(1+x)^2}$
 $y = \left(\frac{e^x}{1+x}\right)_0^1$
 $y = \frac{e}{2} - 1$

Question: 20

Mark (\checkmark) against

$$y = \int_0^{\frac{\pi}{2}} e^x \left(\frac{1 + \sin x}{2 \cos^2 \frac{x}{2}} \right) dx$$

$$= \int_{0}^{\frac{\pi}{2}} e^{x} \left(\frac{1}{2\cos^{2}\frac{x}{2}} + \frac{\sin x}{2\cos^{2}\frac{x}{2}} \right) dx$$

$$= \int_{0}^{\frac{\pi}{2}} e^{x} \left(\frac{1}{2\cos^{2}\frac{x}{2}} + \frac{2\sin\frac{x}{2}\cos\frac{x}{2}}{2\cos^{2}\frac{x}{2}} \right) dx$$

$$= \int_{0}^{\frac{\pi}{2}} e^{x} \left(\frac{1}{2}\sec^{2}\frac{x}{2} + \tan\frac{x}{2} \right) dx$$

Use formula $\int e^{x} (f(x) + f'(x)) dx = e^{x} f(x)$

If
$$f(x) = \tan \frac{x}{2}$$
 then $f'(x) = \frac{1}{2} \sec^2 \frac{x}{2}$
 $y = \left(e^x \tan \frac{x}{2}\right)_0^{\frac{\pi}{2}}$
 $= e^{\frac{\pi}{2}} \tan \frac{\frac{\pi}{2}}{2} - e^0 \tan \frac{0}{2}$
 $= e^{\frac{\pi}{2}}$

Mark ($\sqrt{}$) against

Solution:

$$y = \int_{0}^{\frac{\pi}{4}} \sqrt{\sin^{2}x + \cos^{2}x + 2\sin x \cos x} \, dx$$
$$= \int_{0}^{\frac{\pi}{4}} \sin x + \cos x \, dx$$
$$= (-\cos x + \sin x)_{0}^{\frac{\pi}{4}}$$
$$= \left(-\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\right) - (-1 + 0)$$
$$y = 1$$

Question: 22

Mark (\checkmark) against

Solution:

$$y = \int_0^{\frac{\pi}{2}} \sqrt{2\cos^2 x} \, dx$$
$$= \int_0^{\frac{\pi}{2}} \sqrt{2} \cos x \, dx$$
$$= \sqrt{2} (\sin x)_0^{\frac{\pi}{2}}$$
$$= \sqrt{2}$$

Question: 23

Mark (\checkmark) against

$$y = \int_0^1 \frac{1 - x - 1 + 1}{1 + x} dx$$

= $\int_0^1 \frac{2}{1 + x} - 1 dx$
= $(2 \ln(1 + x) - x)_0^1$
= $2 \ln 2 - 1$

Mark (\checkmark) against

Solution:

$$y = \int_0^{\frac{\pi}{2}} \frac{1 - \cos 2x}{2} dx$$
$$= \left(\frac{x}{2} - \frac{\sin 2x}{4}\right)_0^{\frac{\pi}{2}}$$
$$= \frac{\pi}{4} - \frac{\sin \pi}{4}$$
$$= \frac{\pi}{4}$$

Question: 25

Mark (\checkmark) against

Solution:

$$y = \int_{0}^{\frac{\pi}{6}} \cos x (1 - 2\sin^{2}x) dx$$
$$= \int_{0}^{\frac{\pi}{6}} \cos x - 2\cos x \sin^{2}x dx$$
$$= (\sin x)_{0}^{\frac{\pi}{6}} - 2\int_{0}^{\frac{\pi}{6}} \cos x \sin^{2}x dx$$

Let, $\sin x = t$

Differentiating both side with respect to t

$$Cosx \frac{dx}{dt} = 1$$

$$\Rightarrow cosx dx = dt$$

At x = 0, t = 0
At x = \pi/6, t = 1/2

$$y = sin \frac{\pi}{6} - sin 0 - 2 \int_{0}^{\frac{1}{2}} t^{2} dt$$

$$= \frac{1}{2} - 2 \left(\frac{t^{3}}{3}\right)_{0}^{\frac{1}{2}}$$

$$= \frac{1}{2} - \frac{1}{12}$$

 $=\frac{5}{12}$

Question: 26

Mark (\checkmark) against

Solution:

$$y = \int_0^{\frac{\pi}{2}} \sin x (2 \sin x \cos x) dx$$
$$= 2 \int_0^{\frac{\pi}{2}} \sin^2 x \cos x dx$$

Let, $\sin x = t$

Differentiating both side with respect to t

$$\cos x \frac{dx}{dt} = 1$$

$$\Rightarrow \cos x \, dx = dt$$

At x = 0, t = 0
At x = $\pi/2$, t = 1

$$y = 2 \int_{0}^{1} t^{2} \, dt$$

$$= 2 \left(\frac{t^{3}}{3}\right)_{0}^{1}$$

$$= \frac{2}{3}$$

Question: 27

Mark ($\sqrt{}$) against

Solution:

 $y = \int_0^{\pi} (2\sin x \cos x) (4\cos^3 x - 3\cos x) dx$ Let, cos x = t

Differentiating both side with respect to t

$$-\sin x \frac{dx}{dt} = 1$$

$$\Rightarrow \sin x \, dx = -dt$$

At x = 0, t = 1
At x = \pi, t = -1

$$y = -\int_{1}^{-1} 8t^4 - 6t^2 \, dt$$

$$= -\left(8\frac{t^5}{5} - 6\frac{t^3}{3}\right)_{1}^{-1}$$

$$= -\left[\left(\frac{-8}{5} + 2\right) - \left(\frac{8}{5} - 2\right)\right]$$

 $= -\frac{4}{5}$

Question: 28

Mark (\checkmark) against

Solution:

$$y = \int_0^1 \frac{e^x}{1 + e^{2x}} dx$$

Let $e^x = t$

Differentiating both side with respect to t

$$e^{x} \frac{dx}{dt} = 1$$

$$\Rightarrow e^{x} dx = dt$$

At x = 0, t = 1
At x = 1, t = e

$$y = \int_{1}^{e} \frac{1}{1 + t^{2}} dt$$

$$= (tan^{-1}t)_{1}^{e}$$

$$= tan^{-1}e - tan^{-1}1$$

$$= tan^{-1}e - \pi/4$$

Question: 29

Mark ($\sqrt{}$) against

Solution:

Let, $x = t^2$

Differentiating both side with respect to t

$$\frac{dx}{dt} = 2t$$

$$\Rightarrow dx = 2t dt$$

At x = 0, t = 0
At x = 9, t = 3

$$y = \int_{0}^{3} \frac{2t}{1+t} dt$$

$$= 2 \int_{0}^{3} \frac{t+1-1}{1+t} dt$$

$$= 2 \int_{0}^{3} 1 - \frac{1}{1+t} dt$$

$$= 2(t - \ln(1+t))_{0}^{3}$$

$$y = 2[(3 - \ln 4) - (0 - \ln 1)]$$

$$= 6 - 2 \log 4$$

Question: 30

Mark (\checkmark) against

Solution:

Use integration by parts

$$\int I \times II \, dx = I \times \int II \, dx - \int \frac{d}{dx} I\left(\int II \, dx\right) dx$$
$$y = x \int_0^{\frac{\pi}{2}} \cos x \, dx - \int_0^{\frac{\pi}{2}} \frac{d}{dx} x \left(\int \cos x \, dx\right) dx$$
$$= (x \sin x)_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} \sin x \, dx$$
$$= \frac{\pi}{2} - (-\cos x)_0^{\frac{\pi}{2}}$$
$$= \frac{\pi}{2} + (0 - 1)$$
$$= \frac{\pi}{2} - 1$$

Question: 31

Mark ($\sqrt{}$) against

Solution:

We have to convert denominator into perfect square

$$1 + x + x^{2} = x^{2} + 2(x)\left(\frac{1}{2}\right) + \frac{1}{4} - \frac{1}{4} + 1$$

$$= \left(x + \frac{1}{2}\right)^{2} + \frac{3}{4}$$

$$= \left(x + \frac{1}{2}\right)^{2} + \left(\frac{\sqrt{3}}{2}\right)^{2}$$

$$y = \int_{0}^{1} \frac{1}{\left(x + \frac{1}{2}\right)^{2} + \left(\frac{\sqrt{3}}{2}\right)^{2}} dx$$
Use formula $\int \frac{1}{x^{2} + a^{2}} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}$

$$y = \left(\frac{1}{\frac{\sqrt{3}}{2}} \tan^{-1} \frac{x + \frac{1}{2}}{\frac{\sqrt{3}}{2}}\right)_{0}^{1}$$

$$= \frac{2}{\sqrt{3}} \left(\tan^{-1} \frac{2}{\sqrt{3}} \left(\frac{3}{2}\right) - \tan^{-1} \frac{2}{\sqrt{3}} \left(\frac{1}{2}\right)\right)$$

$$= \frac{2}{\sqrt{3}} \left(\frac{\pi}{3} - \frac{\pi}{6}\right)$$

$$= \frac{\pi}{3\sqrt{3}}$$
Question: 32

Mark (\checkmark) against

Let, x = sin t

Differentiating both side with respect to t

$$\frac{dx}{dt} = \cos t \Rightarrow dx = \cos t dt$$
At x = 0, t = 0
At x = 1, t = $\pi/2$

$$y = \int_{0}^{\frac{\pi}{2}} \sqrt{\frac{1 - \sin t}{1 + \sin t}} \cos t dt$$

$$= \int_{0}^{\frac{\pi}{2}} \sqrt{\frac{1 - \sin t}{1 + \sin t}} \times \frac{1 - \sin t}{1 - \sin t}} \cos t dt$$

$$= \int_{0}^{\frac{\pi}{2}} \frac{1 - \sin t}{\cos t} \cos t dt$$

$$= \int_{0}^{\frac{\pi}{2}} 1 - \sin t dt$$

$$= (t + \cos t)_{0}^{\frac{\pi}{2}}$$

$$= (\frac{\pi}{2} + 0) - (0 + 1)$$

$$= \frac{\pi}{2} - 1$$

Question: 33

Mark (\checkmark) against

Solution:

$$y = \int_0^1 \frac{1 - x + 1 - 1}{1 + x} dx$$
$$= \int_0^1 \frac{2}{1 + x} - 1 dx$$
$$= (2 \ln(1 + x) - x)_0^1$$

= 2 log 2 - 1

Question: 34

Mark (\checkmark) against

Solution:

Let, $x = a \sin t$

Differentiating both side with respect to t

$$\frac{dx}{dt} = a \cos t \Rightarrow dx = a \cos t dt$$

At x = -a, t = - $\pi/2$
At x = a, t = $\pi/2$

$$y = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{\frac{a - a \sin t}{a + a \sin t}} a \cot t$$
$$= a \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{\frac{1 - \sin t}{1 + \sin t}} \times \frac{1 - \sin t}{1 - \sin t}} \cot t$$
$$= a \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1 - \sin t}{\cot t} \cot t$$
$$= a \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1 - \sin t dt$$
$$= a (t + \cot) \frac{\frac{\pi}{2}}{\frac{\pi}{2}}$$
$$= a \left[\left(\frac{\pi}{2} + 0 \right) - \frac{\pi}{2} + 0 \right)$$
$$= a\pi$$

Mark (\checkmark) against

Solution:

Use formula
$$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a}$$

 $y = \int_0^{\sqrt{2}} \sqrt{(\sqrt{2})^2 - x^2} \, dx$
 $= \left(\frac{x}{2} \sqrt{2 - x^2} + \frac{2}{2} \sin^{-1} \frac{x}{\sqrt{2}}\right)_0^{\sqrt{2}}$
 $= \left(\frac{\sqrt{2}}{2} \sqrt{2 - 2} + \sin^{-1} \frac{\sqrt{2}}{\sqrt{2}}\right) - (0 + \sin^{-1} 0)$
 $= \frac{\pi}{2}$

Question: 36

Mark ($\sqrt{}$) against

Solution:

We know that

$$|\mathbf{x}| = -\mathbf{x}$$
 in [-2, 0)
 $|\mathbf{x}| = \mathbf{x}$ in [0, 2]

$$|\mathbf{x}| = \mathbf{x} \text{ in } [0, 2]$$

$$y = \int_{-2}^{0} |x| dx + \int_{0}^{2} |x| dx$$
$$= \int_{-2}^{0} -x dx + \int_{0}^{2} x dx$$

$$= \left(-\frac{x^2}{2}\right)_{-2}^0 + \left(\frac{x^2}{2}\right)_{0}^2$$

y = 0 - (-2) + 2 - 0
= 4

Mark ($\sqrt{}$) against

Solution:

We know that

$$|2x - 1| = -(2x - 1) \text{ in } [0, 1/2)$$

$$|2x - 1| = (2x - 1) \text{ in } [1/2, 1]$$

$$y = \int_{0}^{\frac{1}{2}} |2x - 1| \, dx + \int_{\frac{1}{2}}^{1} |2x - 1| \, dx$$

$$= \int_{0}^{\frac{1}{2}} -(2x - 1) \, dx + \int_{\frac{1}{2}}^{1} 2x - 1 \, dx$$

$$= -(x^{2} - x)_{0}^{\frac{1}{2}} + (x^{2} - x)_{\frac{1}{2}}^{1}$$

$$= -\left[\left(\frac{1}{4} - \frac{1}{2}\right) - (0 - 0)\right] + \left[(1 - 1) - \left(\frac{1}{4} - \frac{1}{2}\right)\right]$$

$$y = \frac{1}{2}$$

Question: 38

Mark ($\sqrt{}$) against

Solution: We know that |2x + 1| = -(2x + 1) in [-2, -1/2) |2x + 1| = (2x + 1) in [-1/2, 1] $y = \int_{-2}^{\frac{1}{2}} |2x + 1| \, dx + \int_{\frac{1}{2}}^{1} |2x + 1| \, dx$ $= \int_{-2}^{\frac{1}{2}} -(2x + 1) \, dx + \int_{\frac{1}{2}}^{1} 2x + 1 \, dx$ $= -(x^2 + x)_{-2}^{\frac{1}{2}} + (x^2 + x)_{-\frac{1}{2}}^{1}$ $= -\left[\left(\frac{1}{4} - \frac{1}{2}\right) - (4 - 2)\right] + \left[(1 + 1) - \left(\frac{1}{4} - \frac{1}{2}\right)\right]$ $y = \frac{9}{2}$

Mark (\checkmark) against

Solution:

We know that

$$|\mathbf{x}| = -\mathbf{x} \text{ in } [-2, 0)$$

$$|\mathbf{x}| = \mathbf{x} \text{ in } [0, 1]$$

$$\mathbf{y} = \int_{-2}^{0} \frac{|\mathbf{x}|}{\mathbf{x}} d\mathbf{x} + \int_{0}^{1} \frac{|\mathbf{x}|}{\mathbf{x}} d\mathbf{x}$$

$$= \int_{-2}^{0} \frac{-\mathbf{x}}{\mathbf{x}} d\mathbf{x} + \int_{0}^{1} \frac{\mathbf{x}}{\mathbf{x}} d\mathbf{x}$$

$$= \int_{-2}^{0} -1 d\mathbf{x} + \int_{0}^{1} 1 d\mathbf{x}$$

$$= (-\mathbf{x})_{-2}^{0} + (\mathbf{x})_{0}^{1}$$

$$= -(0 - (-2)) + (1 - 0)$$

$$= -1$$

Question: 40

Mark (\checkmark) against

Solution:

We know that

 $|\mathbf{x}| = -\mathbf{x}$ in [-a, 0) where $\mathbf{a} > 0$

 $|\mathbf{x}| = \mathbf{x}$ in [0, a] where $\mathbf{a} > 0$

$$y = \int_{-a}^{0} x|x| dx + \int_{0}^{a} x|x| dx$$
$$= \int_{-a}^{0} x(-x) dx + \int_{0}^{a} x(x) dx$$
$$= -\int_{-a}^{0} x^{2} dx + \int_{0}^{a} x^{2} dx$$
$$= -\left(\frac{x^{3}}{3}\right)_{-a}^{0} + \left(\frac{x^{3}}{3}\right)_{0}^{a}$$
$$= -\left(0 - \left(\frac{-a^{3}}{3}\right)\right) + \left(\frac{a^{3}}{3} - 0\right)$$
$$= 0$$

Mark ($\sqrt{}$) against

Solution:

Find the equivalent expression to $|{\rm cos}\;x|$ at $0{\leq}x{\leq}\;\pi$

 $\ln 0 \le x \le \frac{\pi}{2}$

$$\ln \frac{\pi}{2} \le x \le \pi$$

=-cos x
$$\Rightarrow \int_{0}^{\frac{\pi}{2}} \cos x \, dx + \int_{\frac{\pi}{2}}^{\pi} -\cos x \, dx$$
$$\Rightarrow \sin \frac{\pi}{2} - \sin 0 - \cos \pi + \cos \frac{\pi}{2}$$
$$\Rightarrow 1-0-(-1) + 0 = 2$$

Mark ($\sqrt{}$) against

Solution:

Find the equivalent expression to $|{sin}\;x|$ at $0{\le}x{\le}\;2\pi$

In $0 \le x \le \pi$ $|\sin x| = \sin x$ In $\pi \le x \le 2\pi$ $|\sin x| = -\sin x$ $\Rightarrow \int_0^{\pi} \sin x \, dx + \int_{\pi}^{2\pi} -\sin x \, dx = -\cos \pi - (-\cos 0) + \cos 2\pi - \cos \pi$ = -(-1) + 1 + 1 - (-1) = 2 + 2= 4

Question: 43

Mark ($\sqrt{}$) against

Solution:

We know that,

$$\therefore \int_{0}^{a} f(x) = \int_{0}^{a} f(a - x) = I \dots (let)$$

$$\therefore Here, a = \frac{\pi}{2}$$

$$f(x) = \frac{\sin x}{(\sin x + \cos x)}$$

$$\therefore f(a - x) = f\left(\frac{\pi}{2} - x\right)$$

$$\frac{\sin\left(\frac{\pi}{2} - x\right)}{\sin\left(\frac{\pi}{2} - x\right) + \cos\left(\frac{\pi}{2} - x\right)} = \frac{\cos x}{\cos x + \sin x}$$

$$\therefore 2I = \int_{0}^{a} f(x) + \int_{0}^{a} f(a - x)$$

$$= \int_{0}^{\frac{\pi}{2}} \frac{\sin x + \cos x}{\cos x + \sin x} dx$$

$$= \int_{0}^{\frac{\pi}{2}} 1 dx$$

$$\therefore 2I = \frac{\pi}{2}$$

$$\therefore I = \frac{\pi}{2.2}$$
$$= \frac{\pi}{4}$$

Mark ($\sqrt{}$) against

Solution:

We know that,

:. $\int_0^a f(x) = \int_0^a f(a-x) = I$...(let)

:. Here,

$$a = \frac{\pi}{2};$$

$$f(x) = \frac{\sqrt{\sin x}}{\sqrt{\cos x} + \sqrt{\sin x}}$$

$$\therefore f(a - x) = f\left(\frac{\pi}{2} - x\right)$$

$$\frac{\sqrt{\sin\left(\frac{\pi}{2} - x\right)}}{\sqrt{\cos\left(\frac{\pi}{2} - x\right)} + \sqrt{\sin\left(\frac{\pi}{2} - x\right)}} = \frac{\sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}}$$

$$\therefore 2I = \int_{0}^{a} f(x) + \int_{0}^{a} f(a - x)$$

$$= \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x} + \sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx$$

$$= \int_{0}^{\frac{\pi}{2}} 1 dx$$

$$\therefore 2I = \frac{\pi}{2}$$

$$\therefore I = \frac{\pi}{2.2}$$

$$= \frac{\pi}{4}$$

Question: 45

Mark (\checkmark) against

Solution:

We know that,

$$\therefore \int_0^a f(x) = \int_0^a f(a - x) = I \dots (let)$$

$$\therefore Here,$$

$$\begin{aligned} a &= \frac{\pi}{2}; \\ f(x) &= \frac{\sin^4 x}{\sin^4 x + \cos^4 x} \\ &\therefore f(a-x) = f\left(\frac{\pi}{2} - x\right) \end{aligned}$$

$$\frac{\sin^4\left(\frac{\pi}{2} - x\right)}{\sin^4\left(\frac{\pi}{2} - x\right) + \cos^4\left(\frac{\pi}{2} - x\right)} = \frac{\cos^4 x}{\sin^4 x + \cos^4 x}$$

$$\therefore 2I = \int_0^a f(x) + \int_0^a f(a - x)$$

$$= \int_0^{\frac{\pi}{2}} \frac{\sin^4 x + \cos^4 x}{\sin^4 x + \cos^4 x} dx$$

$$= \int_0^{\frac{\pi}{2}} 1 dx$$

$$\therefore 2I = \frac{\pi}{2}$$

$$\therefore I = \frac{\pi}{2.2}$$

$$= \frac{\pi}{4}$$

Mark ($\sqrt{}$) against

Solution:

We know that,

$$: \int_{0}^{a} f(x) = \int_{0}^{a} f(a - x) = I \dots (let)$$

$$: Here,$$

$$a = \frac{\pi}{2} ;$$

$$f(x) = \frac{\cos^{\frac{1}{4}x}}{\sin^{\frac{1}{4}x} + \cos^{\frac{1}{4}x}}$$

$$: f(a - x) = f\left(\frac{\pi}{2} - x\right)$$

$$\frac{\cos^{\frac{1}{4}}\left(\frac{\pi}{2} - x\right)}{\sin^{\frac{1}{4}}}\left(\frac{\pi}{2} - x\right) \cos^{\frac{1}{4}}\left(\frac{\pi}{2} - x\right) = \sin^{\frac{1}{4}}x \sin^{\frac{1}{4}}x + \cos^{\frac{1}{4}}x$$

$$: 2I = \int_{0}^{a} f(x) + \int_{0}^{a} f(a - x)$$

$$= \int_{0}^{\frac{\pi}{2}} \frac{\sin^{\frac{1}{4}x} + \cos^{\frac{1}{4}x}}{\sin^{\frac{1}{4}x} + \cos^{\frac{1}{4}x}} dx$$

$$= \int_{0}^{\frac{\pi}{2}} 1 dx$$

$$: 2I = \frac{\pi}{2}$$

$$: I = \frac{\pi}{2.2}$$

$$= \frac{\pi}{4}$$

Question: 47

Mark ($\sqrt{}$) against

Solution:

We know that,

$$\therefore \int_{0}^{a} f(x) = \int_{0}^{a} f(a - x) = I \dots (let)$$

$$\therefore Here,$$

$$a = \frac{\pi}{2};$$

$$f(x) = \frac{\sin^{n} x}{\cos^{n} x + \sin^{n} x}$$

$$\therefore f(a - x) = f\left(\frac{\pi}{2} - x\right)$$

$$= \frac{\cos^{n} x}{\cos^{n} x + \sin^{n} x}$$

$$\therefore 2I = \int_{0}^{\frac{\pi}{2}} 1 dx$$

$$\therefore 2I = \frac{\pi}{2}$$

$$\therefore I = \frac{\pi}{2.2}$$

$$= \frac{\pi}{4}$$

Question: 48

Mark (\checkmark) against

Solution:

We know that,

$$\therefore \int_{0}^{a} f(x) = \int_{0}^{a} f(a - x) = I \dots (let)$$

$$\therefore Here,$$

$$a = \frac{\pi}{2};$$

$$f(x) = \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}}$$

$$\therefore f(a - x) = f\left(\frac{\pi}{2} - x\right)$$

$$= \frac{\sqrt{\tan x}}{\sqrt{\cot x} + \sqrt{\tan x}}$$

$$\therefore 2I = \int_{0}^{\frac{\pi}{2}} 1 dx$$

$$\therefore 2I = \frac{\pi}{2}$$

$$\therefore I = \frac{\pi}{2.2}$$

$$= \frac{\pi}{4}$$

Question: 49

Mark ($\sqrt{}$) against

Solution:

We know that,

$$\therefore \int_{0}^{a} f(x) = \int_{0}^{a} f(a - x) = I \dots (let)$$

$$= \frac{\sqrt[3]{tanx}}{\sqrt[3]{cotx} + \sqrt[3]{tanx}}$$

$$= \frac{\sqrt[3]{\frac{sinx}{cosx}}}{\sqrt[3]{\frac{sinx}{cosx}} + \sqrt[3]{\frac{cosx}{sinx}}}$$

$$= \frac{\sqrt[3]{\frac{sinx}{cosx}} + \sqrt[3]{\frac{sinx}{sinx}}}{\sqrt[3]{\frac{sinx}{cosx}} + \sqrt[3]{\frac{sinx}{sinx}}}$$

$$= \frac{\frac{sin^{\frac{2}{3}}x}{sin^{\frac{2}{3}}x + cos^{\frac{2}{3}x}}}$$

$$\therefore Here,$$

$$a = \frac{\pi}{2};$$

$$f(x) = \frac{sin^{\frac{2}{3}x}}{sin^{\frac{2}{3}}x + cos^{\frac{2}{3}x}}$$

$$\therefore f(a - x) = f(\frac{\pi}{2} - x)$$

$$= \frac{cos^{\frac{2}{3}x}}{sin^{\frac{2}{3}}x + cos^{\frac{2}{3}x}}}$$

$$\therefore 2I = \int_{0}^{\frac{\pi}{2}} 1 dx$$

$$\therefore 2I = \frac{\pi}{2}$$

$$\therefore I = \frac{\pi}{2.2}$$

$$= \frac{\pi}{4}$$
Question: 50

Mark ($\sqrt{}$) against

Solution:

$$\frac{1}{1 + \tan x} = \frac{1}{1 + \frac{\sin x}{\cos x}}$$
$$= \frac{1}{(\cos x + \sin x)\frac{1}{\cos x}}$$
$$= \frac{\cos x}{\cos x + \sin x}$$
So our integral becomes, $\int_0^{\frac{\pi}{2}} \frac{\cos x}{\cos x + \sin x} dx$

We know that,

$$\therefore \int_{0}^{\pi} f(x) = \int_{0}^{\pi} f(a - x) = I \dots (let)$$

$$\therefore Here,$$

$$a = \frac{\pi}{2}$$

$$f(x) = \frac{\sin x}{(\sin x + \cos x)}$$

$$\therefore f(a - x) = f\left(\frac{\pi}{2} - x\right)$$

$$= \frac{\sin\left(\frac{\pi}{2} - x\right)}{\sin\left(\frac{\pi}{2} - x\right) + \cos\left(\frac{\pi}{2} - x\right)}$$

$$= \frac{\cos x}{\cos x + \sin x}$$

$$\therefore 2I = \int_{0}^{\pi} f(x) + \int_{0}^{\pi} f(a - x)$$

$$= \int_{0}^{\frac{\pi}{2}} \frac{\sin x + \cos x}{\cos x + \sin x} dx$$

$$= \int_{0}^{\frac{\pi}{2}} 1 dx$$

$$= \int_{0}^{\frac{\pi}{2}} 1 dx$$

$$\therefore 2I = \frac{\pi}{2}$$

$$\therefore I = \frac{\pi}{2.2}$$

$$= \frac{\pi}{4}$$

Mark ($\sqrt{}$) against

Solution:

So our integral becomes

$$\frac{1}{\sqrt[4]{\cot x} + 1} = \frac{1}{\sqrt{\frac{\cos x}{\sin x}} + 1}$$
$$= \frac{\sqrt{\sin x}}{\sqrt{\cos x} + \sqrt{\sin x}}$$
$$\therefore \text{ Here,}$$
$$a = \frac{\pi}{2};$$
$$f(x) = \frac{\sqrt{\sin x}}{\sqrt{\cos x} + \sqrt{\sin x}}$$
$$\therefore f(a - x) = f\left(\frac{\pi}{2} - x\right)$$

$$= \frac{\sqrt{\sin\left(\frac{\pi}{2} - x\right)}}{\sqrt{\cos\left(\frac{\pi}{2} - x\right)} + \sqrt{\sin\left(\frac{\pi}{2} - x\right)}}$$
$$= \frac{\sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}}$$
$$\therefore 2I = \int_{0}^{a} f(x) + \int_{0}^{a} f(a - x)$$
$$= \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x} + \sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx$$
$$= \int_{0}^{\frac{\pi}{2}} 1 dx$$
$$\therefore 2I = \frac{\pi}{2}$$
$$\therefore I = \frac{\pi}{2.2}$$
$$= \frac{\pi}{4}$$

Mark ($\sqrt{}$) against

Solution:

 $\frac{1}{1 + \tan^3 x} = \frac{\cos^3 x}{\sin^3 x + \cos^3 x}$:. Here,

$$a = \frac{\pi}{2};$$

$$f(x) = \frac{\cos^3 x}{\sin^3 x + \cos^3 x}$$

We know that,

$$\therefore \int_0^a f(x) = \int_0^a f(a - x) = I \dots (let)$$

$$f(a - x) = \frac{\sin^3 x}{\sin^3 x + \cos^3 x}$$

$$\therefore 2I = \int_0^{\frac{\pi}{2}} 1 dx$$

$$\therefore 2I = \frac{\pi}{2}$$

$$\therefore I = \frac{\pi}{2.2}$$

$$= \frac{\pi}{4}$$

Question: 53

Mark (\checkmark) against

Solution:

so our integral becomes,

$$\frac{\sec^5 x}{\sec^5 x + \csc^5 x} = \frac{\frac{1}{\cos^5 x}}{\frac{1}{\cos^5 x} + \frac{1}{\sin^5 x}}$$
$$= \frac{\sin^5 x}{\sin^5 x + \cos^5 x}$$
Here $a = \frac{\pi}{2}$ and $f(x) = \frac{\sin^5 x}{\sin^5 x + \cos^5 x}$
$$f(a - x) = \frac{\cos^5 x}{\sin^5 x + \cos^5 x}$$
We know that,
$$\therefore \int_0^a f(x) = \int_0^a f(a - x) = I \dots (let)$$
$$\therefore 2I = = \int_0^{\frac{\pi}{2}} 1 dx$$
$$\therefore 2I = \frac{\pi}{2}$$
$$\therefore I = \frac{\pi}{2.2}$$
$$= \frac{\pi}{4}$$

Mark ($\sqrt{}$) against

Solution:

So our integral becomes,

$$\frac{\sqrt{\cot x}}{1 + \sqrt{\cot x}} = \frac{\sqrt{\frac{\cos x}{\sin x}}}{1 + \sqrt{\frac{\cos x}{\sin x}}}$$
$$= \frac{\sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}}$$

We know that,

:.
$$\int_{0}^{a} f(x) = \int_{0}^{a} f(a - x) = I \dots (let)$$

so, we know that,

... Here,

$$a = \frac{\pi}{2};$$

$$f(a - x) = \frac{\sqrt{\sin x}}{\sqrt{\cos x} + \sqrt{\sin x}}$$

$$\therefore f(x) = \frac{\sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}}$$

$$\therefore 2I = \int_0^a f(x) + \int_0^a f(a - x)$$

$$= \int_0^{\frac{\pi}{2}} \frac{\sqrt{\sin x} + \sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx$$

$$= \int_{0}^{\frac{\pi}{2}} 1 dx$$
$$\therefore 2I = \frac{\pi}{2}$$
$$\therefore I = \frac{\pi}{2.2}$$
$$= \frac{\pi}{4}$$

Mark ($\sqrt{}$) against

Solution:

So our integral becomes,

$$\frac{\tan x}{1 + \tan x} = \frac{\sin x}{\cos x} \left(\frac{1}{1 + \frac{\sin x}{\cos x}} \right)$$

$$= \frac{\sin x}{\sin x + \cos x}$$
We know that,

$$\therefore \int_0^a f(x) = \int_0^a f(a - x) = I \dots (let)$$

$$\therefore Here,$$

$$a = \frac{\pi}{2}$$

$$f(x) = \frac{\sin x}{(\sin x + \cos x)}$$

$$\therefore f(a - x) = f\left(\frac{\pi}{2} - x\right)$$

$$= \frac{\sin\left(\frac{\pi}{2} - x\right)}{\sin\left(\frac{\pi}{2} - x\right) + \cos\left(\frac{\pi}{2} - x\right)}$$

$$= \frac{\cos x}{\cos x + \sin x}$$

$$\therefore 2I = \int_0^a f(x) + \int_0^a f(a - x)$$

$$= \int_0^{\frac{\pi}{2}} \frac{\sin x + \cos x}{\cos x + \sin x} dx$$

$$= \int_0^{\frac{\pi}{2}} 1 dx$$

$$\therefore 2I = \frac{\pi}{2}$$

$$\therefore I = \frac{\pi}{2.2}$$

$$= \frac{\pi}{4}$$

Question: 56

Mark (\checkmark) against

Solution:

If f is an odd function,

$$\int_{-a}^{a} f(x)dx = 0$$

as,
$$\int_{0}^{a} f(x)dx = -\int_{-a}^{0} f(x)dx$$

here $f(x) = x^4 \sin x$

we will see $f(-x)=(-x)^4sin(-x)$

=- $x^4 sinx$

Therefore, f(x) is a odd function,

$$\int_{-\pi}^{\pi} x^4 \sin x dx = 0$$

Question: 57

Mark (\checkmark) against

Solution:

If f is an odd function,

$$\int_{-a}^{a} f(x)dx = 0$$

as,
$$\int_{0}^{a} f(x)dx = -\int_{-a}^{0} f(x)dx$$

here
$$f(x)=x^{3}\cos^{3} x$$

we will see
$$f(-x)=(-x)^{3}\cos^{3}(-x)$$

 $=-x^3 \cos^3 x$

Therefore, f(x) is a odd function,

$$\int_{-\pi}^{\pi} x^3 \cos^3 x = 0$$

Question: 58

Mark (\checkmark) against

Solution:

If f is an odd function,

$$\int_{-a}^{a} f(x)dx = 0$$

as,
$$\int_{0}^{a} f(x)dx = -\int_{-a}^{0} f(x)dx$$

 $f(x) = \sin^5 x$

 $f(-x)=\sin^5(-x)$

 $=-\sin^5 x$

Therefore, f(x) is a odd function,

$$\int_{-\pi}^{\pi} \sin^5 x \, dx = 0$$

Question: 59 Mark ($\sqrt{}$) against

Solution:

$$\int_{-1}^{-2} x^3 (1 - x^2) dx = \int_{-1}^{-2} (x^3 - x^5) dx$$
$$= \left[\frac{x^4}{4} - \frac{x^6}{6} \right]$$
$$= \left[\frac{2^4}{4} - \frac{1^6}{4} - \frac{2^6}{6} + \frac{1^6}{6} \right]$$
$$= -\frac{27}{4}$$

Question: 60

Mark ($\sqrt{}$) against

Solution:

If f is an odd function,

$$\int_{-a}^{a} f(x)dx = 0$$

as, $\int_{0}^{a} f(x)dx = -\int_{-a}^{0} f(x)dx$
$$f(x) = \log\left(\frac{a-x}{a+x}\right)$$

$$f(-x) = \log\frac{a-(-x)}{a-x}$$

$$= \log\frac{a+x}{a-x}$$

$$= -\log\frac{a-x}{a+x}$$

Hence it is a odd function

$$\int_{-a}^{a} \log \frac{a-x}{a+x} = 0$$

Question: 61

Mark (\checkmark) against

Solution:

If f is an odd function,

$$\int_{-a}^{a} f(x) dx = 0$$

as,
$$\int_0^a f(x) dx = -\int_{-a}^0 f(x) dx$$

 $\sin^{61}x$ and x^{123} is an odd function,

so there integral is zero.

Question: 62

Mark (\checkmark) against

Solution:

f(x)=tan x

f(-x) = tan(-x)

=-tan x

hence the function is odd,

therefore, I=0

Question: 63

Mark (\checkmark) against

Solution:

By by parts,

$$\int \log\left(x + \sqrt{x^2 + 1}\right) = x\log\left(x + \sqrt{x^2 + 1}\right) - \int \frac{x}{\left(x + \sqrt{x^2 + 1}\right)\left(1 + \frac{x}{\sqrt{x^2 + 1}}\right)}$$

$$= x \log(x + \sqrt{x^2 + 1}) \int \frac{x}{\sqrt{x^2 + 1}} = x \log(x + \sqrt{x^2 + 1}) \sqrt{x^2 + 1}$$

Question: 64

Mark (\checkmark) against

Solution:

cosx is an even function so,

$$\int_{-a}^{a} f(x)dx = 2\int_{0}^{a} f(x)dx$$
$$\therefore \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos xdx = 2\int_{0}^{\frac{\pi}{2}} \cos xdx$$

=2(1-0)

=2

Question: 65

Mark (\checkmark) against

Solution:

Here,

$$f(x) = \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}}$$

$$f(a-x) = \frac{\sqrt{a-x}}{\sqrt{x} + \sqrt{a-x}}$$

We know that,

$$\therefore \int_0^a f(x) = \int_0^a f(a - x) = I \dots (let)$$

$$2I = \int_0^a \frac{\sqrt{x} + \sqrt{a - x}}{\sqrt{x} + \sqrt{a - x}} dx$$

$$= \int_0^a dx$$

$$I = \frac{a}{2}$$

Question: 66

Mark ($\sqrt{}$) against

Solution:

let $I = \int_0^{\frac{\pi}{4}} \log(1 + \tan x) dx$

We know that,

$$\int_{0}^{a} f(x) = \int_{0}^{a} f(a - x) = I$$

$$f(a - x) = \log(1 + \tan(\frac{\pi}{4} - x))$$

$$= \log\left(1 + \frac{(\tan\frac{\pi}{4} - \tan x)}{1 + \tan\frac{\pi}{4}\tan x}\right) = \log(1 + 1(1 - \tan x))\frac{1}{1 + \tan x}$$

$$= \log\frac{2}{1 + \tan x}$$

$$f(a - x) = I$$

$$= \int_{0}^{\frac{\pi}{4}} \log\frac{2}{1 + \tan x} dx$$

$$= \int_{0}^{\frac{\pi}{4}} \log 2dx - \int_{0}^{\frac{\pi}{4}} (1 + \tan x) dx$$

$$\therefore I = \int_{0}^{\frac{\pi}{4}} \log 2 dx - I$$

$$\therefore I = \frac{\pi}{8} \log 2$$

Question: 67

Mark (\checkmark) against

Solution:

$$\therefore \int_{-a}^{a} f(x) dx$$

$$\therefore \int_{-a}^{0} f(x) dx + \int_{0}^{a} f(x) dx$$

$$\therefore \int_{0}^{a} f(-x) dx = \int_{-a}^{0} f(x) dx$$

$$\therefore \int_{0}^{a} f(-x) dx + \int_{0}^{a} f(x) dx$$

Question: 68

Mark ($\sqrt{}$) against

$$\therefore \int_{0}^{1.5} [x] dx$$

= $\int_{0}^{1} [x] dx + \int_{1}^{1.5} [x] dx$
= $\int_{0}^{1} 0 dx + \int_{1}^{1.5} 1 dx$

$$=\frac{3}{2}-1$$
$$=\frac{1}{2}$$

Mark (\checkmark) against

Solution:

$$\int_{-1}^{1} [x] dx = \int_{-1}^{0} [x] dx + \int_{0}^{1} [x] dx$$
$$= \int_{-1}^{0} -1 dx + \int_{0}^{1} 0 dx$$
$$= -1 - 0 + 0$$
$$= -1$$

Question: 70

Mark (\checkmark) against

Solution:

$$\int_{1}^{2} |x^2 - 3x + 2| dx$$

$$\therefore x^2 - 3x + 2 = 0$$

(x-2)(x-1)=0

so, 2, and 1 itself are the limits so no breaking points for the integral,

$$\therefore \int_{1}^{2} (-x^{2} + 3x - 2) dx$$
$$= \left[\frac{-x^{3}}{3} + \frac{3x^{2}}{2} - 2x \right] (1 \text{to} 2)$$
$$\therefore = \frac{1}{6}$$

Question: 71

Mark ($\sqrt{}$) against

Solution:

 $\therefore \sin x=0$

So $\pi,\,2\pi$ are the limits so no breaking points for the integral,

$$\therefore \int_{\pi}^{2\pi} -\operatorname{sinxdx} = -\cos(\pi \operatorname{to} 2\pi)$$

=2

Question: 72

Mark ($\sqrt{}$) against

Solution:

put $\sin^{-1} x = t$;

$$dt = \frac{dx}{\sqrt{1 - x^2}};$$

x=sin t
sin⁻¹ $\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{4}$
=t;

and $\sin^{-1} 0=0$

=t

Limit changes to,

$$\int_0^{\frac{\pi}{4}} \frac{tdt}{1-\sin^2 t} = \int_0^{\frac{\pi}{4}} t\sec^2 tdt$$
$$= t\tan t - \int_0^{\frac{\pi}{4}} t\tan tdt$$
$$= [t\tan t + \log \cot] \left(0 \ to \ \frac{\pi}{4}\right)$$
$$= \frac{\pi}{4} - \frac{1}{2}\log 2$$

Question: 73

Mark ($\sqrt{}$) against

Solution:

put x=tan y

 $dx = \sec^2 y dy$

$$\int_{0}^{\frac{\pi}{4}} \sin^{-1}(\sin 2y) \sec^{2} y dy$$

= $2 \int_{0}^{\frac{\pi}{4}} y \sec^{2} y dy$
= $2[y \tan y - \int_{0}^{\frac{\pi}{4}} \tan y dy]$
= $2[y \tan y + \log \cos y] \left(0 \ \tan \frac{\pi}{4}\right)$
= $2[\frac{\pi}{4} - \frac{1}{2} \log 2]$
= $\frac{\pi}{2} - \log 2$