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Oersted found that a magnetic field is established around a 

current carrying conductor. 

Magnetic field exists as long as there is current in the wire. 

 

 

 

 

 

 

Biot-Savart's Law 

Biot-Savart’s law is used to determine the magnetic field at 

any point due to a current carrying conductor. 

This law is although for infinitesimally small conductor yet it 

can be used for long conductors. In order to understand the 

Biot-Savart’s law, we need to understand the term current-

element. 

 

Current element  

It is the product of current and length of infinitesimal 

segment of current carrying wire. 

The current element is taken as 

 a vector quantity. Its direction is  

same as the direction of current. 

Current element AB = dli  

 

According to Biot-Savart Law, magnetic field at point ‘P’ 

due to the current element dli  is given by the expression, 
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Direction of Magnetic Field 

The direction of magnetic field is determined with the help 

of the following simple laws : 

(1) Maxwell’s cork screw rule : According 

to this rule, if we imagine a right handed 
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1174 Magnetic Effect of Current 

screw placed along the current carrying linear conductor, be 

rotated such that the screw moves in the direction of flow of 

current, then the direction of rotation of the thumb gives the 

direction of magnetic lines of force.  

(2) Right hand thumb rule : According 

to this rule if a straight current carrying 

conductor is held in the right hand such 

that the thumb of the hand represents the 

direction of current flow, then the direction 

of folding fingers will represent the 

direction of magnetic lines of force. 

 

 

(3) Right hand thumb rule of circular currents : According to 

this rule if the direction of 

current in circular conducting 

coil is in the direction of 

folding fingers of right hand, 

then the direction of 

magnetic field will be in the 

direction of stretched thumb. 

 

 

(4) Right hand palm rule 

If we stretch our right hand 

such that fingers point towards 

the point. At which magnetic field 

is required while thumb is in the 

direction of current then normal to 

the palm will show the direction of 

magnetic field.  

 

 

Meaning of Cross  and dot  

If magnetic field is directed perpendicular and into the plane 

of the paper it is represented by  (cross) while if magnetic field 

is directed perpendicular and out of the plane of the paper it is 

represented by  (dot) 

 

 

 

 

 

In : Magnetic field is away from the observer or 

perpendicular inwards. 

Out : Magnetic field is towards the observer or 

perpendicular outwards. 

Ampere’s Law 

Amperes law gives another method to calculate the 

magnetic field due to a given current distribution. 

Line integral of the magnetic field B  around any closed 

curve is equal to 0  times the 

net current i threading through 

the area enclosed by the curve 

i.e.  

  )( 23100 iiiidIB    

Also using HB 0  (where H  = magnetising field)  

idlH  00 .     idlH.  

Total current crossing the above area is )( 231 iii  . Any 

current outside the area is not included in net current. (Outward 

  +ve, Inward   – ve) 

Table 21.1 : Biot-Savart's law v/s Ampere's law 

Biot-Savart's law Ampere's law 

this law is valid for all current 

distributions 

This law is valid for symmetrical 

current distributions 

This law is the differential form of 

B  or H  

Basically this law is the integral 

from of B  or H  

This law is based only on the 

principle of magnetism  

This law is based on the 

principle of electromagnetism. 
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Magnetic Field Due to Circular Current 

If a coil of radius r, carrying current i then magnetic field on 

it's axis at a distance x from its centre given by (Application of 

Biot-Savart's law) 
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(3) The ratio of magnetic field at the centre of circular coil 

and on it's axis is given by 
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where A = r2 = Area of each turn of the coil.  

(5) B-x curve : The variation of magnetic field due to a 

circular coil as the distance x varies as shown in the figure. 

B varies non-linearly with distance x as shown in figure and 

is maximum when 0min2 x , i.e., the point is at the centre of 

the coil and it is zero at x =  .  

 

 

 

 

 

 

(6) Point of inflection (A and A) : Also known as points of 

curvature change or points of zero curvature.  

(i) At these points B varies linearly with x  
dx

dB
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(ii) These are located at 
2

r
x   from the centre of the coil 

and the magnetic field at 
2

r
x   is 
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(7) Helmholtz coils 

(i) This is the set-up of two coaxial coils of same radius 

such that distance between their centres is equal to their radius.  

(ii) At axial mid point O, magnetic field is given by 

B
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(iii) Current direction is same in both coils otherwise this 

arrangement is not called Helmholtz’s coil arrangement. 

(iv) Number of points of inflextion  Three (A, A, A)  

 

 

 

 

 

 

 

Magnetic Field at Centre O in Different Conditions 

of Circular Current 

 

Condition Figure Magnetic field 
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angle (2 – ) 
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Magnetic Field Due to a Straight Wire 
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Magnetic field due to a current carrying wire at a point P 

which lies at a perpendicular distance r from the wire as shown 

is given as  

)sin(sin.
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(1) For a wire of finite length : Magnetic field at a point 

which lies on perpendicular bisector of finite length wire  
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(2) For a wire of infinite length : When the linear conductor 

XY is of infinite length and the point P lies near the centre of 

the conductor 1 = 2 = 90o. 
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(3) For a wire of semi-infinite length : When the linear 

conductor is of infinite length and the point P lies near the end Y 

or X. o901   and o02    

So, ]0sin90[sin
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(4) For axial position of wire  : When point P lies on axial 

position of current carrying conductor then magnetic field at P  

 

     B = 0 

 

Magnetic Field Due to a Cylindrical Wire 

Magnetic field due to a cylindrical wire is obtained by the 

application of Ampere's law  

(1) Outside the cylinder  

 

 

 

 

 

 

 

 

 

 

 

 

In all above cases magnetic field outside the wire at P  
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(2) Inside the hollow cylinder : Magnetic field inside the 

hollow cylinder is zero. 

 

 

 

 

 

 

(3) Inside the solid cylinder : Current enclosed by loop (i) is 

lesser then the total current (i)  
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Current density is uniform i.e. J = J   















2

2'
'

R

r
i

A

A
ii  

Hence at inside point   '. 0ildBin     
2

0 .
2 R

ir
B




  

(4) Inside the thick portion of hollow cylinder : Current 

enclosed by loop is given as 
)(

)('
'

2
1

2
2

2
1

2

RR

Rr
i

A

A
ii




  

 

 

 

 

 

Hence at point Q     '. 0ildB    
)(

)(
.

2 2
1

2
2

2
1

2
0

RR

Rr

r

i
B









 

Magnetic Field Due to an Infinite Sheet Carrying 

Current  

The figure shows an infinite sheet of current with linear 

current density j (A/m). Due to symmetry the field line pattern 

above and below the sheet is uniform. Consider a square loop 

of side l as shown in the figure. 
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The current enclosed by the loop is i = jl. Therefore, 

according to Ampere’s law )(2 0 jlBl   or 
2

0 j
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
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Solenoid 

 

 

 

 

 

 

 

A cylinderical coil of many tightly wound turns of insulated 

wire with generally diameter of the coil smaller than its length is 

called a solenoid.  

 

 

 

      

 

 

 

A magnetic field is produced around and within the 

solenoid. The magnetic field within the solenoid is uniform and 

parallel to the axis of solenoid.  

(1) Finite length solenoid : 

If N = total number of turns, l = 

length of the solenoid, n = 

number of turns per unit length 

l

N
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(i) Magnetic field inside the 

solenoid at point P is given by  ]sin)[sin2(
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(ii) Infinite length solenoid : If the solenoid is of infinite 

length and the point is well inside the solenoid i.e. 

)2/(  .  

So   niμB 0in   

(iii) If the solenoid is of infinite length and the point is near one 

end i.e. 0  and )2/(   so )ni(B 0end 
2

1
        

( inend BB
2

1
 )  

Toroid 

A toroid can be considered as a ring shaped closed 

solenoid. Hence it is like an endless cylindrical solenoid.  

 

 

 

 

 

Consider a toroid having n turns per unit length. Magnetic 

field at a point P in the figure is given as   
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Force On a Charged Particle in Magnetic Field  

If a particle carrying a positive charge q and moving with 

velocity v enters a magnetic field B then it experiences a force F 

which is given by the expression )( BvqF    sinqvBF   

where v  velocity of the particle, B  magnetic field 

 

 

 

 

(1) Zero force : Force on charged particle will be zero 

(i.e. F = 0) if 

(i) No field i.e. B = 0  F = 0 

(ii) Neutral particle i.e. q = 0  F = 0  

(iii) Rest charge i.e. v = 0  F = 0 

(iv) Moving charge i.e.  = 0o or  = 180o  F = 0 

(2) Direction of force : The force F  is always perpendicular 

to both the velocity v  and the field B  in accordance with Right 

Hand Screw Rule, though v  and B  themselves may or may not 

be perpendicular to each other. 

 

 

 

 

 

 

Direction of force on charged particle in magnetic field can 

also be find by Fleming's Left Hand Rule (FLHR). 

 

 

 

 

 

 

Here, First finger (indicates)  Direction of magnetic field 

Middle finger  Direction of motion of positive charge or 

direction, Opposite to the motion of negative charge. 

Thumb  Direction of force  

Trajectory of a Charged Particle in a Magnetic 

Field 

(1) Straight line : If the direction of a v  is parallel or 

antiparallel to B ,  = 0 or  = 180o and therefore F = 0. Hence 

the trajectory of the particle is a straight line. 
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(2) Circular path : If v  is perpendicular to B  i.e.  = 90o, 

hence particle will experience a maximum magnetic force 

Fmax = qvB which act's in a direction perpendicular to the motion 

of charged particle. Therefore the trajectory of the particle is a 

circle.  

 

 

 

 

 

(i) In this case path of charged particle is circular and 

magnetic force provides the necessary centripetal force i.e. 

r

mv
qvB

2

   radius of path  

q

mV2

B

1

qB

2mK

qB

p

qB

mv
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where p = momentum of charged particle and K = kinetic 

energy of charged particle (gained by charged particle after 

accelerating through potential difference V) then 

mqVmKmvp 22   

(ii) If T is the time period of the particle then 
qB

m
T

2
  (i.e., 

time period (or frequency) is independent of speed of particle). 

(3) Helical path : When the charged particle is moving at an 

angle to the field (other than 0o, 90o, or 180o). Particle describes 

a path called helix.  

 

 

 

 

 

 

(i) The radius of this helical path is  
qB

)vsinθ(m
r   

(ii) Time period and frequency do not depend on velocity 

and so they are given by 
qB

m
T

2
  and 

m

qB




2
  

(iii) The pitch of the helix, (i.e., linear distance travelled in 

one rotation) will be given by )cos(2)cos(  v
qB

m
vTp   

(iv) If pitch value is p, then number of pitches obtained in 

length l given as  

Number of pitches
p

l
  and time required 

cosv

l
t   

Lorentz Force  

When the moving charged particle is subjected 

simultaneously to both electric field E  and magnetic field B , 

the moving charged particle will experience electric force 

EqFe   and magnetic force )( BvqFm  ; so the net force on it 

will be )]Bv(E[qF  . Which is the famous ‘Lorentz-force 

equation’. 

Depending on the directions of Ev,  and B  following 

situations are possible 

(i) When Ev,  and B  all the three are collinear : In this 

situation the magnetic force on it will be zero and only electric 

force will act and so 
m

Eq

m

F
a




  

(ii) The particle will pass through the field following a 

straight-line path (parallel field) with change in its speed. So in 

this situation speed, velocity, momentum and kinetic energy all 

will change without change in direction of motion as shown  

 

 

 

(iii) E,v  and B are mutually perpendicular : In this 

situation if E  and B  are such that 0 me FFF  i.e., 

0)/(  mFa   
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as shown in figure, the particle will pass through the field 

with same velocity, without any deviation in path.  

And in this situation, as me FF   i.e., qvBqE   BEv /  

This principle is used in ‘velocity-selector’ to get a charged 

beam having a specific velocity. 

Cyclotron 

Cyclotron is a device used to accelerated positively 

charged particles (like, -particles, deutrons etc.) to acquire 

enough energy to carry out nuclear disintegration etc.  

It is based on 

the fact that the 

electric field 

accelerates a 

charged particle 

and the magnetic 

field keeps it 

revolving in circular 

orbits of constant 

frequency.  

It consists of two hollow D-shaped metallic chambers D1 

and D2 called dees. The two dees are placed horizontally with a 

small gap separating them. The dees are connected to the 

source of high frequency electric field. The dees are enclosed in 

a metal box containing a gas at a low pressure of the order of 

10–3 mm mercury. The whole apparatus is placed between the 

two poles of a strong electromagnet NS as shown in fig. The 

magnetic field acts perpendicular to the plane of the dees.  

(1) Cyclotron frequency : Time taken by ion to describe a 

semicircular path is given by 
qB

m

v

r
t


  

If T = time period of oscillating electric field then 

qB

m
tT

2
2   the cyclotron frequency 

m

Bq

T 


2

1
  

(2) Maximum energy of particle : Maximum energy gained 

by the charged particle 2
22

max
2

r
m

Bq
E














  

where r0 = maximum radius of the circular path followed by 

the positive ion.  

Hall Effect 

The Phenomenon of producing a transverse emf in a 

current carrying conductor on applying a magnetic field 

perpendicular to the direction of the current is called Hall effect.  

Hall effect helps us to know the nature and number of 

charge carriers in a conductor.  

Consider a conductor having electrons as current carriers. 

The electrons move with drift velocity v  opposite to the 

direction of flow of current 

 

 

 

 

 

 

Force acting on electron ).( BveFm   This force acts 

along x-axis and hence electrons will move towards face (2) and 

it becomes negatively charged. 

Force On a Current Carrying Conductor In 
Magnetic Field 

In case of current carrying conductor in a magnetic field 

force experienced by its small length element is BlidFd  ;  

lid = current element )( BldiFd   
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Total magnetic force   )( BldiFdF . If magnetic field 

is uniform i.e., B  = constant )(][ BLiBdliF    

 'Ldl  vector sum of all the length elements from initial 

to final point. Which is in accordance with the law of vector 

addition is equal to length vector L  joining initial to final point. 

(For a straight conductor sinBilF  ) 

Direction of force : The direction of force is always 

perpendicular to the plane containing dli  and B  and is same 

as that of cross-product of two vectors )( BA  with dliA  . 

 

 

 

 

 

 

The direction of force when current element dli  and B


 are 

perpendicular to each other can also be determined by applying 

either of the following rules 

Fleming’s left-hand rule : Stretch the fore-finger, central 

finger and thumb of left hand mutually perpendicular. Then if the 

fore-finger points in the direction of field B  and the central in 

the direction of current i, the thumb will point in the direction of 

force. 

 

 

 

 

 

 

Right-hand palm rule : Stretch the fingers and thumb of 

right hand at right angles to each other. Then if the fingers point 

in the direction of field B  and thumb in the direction of current i, 

then normal to the palm will point in the direction of force 

 

 

 

 

 

 

Force Between Two Parallel Current Carrying 
Conductors 

The force on a length l of each of two long, straight, parallel 

wires carrying currents i1 and i2 and separated by a distance a is  

l
a

ii
F  210 2

4


 

Hence force per unit length 

a

ii

l

F 210 2

4














m

N
or 










cm

dyne

a

ii

l

F 212
  

 

Direction of force : If conductors carries current in same 

direction, then force between them will be attractive. If 

conductor carries current in opposite direction, then force 

between them will be repulsive. 
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Force Between Two Moving Charges  

If two charges q1 and q2 are moving with velocities v1 and 

v2 respectively and at any instant the distance between them is 

r, then  

 

 

 

 

 

Magnetic force between them is 
2

21210 .
4 r

vvqq
Fm




  .... (i) 

and Electric force between them is 
2

21

0

.
4

1

r

qq
Fe


   .... (ii) 

From equation (i) and (ii) 2
00 v

F

F

e

m   but 
200

1

c
 ;   

where c is the velocity of light in vacuum. So 

2











c

v

F

F

e

m  

As v < c so Fm < Fe   

Standard Cases For Force on Current Carrying 
Conductors 

Case 1 : When an arbitrary current carrying loop placed in a 

magnetic field ( to the plane of loop), each element of loop 

experiences a magnetic force due to which loop stretches and 

open into circular loop and tension developed in it’s each part. 

 

 

 

 

 

 

 

Case 2 : Equilibrium of a current carrying conductor : When 

a finite length current carrying wire is kept parallel to another 

infinite length current carrying wire, it can suspend freely in air 

as shown below 

 

 

 

 

 

 

In both the situations for equilibrium of XY it's downward 

weight = upward magnetic force i.e. .l
h

ii2
.

4

μ
mg 210

π
  

Case 3 : Current carrying spring : If current is passed 

through a spring, then it will contract because current will flow 

through all the turns in the same direction. 

 

 

 

 

 

 

 

 

Case 4 : Tension less strings : In the following figure the 

value and direction of current through the conductor XY so that 

strings becomes tensionless? 

Strings becomes tensionless if weight of conductor XY 

balanced by magnetic force )( mF . 
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Hence direction of current is from X  Y and in balanced 

condition mgFm     mgliB    
lB

mg
i   

Case 5 : Sliding of conducting rod on inclined rails : When a 

conducting rod slides on conducting rails. 

 

 

 

 

 

 

In the following situation conducting rod (X, Y) slides at 

constant velocity if 

 sincos mgF     sincos mgliB    tan
li

mg
B   

Current Loop as a Magnetic Dipole 

A current carrying circular coil behaves as a bar magnet 

whose magnetic moment is M = NiA; Where N = Number of turns in 

the coil, i = Current through the coil  and A = Area of the coil  

Magnetic moment of a current carrying coil is a vector and 

it's direction is given by right hand thumb rule  

 

 

 

 

 

(1) For a given perimeter circular shape have maximum 

area. Hence maximum magnetic moment. 

(2) For a any loop or coil B  at centre due to current in loop, 

and M  are always parallel. 

 

 

 

 

Behaviour of Current Loop in a Magnetic Field 

(1) Torque : Consider a rectangular 

current carrying coil PQRS having N turns 

and area A, placed in a uniform field B , in 

such a way that the normal )ˆ(n  to the coil 

makes an angle  with the direction of B . 

the coil experiences a torque given by  = 

NBiA sin . Vectorially BM   

 

(i)  is zero when  = 0, i.e., when the plane of the coil is 

perpendicular to the field. 

(ii)  is maximum when o90 , i.e., the plane of the coil is 

parallel to the field  NBiAmax  

(2) Workdone : If coil is rotated through an angle  from it's 

equilibrium position then required work. ).cos1(  MBW  It is 

maximum when  = 180o  Wmax = 2 MB  

(3) Potential energy :  U = – MB cos   BMU .   

Moving Coil Galvanometer 

 

 

 

 

 

 

 

 

In a moving coil galvanometer the coil is suspended between 

the pole pieces of a strong horse-shoe magnet. The pole pieces 

are made cylindrical and a soft iron cylindrical core is placed 
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within the coil without touching it. This makes the field radial. In 

such a field the plane of the coil always remains parallel to the 

field. Therefore o90  and the deflecting torque always has the 

maximum value. 

NBiAdef   ......(i) 

Coil deflects, a restoring torque is set up in the suspension 

fibre. If  is the angle of twist, the restoring torque is 

     Crest    .....(ii) 

where C is the torsional constant of the fibre. 

When the coil is in equilibrium NBiA = C   Ki  , 

where 
NBA

C
K   is the galvanometer constant. This linear 

relationship between i and  makes the moving coil 

galvanometer useful for current measurement and detection. 

Current sensitivity (Si) : The current sensitivity of a 

galvanometer is defined as the deflection produced in the 

galvanometer per unit current flowing through it. 

 
C

NBA

i
S i 


 

Voltage sensitivity (SV) : Voltage sensitivity of a 

galvanometer is defined as the deflection produced in the 

galvanometer per unit voltage applied to it. 

 
RC

NBA

R

S

iRV
S i
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 The device whose working principle based on Halmholtz 

coils and in which uniform magnetic field is used called as 

"Halmholtz galvanometer". 

 The value of magnetic field induction at a point, on the 

centre of separation of two linear parallel conductors carrying 

equal currents in the same direction is zero. 

 If a current carrying circular loop (n = 1) is turned into a 

coil having n identical turns then magnetic field at the centre 

of the coil becomes n2 times the previous field i.e. B (n turn) = n2 

B(single turn) 

 When a current carrying coil is suspended freely in 

earth's magnetic field, it's plane stays in East-West direction. 

 Magnetic field ( B ) produced by a moving charge q is 

given by 
2

0

3

0 )ˆ(

4

)(

4 r

rvq

r

rvq
B














; where v = velocity of 

charge and v << c (speed of light). 

 

 

 

 

 If an electron is revolving in a circular path of radius r 

with speed v then magnetic field produced at the centre of 

circular path 
2

0 .
4 r

ev
B




   

B

v
r   

 The line integral of magnetising field )(H  for any closed 

path called magnetomotive force (MMF). It's S.I. unit is amp. 

 Ratio of dimension of e.m.f. to MMF is equal to the 

dimension of resistance. 

 The positive ions are produced in the gap between the 

two dees by the ionisation of the gas. To produce proton, 

hydrogen gas is used; while for producing alpha-particles, 

helium gas is used. 

 Cyclotron frequency is also known as magnetic 

resonance frequency. 

 Cyclotron can not accelerate electrons because they 

have very small mass. 

 The energy of a charged particle moving in a uniform 

magnetic field does not change because it experiences a 

force in a direction, perpendicular to it's direction of motion. 

Due to which the speed of charged particle remains 

unchanged and hence it's K.E. remains same. 

 Magnetic force does no work when the charged particle 

q v 
r 

B 
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is displaced while electric force does work in displacing the 

charged particle. 

 Magnetic force is velocity dependent, while electric force 

is independent of the state of rest or motion of the charged 

particle. 

 If a particle enters a magnetic field normally to the 

magnetic field, then it starts moving in a circular orbit. The 

point at which it enters the magnetic field lies on the 

circumference. (Most of us confuse it with the centre of the 

orbit) 

 Deviation of charged particle in magnetic field : If a 

charged particle (q, m) enters a uniform magnetic field B  

(extends upto a length x) at right angles with speed v as 

shown in figure. The speed of the particle in magnetic field 

does not change. But it gets deviated in the magnetic field.  

Deviation in terms of time t; t
m

Bq
t 








  

Deviation in terms of length of the magnetic field;  









 

r

x1sin .  This relation can be used only when x   r . 

For x > r, the deviation will be 180o  as shown in the 

following figure  

 

 

 

 

 

 If no magnetic field is present, the loop will still open into 

a circle as in it’s adjacent parts current will be in opposite 

direction and opposite currents repel each other. 

 

 

 

 

 In the following case if wire XY is slightly displaced from 

its equilibrium position, it executes SHM and it’s time period 

is given by 
g

h
T 2 . 

 

 

 

 In the previous case if direction of current in movable wire 

is reversed then it’s instantaneous acceleration produced is 2g 

. 

 Electric force is an absolute concept while magnetic 

force is a relative concept for an observer. 

 The nature of force between two parallel charge beams 

decided by electric force, as it is dominator. The nature of 

force between two parallel current carrying wires decided by 

magnetic force. 

 

 

 

 

 

 

 If a straight current carrying wire is placed along the axis 

of a current carrying coil then it will not experience magnetic 

force because magnetic field produced by the coil is parallel 

to the wire. 

 The force acting on a curved wire joining points a and b 

as shown in the figure is the same as that on a straight wire 

joining these points. It is given by the expression BLiF   
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 If a current carrying conductor AB is placed transverse to 

a long current carrying conductor as shown then force. 

Experienced by wire AB  
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