
TRIGNOMETRY CIRCULAR MEASURE OF ANGLES

CHAPTER

Angles :-

When two rays (initial and terminal) meet at a point after rotation in a plane then they are said to have described an angle.

Systems of Measurement of Angles:

Sexagonal System :-

1 degree =
$$1^0 = \frac{1}{90}$$
 right angle

1 minute =1'=
$$\frac{1}{60}$$
 degree

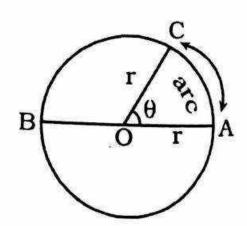
1 second =1"=
$$\frac{1}{60}$$
 minute

In other words :-
$$90^{\circ} = 1$$
 right angle $60' = 1^{\circ}$ $60'' = 1'$

2. Centesimal or French System:-

1 right angle =100 grades (=1009)

1 grade = 100 minute (=100)


1 minute = 100 seconds (=100")

3. Circular System:-

In this system, the unit of measurement is "radian".

Angle (in radian)
$$\theta = \frac{\operatorname{arc} A C}{\operatorname{radius}} = \frac{\widehat{AC}}{r}$$

I radian or 1^C is the angle subtended by an arc at the centre of a circle whose length is equal to the radius of the circle.

i.e. if arc=radius = r, then

$$\theta = \frac{r}{r} = 1 \text{ read} = 1^{c}$$

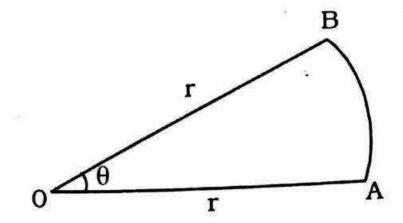
when arc =
$$ACB = \pi r$$

when are
$$t_{angle} = 180^{\circ} = \frac{\pi r}{r} = \pi \text{ radian}$$

i.e
$$\pi$$
 rad=180°=2 right angle

$$\therefore 1 \text{ rad} = 1^{\circ} = \frac{180^{\circ}}{\pi} = 57.2958^{\circ}$$

or
$$1^{\circ} = 1 \text{ rad} = 57^{\circ} 16'22'' \text{ approx.}$$


$$\left\{ \text{and } 1^{\circ} = \frac{\pi}{180} \text{ radian} = \left(\frac{22}{7 \times 180} \right) \text{ rad} \right\}$$

or
$$1^{\circ} = 0.01746$$
 radian

⇒ Area of a sector (or Sectorial area) :-

The area of the sector OAB = $\frac{1}{2}$ r² θ

Here θ is in radian.

Note: Radian is a constant angle. Some Useful Points :-

The angle between two consecuive

digits in a clock is
$$30^{\circ} \left(= \frac{\pi}{6} \text{ radians} \right)$$

The hour hand rotates through an angle of 30°

in one hour i.e. $\left(\frac{1}{2}\right)^0$ in one minute.

The minute hand rotates through an angle of 6° in one minute.

Degree	Radian	Degree	Radian
30°	·π/6	135°	3π/4
45°	$\pi/4$	150°	$5\pi/6$
60°	$\pi/3$	180°	π
90°	$\pi/2$	270°	$3\pi/2$
120°	$2\pi/3$	360°	2π

LEVEL - I

- 1. 1 radian is equal to :-
 - (a) 100°
- (b) $\left(\frac{\pi}{180}\right)^0$
- (c) $\left(\frac{180}{\pi}\right)^0$
- (d) 90°
- 2. 'Find the digree measure

corresponding to
$$\left(\frac{4\pi}{15}\right)^c$$
:

- (a) 48°
- (b) 24°
- (c) 36°
- (d) 72°
- 3. Find the degree measure

corresponding to
$$\left(\frac{1}{6}\right)^c$$
:

- (a) 9°32'
- (b) 9°32'43.6"
- (c) 10°
- (d) None of these
- 4. Find the radian measure corresponding to 13°7'30"

(a)
$$\left(\frac{\pi}{48}\right)^c$$

(b)
$$\left(\frac{\pi}{96}\right)^c$$

(c)
$$\left(\frac{5\pi}{96}\right)^c$$

(d)
$$\left(\frac{7\pi}{96}\right)^c$$

5. Find the digree measure

corresponding to
$$\left(\frac{5\pi}{6}\right)^c$$
:

- (a) 140°
- (b) 130°
- (c) 150°
- (d) 145°

6. The value of 80° in radian is:

(a)
$$\left(\frac{4\pi}{9}\right)^c$$

(b)
$$\left(\frac{2\pi}{9}\right)^c$$

(c)
$$\left(\frac{2\pi}{3}\right)^c$$

(d)
$$\left(\frac{4\pi}{3}\right)^c$$

- 7. When a pendulam of length 50 cm oscillates, it produces an arc of 16 cm. The angle so formed in degree measure is (approx):
 - (a) 18°25'
- (b) 18°35'
- (c) 18°20'
- (d) 18°08'
- 8. Three interior angles of a quadrilateral are 60°, 120°, 90°. The remaining angle in circular measure is given by:

(a)
$$\frac{\pi^c}{3}$$

(b)
$$\frac{\pi^c}{2}$$

(c)
$$\frac{\pi^c}{4}$$

(d)
$$\frac{3\pi^c}{4}$$

In ∆ ABC, ∠A = 30°, ∠B = 60°. Find
 ∠C in circular measure :

(a)
$$\frac{2\pi^c}{3}$$

(b)
$$\frac{3\pi^{c}}{4}$$

(c)
$$\frac{\pi^c}{4}$$

(d)
$$\frac{\pi^c}{2}$$

10. In circular measure, the value of the angle 11°15' is:

(a)
$$\frac{\pi^c}{16}$$

(b)
$$\frac{\pi^c}{2}$$

(c)
$$\frac{\pi^c}{4}$$

(d)
$$\frac{\pi^c}{12}$$

LEVEL - II

- Find the length of an arc of a circle of radius 10cm subtending a central angle measuring 120
 - (A) $\frac{\pi}{15}$ cm
- (B) $\frac{4\pi}{3}$ cm
- (C) $\frac{2\pi}{3}$ cm
- (D) $\frac{\pi}{3}$ cm
- The moon's distance from the earth is 360000 km and its diameter 2. subtends an angle of 30' at the eye of the observer. Find the diameter of the moon.
 - (a) $100 \pi \text{ km}$
- (B) $1000 \pi \text{ km}$
- (c) $1500 \pi \text{ km}$
- (D) $2000 \pi \text{ km}$
- Find in degress the angle through which a pendulum swings if its length is 90cm and its tip describes an arc of length 22 cm.
 - (a) 14°
- (b) 13° 16'
- (c) 14°8'
- (d) 13°
- A rail road curve is to be laid out on a circle. What radius should be used if the track is to change direction by 25° in a distance of 40 metres?
 - (a) 91.64 metres
- (b) 90.46 metres
- (c) 89.64 metres
- (d) 93.64 metres
- Two angles of a triangle are $\frac{1}{2}$ radian 5.
 - and $\frac{1}{3}$ radian. The measure of the
 - third angle in degree (taking $\pi = \frac{22}{7}$)

- (a) $132\frac{1}{11}$ °
- (b) $132\frac{2}{11}$ °
- (c) $132\frac{3}{11}$ °
- (d) 132°
- 6. By decreasing 15° of each angle of a triangle, the ratios of their angles are 2:3:5. The radian measure of greatest angle is:
 - (a) $\frac{11 \pi}{24}$
- (b) $\frac{\pi}{12}$
- (c) $\frac{\pi}{24}$
- (d) $\frac{5 \pi}{24}$
- In a triangle ABC, ∠ABC = 75° and 7.
 - $\angle ACB = \frac{\pi^{\circ}}{4}$. The circcular measure of \(\alpha \text{BAC is :}
 - (a) $\frac{5\pi}{12}$ radian (b) $\frac{\pi}{3}$ radian
 - (c) $\frac{\pi}{24}$

8.

- The minute hand of a big wall-clock is 35 cm long. Taking $\pi = \frac{22}{7}$, length of the arc, its extremity moves in 18 seconds is:
 - (a) 11 cm
- (b) 1.1 cm
- (c) 6.6 cm
- (d) 6 cm

LEVEL - III

- The minute hand of a watch is 3cm 1. long. How far does its tip move in 50 minute?
 - (a) 10.32 cm
- (b) 17.67 cm
- (c) 15.71 cm
- (d) 18.23 cm
- Find the angle between the hour 2. hand and the minute hand at half past four.
 - (a) $\frac{\kappa}{4}$ radian
- (b) $\frac{\pi}{6}$ radian
- (c) $\frac{2\pi}{3}$ radian (d) $\frac{\pi}{3}$ radian
- 3. In a circle of diameter 30cm, the length of the chord is 15cm. Find the length of the minor arc corresponding to the chord.
- (b) $5\pi \text{ cm}$
- (c) $\frac{5\pi}{2}$ cm
- (d) None of these
- If the arcs of same length in two 4. circles subtend angles 60° and 75° at their centres. Find the ratio of their radii :-

- (a) 5:3
- (b) 5:8
- (c) 4:7
- (d) 5:4
- Find the angle between the minute 5. hand of a clock and the hour hand when the time is 5:20 AM.
 - (a) 50°
- (b) 30°
- (c) 40°
- (d) 45°
- A wheel makes 240 revolutions per 6. minute. Through how many radians does it turns in 1 secound?
 - (a) 8π

(b) 6π

- (c) 4π
- (d) 16π
- If the angular diameter of the moon 7. be 30', how far from the eye a coin of diameter 4.4 cm be kept to hide the moon?
 - (a) 252 cm
- (B) 504 cm
- (c) 300 cm
- (D) 500 cm
- The angles of a triangle are in 8. Arithmetic Progression. The ratio of the least angle in degrees to the number of radians in the greatest anlgle is $60 : \pi$. The angles in degrees are:
 - (a) 30°, 60°, 90°
 - (b) 35°, 55°, 90°
 - (c) 40°, 50°, 90°
 - (d) 40°, 55°, 85°

gints and Solutions Level -I

$$1.(c) \quad : \pi \text{ rad} = 180^{\circ}$$

$$\therefore 1 \text{ rad} = \left(\frac{180}{\pi}\right)^{\circ}$$

$$_{2(a)}$$
 π radian = 180°

$$\Rightarrow 1^{c} = \left(\frac{180}{\pi}\right)^{0}$$

$$\left(\frac{4\pi}{15}\right)^{c} = \left(\frac{4\pi}{15} \times \frac{180}{\pi}\right)^{0} = 48^{0}$$

Scanned by
$$\in \left(\frac{1}{6}\right)^{\circ}$$
 $\times \left(\frac{1}{6}\right)^{\circ}$ $\times \left(\frac{1}{6}\right)$

$$= \left(\frac{105}{8} \times \frac{\pi}{180}\right)^{c} = \left(\frac{7\pi}{96}\right)^{c}$$

$$\therefore \left(\frac{5\pi}{6}\right)^{c} = \left(\frac{180}{\pi} \times \frac{5\pi}{6}\right)^{\circ} = 150^{\circ}$$

6.(a)
$$180^{\circ} = \pi^{\circ}$$

$$\therefore 80^{\circ} = \left(\frac{\pi}{180} \times 80\right)^{\circ} = \left(\frac{4\pi}{9}\right)^{\circ}$$

7.(c)
$$s = 16 \text{ cm}$$

 $r = 50 \text{ cm}$

$$\therefore \theta = \frac{s}{r} = \frac{16}{50} = \frac{8}{25} \text{ radian}$$

Level - II

1.(c)
$$r = 10$$
,

$$\theta = 12^{\circ} = \left(12 \times \frac{\pi}{180}\right)^{\circ} = \left(\frac{\pi}{15}\right)^{\circ}$$

$$\therefore \theta = \frac{\text{arc}}{\text{radius}} \Rightarrow \text{arc} = r \theta = 10 \times \frac{\pi}{15} = \frac{2\pi}{3}$$

2.(b) Diameter d = Arc AB
as the distance between moon and
the earth is very large

$$\theta = 30 = \left(\frac{30}{60} \times \frac{\pi}{180}\right)^{c} = \left(\frac{\pi}{360}\right)^{c}$$

Scanned by CamScamaeius

4.(a)
$$\theta = 25^{\circ} = \frac{25 \times \pi}{180} \text{ radians}$$

$$= \frac{5\pi}{36} \text{ radians } \theta = \frac{\$}{r}$$

$$\Rightarrow r = \frac{s}{\theta} = \frac{40}{\frac{5\pi}{36}} = \frac{40 \times 36}{5\pi} = \frac{40 \times 36 \times 7}{5 \times 22}$$
 metre

= 91.64 metre

5.(c) Sum of two angles =

$$\frac{1}{2} + \frac{1}{3} = \frac{5}{6}$$
 radian

$$\therefore \text{ Third angle } = \left(\pi - \frac{5}{6}\right) \text{ radian}$$

$$=\frac{22}{7}-\frac{5}{6}=\frac{132-35}{42}=\frac{97}{42}$$
 radians

$$\angle ABC = 75^{\circ}$$

 $\therefore 180^{\circ} = \pi \text{ radian}$

$$\therefore 75^\circ = \frac{\pi}{180} \times 75 = \frac{5\pi}{12} \text{ radian}$$

$$=\frac{12\pi-3\pi-5\pi}{12}=\frac{4\pi}{12}=\frac{\pi}{3}$$
 radian

g.(b) Traced arc length by minute hand in 60×60 seconds = $2 \pi r$

: Length of arc made in 18 seconds

$$=\frac{2\pi r}{60\times60}\times18$$

$$=2 \times \frac{22}{7} \times \frac{35 \times 18}{60 \times 60} = 1.1 \text{ cm}$$

Level -III

- 1.(c) The minute hand complete one revolution in 60 minute.
 - :. In 50 minute it will cover $\frac{50}{60} = \frac{5}{6}$ of the revolution.
 - : 1 revolution = 2π radian.

$$\therefore \frac{5}{6} \text{ revolution} = 2\pi \times \frac{5}{6} = \frac{5\pi}{3} \text{ radian}$$

$$\therefore \text{ Distance moved by tip } = 3 \times \frac{5\pi}{3} \text{ cm}$$
$$= 5\pi \text{ cm}$$

$$=5 \times \frac{22}{7}$$
 cm = 15.71 cm

- 2.(a) Angle traced by the hour hand in 12 hours = 360°
 - :. Angle traced by the hour hand in 4

hrs 30 min.
$$\left(=\frac{9}{2}\text{hrs}\right)$$

$$=\frac{360}{12}\times\frac{9}{2}=135^{\circ}$$

Angle traced by the minute hand in 60 min. =360°

: Angle traced by the minute hand

in 30 min =
$$\left(\frac{360}{60} \times 30\right)^0 = 180^0$$

Thus, the angle between two hands

$$=180^{\circ}-135^{\circ}$$

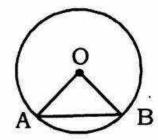
$$=45^{0}$$

$$=\frac{\pi}{4}$$
 radian

Short - cut :-

$$\theta = \left| \frac{11}{2} M - 30 H \right|$$

Where $\theta = angle$


M = minute

H = hour

$$\theta = \left| \frac{11}{2} \times 30 - 30 \times 4 \right|$$

= 45º

- 3.(b) OA = OB = 15 cm (radius)and chord AB = 15 cm
 - :. AOAB is an equilateral triangle.

$$\therefore \angle AOB = 60^{\circ} = \left(\frac{\pi}{3}\right)^{\circ}$$

$$\theta = \frac{\text{arc}}{\text{radius}} \Rightarrow \text{arc} = \theta \times r = \frac{\pi}{3} \times 15 = 5\pi$$

4.(d) lentgth of arc $(l) = \theta \times \text{radius } (r)$ $r = l/\theta$

$$\therefore \frac{\mathbf{r}_1}{\mathbf{r}_2} = \frac{l_1}{l_2} \times \frac{\theta_2}{\theta_1} = \frac{\theta_2}{\theta_1}$$

$$=\frac{75}{60}=\frac{5}{4}$$

5.(c)
$$\theta = \left| \frac{11}{2}M - 30H \right|$$

Where $\theta =$ angle

M = minute

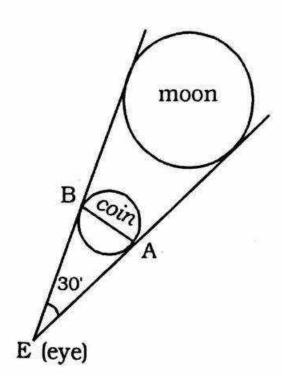
H = hour

$$\theta = \left| \frac{11}{2} \times 20 - 30 \times 5 \right|$$

 $=40^{\circ}$

6.(a) Number of revolution per second

$$=\frac{240}{60}=4$$


complete circles.

A circle subtends an angle of $2\pi^c$ at its centre it 1 revolution

.. Number of radians in 4 revolution

$$=4\times2\pi=8\pi^{c}$$

7.(b) arc AB = diameter AB = 4.4 cm

$$\theta = 30' = \left(\frac{30}{60}\right)^0 = \left(\frac{1}{2}\right)^0$$

$$= \left(\frac{1}{2} \times \frac{\pi}{180}\right)^{c} = \left(\frac{\pi}{360}\right)^{c}$$

$$\theta = \frac{\text{arc}}{\text{radius}} \Rightarrow \frac{\pi}{360} = \frac{4.4}{r}$$

$$\Rightarrow r = \frac{4.4 \times 360}{\pi} \text{ cm} = \frac{4.4 \times 360}{22} \times 7$$

$$\Rightarrow$$
 r = 504 cm
Angles of triangle
 $(a-d)^{\circ}$, a° , $(a+d)^{\circ}$
 $a-d+a+a+d=180^{\circ}$
 \Rightarrow $3a=180^{\circ} \Rightarrow a=60^{\circ}$
 $\frac{a-d}{a+d} = \frac{60}{\pi} = \frac{60}{180} = \frac{1}{3}$

$$\Rightarrow \frac{60-d}{60+d} = \frac{1}{3}$$

$$\Rightarrow 180 - 3d = 60 + d$$

$$\Rightarrow 160^{\circ} \text{ od}$$

$$\Rightarrow 4d = 120^{\circ} \Rightarrow d = 30^{\circ}$$

: Angles of triangle :
$$a - d = 60^{\circ} - 30^{\circ}$$

$$a = 60^{\circ}$$

$$a + d = 60 + 30 = 90^{\circ}$$