

	Contents				
4.1	Polynomial				
4.2	Types of quadratic equation				
4.3	Solution of quadratic equation				
4.4	Nature of roots				
4.5	Root under particular conditions				
4.6	Relation between roots and coefficients				
4.7	Biquadratic equation				
4.8	Condition for common roots				
4.9	Properties of quadratic equation				
4.10	Quadratic expression				
4.11	Wavy curve method				
4.12	Position of roots of a quadratic equation				
4.13	Descartes rule of signs				
4.14	Rational algebraic inequations				
4.15	Algebraic interpretation of rolle's Theorem				
4.16	Equations and inequations on containing absolute value				
Assignment (Basic and Advance Level)					
Answer Sheet of Assignment					

The Babylonians knew of quadratic equations some 4000 years ago. The Greek mathematician Euclid (300 B.C.) gives several quadratic equation while solving geometrical problems,.

Aryabhatta (476 A.D.) gives a rule to sum the geometric series which involves the solution of the quadratic equations Brahmagupta (598 A.D.) provides a rule for the solution of the quadratic equations which is very much the quadratic formula. Mahavira around 850 A.D. proposed a problem involving the use of quadratic equation and its solution.

It was Sridhara, an Indian mathematician, around 900 A.D. who was the first to give an algebraic solution of the general equation $ax^2 + bx + c$

= 0 $a \neq 0$, showing the roots to be $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

The first important treatment of a quadratic equation, by factoring, is found in Harriot's works in approximately 1631 A.D.

4.1 Polynomial

Algebraic expression containing many terms of the form cx^n , n being a non-negative integer is called a polynomial. *i.e.*, $f(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + \dots + a_{n-1}x^{n-1} + a_nx^n$, where x is a variable, $a_0, a_1, a_2, \dots, a_n$ are constants and $a_n \neq 0$

Example : $4x^4 + 3x^3 - 7x^2 + 5x + 3$, $3x^3 + x^2 - 3x + 5$.

(1) **Real polynomial :** Let $a_0, a_1, a_2, \dots, a_n$ be real numbers and x is a real variable.

Then $f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n$ is called real polynomial of real variable x with real coefficients.

Example : $3x^3 - 4x^2 + 5x - 4$, $x^2 - 2x + 1$ etc. are real polynomials.

(2) **Complex polynomial :** If $a_0, a_1, a_2, \dots, a_n$ be complex numbers and x is a varying complex number.

Then $f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n$ is called complex polynomial of complex variable *x* with complex coefficients.

Example : $3x^2 - (2+4i)x + (5i-4), x^3 - 5ix^2 + (1+2i)x + 4$ etc. are complex polynomials.

(3) **Degree of polynomial :** Highest power of variable x in a polynomial is called degree of polynomial.

Example : $f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n$ is a *n* degree polynomial.

 $f(x) = 4x^3 + 3x^2 - 7x + 5$ is a 3 degree polynomial.

f(x) = 3x - 4 is single degree polynomial or linear polynomial.

f(x) = bx is an odd linear polynomial.

A polynomial of second degree is generally called a quadratic polynomial. Polynomials of degree 3 and 4 are known as cubic and biquadratic polynomials respectively.

(4) **Polynomial equation** : If f(x) is a polynomial, real or complex, then f(x) = 0 is called a polynomial equation.

4.2 Types of Quadratic Equation

A quadratic polynomial f(x) when equated to zero is called quadratic equation.

Example : $3x^{2} + 7x + 5 = 0, -9x^{2} + 7x + 5 = 0, x^{2} + 2x = 0, 2x^{2} = 0$

or

An equation in which the highest power of the unknown quantity is two is called quadratic equation.

Quadratic equations are of two types :

(1) **Purely quadratic equation :** A quadratic equation in which the term containing the first degree of the unknown quantity is absent is called a purely quadratic equation.

i.e. $ax^2 + c = 0$ where $a, c \in C$ and $a \neq 0$

(2) **Adfected quadratic equation :** A quadratic equation which contains terms of first as well as second degrees of the unknown quantity is called an adfected quadratic equation.

i.e. $ax^2 + bx + c = 0$ where $a, b, c \in C$ and $a \neq 0, b \neq 0$.

(3) **Roots of a quadratic equation :** The values of variable x which satisfy the quadratic equation is called roots of quadratic equation.

Important Tips

- An equation of degree n has n roots, real or imaginary.
- Surd and imaginary roots always occur in pairs in a polynomial equation with real coefficients i.e. if 2 3i is a root of an equation, then 2 + 3i is also its root. Similarly if $2+\sqrt{3}$ is a root of given equation, then $2-\sqrt{3}$ is also its root.
- An odd degree equation has at least one real root whose sign is opposite to that of its last term (constant term), provided that the coefficient of highest degree term is positive.
- Every equation of an even degree whose constant term is negative and the coefficient of highest degree term is positive has at least two real roots, one positive and one negative.

4.3 Solution of Quadratic Equation

(1) **Factorization method**: Let $ax^2 + bx + c = a(x - \alpha)(x - \beta) = 0$. Then $x = \alpha$ and $x = \beta$ will satisfy the given equation.

Hence, factorize the equation and equating each factor to zero gives roots of the equation.

Example :
$$3x^2 - 2x + 1 = 0 \implies (x - 1)(3x + 1) = 0$$

x = 1, -1/3

(2) Hindu method (Sri Dharacharya method): By completing the perfect square as

 $ax^{2} + bx + c = 0 \implies x^{2} + \frac{b}{a}x + \frac{c}{a} = 0$

Adding and subtracting $\left(\frac{b}{2a}\right)^2$, $\left[\left(x+\frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a^2}\right] = 0$ which gives, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Hence the quadratic equation $ax^2 + bx + c = 0$ ($a \neq 0$) has two roots, given by

$$\alpha = \frac{-b + \sqrt{b^2 - 4ac}}{2a}, \ \beta = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

Note : D Every quadratic equation has two and only two roots.

4.4 Nature of Roots

In quadratic equation $ax^2 + bx + c = 0$, the term $b^2 - 4ac$ is called discriminant of the equation, which plays an important role in finding the nature of the roots. It is denoted by Δ or *D*.

(1) If $a, b, c \in R$ and $a \neq 0$, then : (i) If D < 0, then equation $ax^2 + bx + c = 0$ has non-real complex roots.

(ii) If D > 0, then equation $ax^2 + bx + c = 0$ has real and distinct roots, namely $\alpha = \frac{-b + \sqrt{D}}{2a}$,

 $\beta = \frac{-b - \sqrt{D}}{2a}$

and then $ax^{2} + bx + c = a(x - \alpha)(x - \beta)$ (i)

(iii) If D = 0, then equation $ax^2 + bx + c = 0$ has real and equal roots $\alpha = \beta = \frac{-b}{2a}$

and then $ax^{2} + bx + c = a(x - \alpha)^{2}$ (ii)

To represent the quadratic expression $ax^2 + bx + c$ in form (i) and (ii), transform it into linear factors.

(iv) If $D \ge 0$, then equation $ax^2 + bx + c = 0$ has real roots.

(2) If $a, b, c \in Q, a \neq 0$, then : (i) If D > 0 and D is a perfect square \Rightarrow roots are unequal and rational.

(ii) If D > 0 and D is not a perfect square \Rightarrow roots are irrational and unequal.

(3) **Conjugate roots :** The irrational and complex roots of a quadratic equation always occur in pairs. Therefore

(i) If one root be $\alpha + i\beta$ then other root will be $\alpha - i\beta$.

(ii) If one root be $\alpha + \sqrt{\beta}$ then other root will be $\alpha - \sqrt{\beta}$.

(4) If D_1 and D_2 be the discriminants of two quadratic equations, then

(i) If $D_1 + D_2 \ge 0$, then

(a) At least one of D_1 and $D_2 \ge 0$. (b) If $D_1 < 0$ then $D_2 > 0$

(ii) If $D_1 + D_2 < 0$, then

(a) At least one of D_1 and $D_2 < 0$. (b) If $D_1 > 0$ then $D_2 < 0$.

4.5 Roots Under Particular Conditions

For the quadratic equation $ax^2 + bx + c = 0$.

(1) If $b = 0 \Rightarrow$ roots are of equal magnitude but of opposite sign.

(2) If $c = 0 \Rightarrow$ one root is zero, other is -b/a.

(3) If $b = c = 0 \Rightarrow$ both roots are zero.

(4) If $a = c \Rightarrow$ roots are reciprocal to each other.

(5) If $\begin{vmatrix} a > 0 & c < 0 \\ a < 0 & c > 0 \end{vmatrix}$ \Rightarrow roots are of opposite signs.

(6) If
$$\begin{vmatrix} a > 0 & b > 0 & c > 0 \\ a < 0 & b < 0 & c < 0 \end{vmatrix}$$
 \Rightarrow both roots are negative, provided $D \ge 0$.

(7) If $\begin{vmatrix} a > 0 & b < 0 & c > 0 \\ a < 0 & b > 0 & c < 0 \end{vmatrix}$ \Rightarrow both roots are positive, provided $D \ge 0$.

(8) If sign of $a = \text{sign of } b \neq \text{sign of } c \Rightarrow \text{greater root in magnitude, is negative.}$

(9) If sign of $b = \text{sign of } c \neq \text{sign of } a \Rightarrow \text{greater root in magnitude, is positive.}$

(10) If $a+b+c=0 \Rightarrow$ one root is 1 and second root is c/a.

(11) If a = b = c = 0, then equation will become an identity and will be satisfied by every value of *x*.

(12) If a = 1 and b, $c \in I$ and the root of equation $ax^2 + bx + c = 0$ are rational numbers, then these roots must be integers.

Important Tips

		Importa	ite repo				
5	5 5	e of sign, it has one +ve +ve and the equation in		of x, then all its	roots are comple	ex.	
Example: 1	Both the roots of give	Both the roots of given equation $(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0$ are always					
			[MNR :	1986; IIT 1980; k	urukshetra CEE 1	1998]	
	(a) Positive	(b) Negative	(c) Real	(d) Imagir	lary		
Solution: (c)	Given equation	(x-a)(x-b) + (x-b)(x-b)(x-b)(x-b)(x-b)(x-b)(x-b)(x-b)	-c) + (x-c)(x-a) = 0	can be	re-written	as	
$3x^2 - 2(a+b+c)$	x + (ab + bc + ca) = 0						
	$D = 4[(a+b+c)^2 - 3(ab+b)^2 $	$[bc + ca)] = 4[a^2 + b^2 + c^2 - a^2]$	$ab - bc - ac] = 2[(a - b)^{2} +$	$(b-c)^2 + (c-a)^2$	≥ 0		
	Hence both roots are	always real.					
Example: 2		$x^{2} + (c-a)x + (a-b) = 0$ are	equal then $a + c =$	[]	urukshetra CEE :	1992]	
_	(a) 2 <i>b</i>	(b) b^2	(c) 3b	(d) <i>b</i>			
Solution: (a)	b-c+c-a+a-b=0						
	Hence one root is 1. Also as roots are equal, other root will also be equal to 1.						
	Also $\alpha.\beta = \frac{a-b}{b-c} \Rightarrow 1.1$	$=\frac{a-b}{b-c} \Rightarrow a-b=b-c \Rightarrow$	$\Rightarrow 2b = a + c$				
Example: 3	If the roots of equation	on $\frac{1}{x+p} + \frac{1}{x+q} = \frac{1}{r}$ are e	equal in magnitude bu	t opposite in sig	gn, then $(p+q) =$		
					[Rajasthan PET :	1999]	
	(a) 2 <i>r</i>	(b) <i>r</i>	(c) - 2 <i>r</i>	(d) None o	of these		
Solution: (a)	Given equation can be	e written as $x^2 + (p+q-$	2r)x + [pq - (p+q)r] = 0				
	Since the roots are equal and of opposite sign, \therefore Sum of roots = 0						
	$\Rightarrow -(p+q-2r) = 0 \Rightarrow p$	+q = 2r					
Example: 4	If 3 is a root of $x^2 + kx$	x - 24 = 0, it is also a roo	ot of		[EAMCET 2	2002]	
	(a) $x^2 + 5x + k = 0$	(b) $x^2 - 5x + k = 0$	(c) $x^2 - kx + 6 = 0$	(d) $x^2 + kx$	+24 = 0		

Solution: (c)	Equation $x^2 + kx - 24 = 0$ has one root as 3,				
	$\Rightarrow 3^2 + 3k - 24 = 0 \Rightarrow k = 5$				
	Put $x = 3$ and $k = 5$ in option				
	Only (c) gives the correct answer <i>i.e.</i> $\Rightarrow 3^2 - 15 + 9 = 0 \Rightarrow 0 = 0$				
Example: 5	For what values of k will the equation $x^2 - 2(1+3k)x + 7(3+2k) = 0$ have equal roots [MP PET 199				[MP PET 1997]
	(a) 1, -10/9	(b) 2, -10/9	(c) 3, -10/9	(d) 4, -10/9	
Solution: (b)	Since roots are equal then $[-2(1+3k)]^2 = 4.1.7(3+2k) \Rightarrow 1+9k^2+6k = 21+14k \Rightarrow 9k^2-8k-20 = 0$				20 = 0
	Solving, we get $k = 2$	2, -10 / 9			

4.6 Relations between Roots and Coefficients

(1) **Relation between roots and coefficients of quadratic equation :** If α and β are the roots of quadratic equation $ax^2 + bx + c = 0$, ($a \neq 0$) then

Sum of roots =
$$S = \alpha + \beta = \frac{-b}{a} = -\frac{\text{coefficient of } x}{\text{coefficient of } x^2}$$

Product of roots = $P = \alpha, \beta = \frac{c}{a} = \frac{\text{constant term}}{\text{coefficient of } x^2}$
If roots of quadratic equation $ax^2 + bx + c = 0$ ($a \neq 0$) are α and β then
(i) $(\alpha - \beta) = \sqrt{(\alpha + \beta)^2 - 4\alpha\beta} = \pm \frac{\sqrt{b^2 - 4ac}}{a} = \pm \frac{\sqrt{D}}{a}$
(ii) $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = \frac{b^2 - 2ac}{a^2}$
(iii) $\alpha^2 - \beta^2 = (\alpha + \beta)\sqrt{(\alpha + \beta)^2 - 4\alpha\beta} = -\frac{b\sqrt{b^2 - 4ac}}{a^2} = \pm b\sqrt{D}}{a^2}$
(iv) $\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta) = -\frac{b(b^2 - 3ac)}{a^3}$
(v) $\alpha^3 - \beta^3 = (\alpha - \beta)^3 + 3\alpha\beta(\alpha - \beta) = \sqrt{(\alpha + \beta)^2 - 4\alpha\beta} \{(\alpha + \beta)^2 - \alpha\beta\} = \pm \frac{\pm (b^2 - ac)\sqrt{b^2 - 4ac}}{a^3}$
(vi) $\alpha^4 + \beta^4 = \{(\alpha + \beta)^2 - 2\alpha\beta\}^2 - 2\alpha^2\beta^2 = \left(\frac{b^2 - 2ac}{a^2}\right)^2 - 2\frac{c^2}{a^2}$
(vii) $\alpha^4 - \beta^4 = (\alpha^2 - \beta^2)(\alpha^2 + \beta^2) = \pm \frac{b(b^2 - 2ac)\sqrt{b^2 - 4ac}}{a^4}$
(viii) $\alpha^2 + \alpha\beta + \beta^2 = (\alpha + \beta)^2 - \alpha\beta = \frac{b^2 - ac}{a^2}$
(ix) $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta} = \frac{b^2 - 2ac}{ac}$
(x) $\alpha^2\beta + \beta^2\alpha = \alpha\beta(\alpha + \beta) = -\frac{bc}{a^2}$
(xi) $\left(\frac{\alpha}{\beta}\right)^2 + \left(\frac{\beta}{\alpha}\right)^2 = \frac{a^4 + \beta^4}{\alpha^2\beta^2} = \frac{(\alpha^2 + \beta^2)^2 - 2\alpha^2\beta^2}{\alpha^2\beta^2} = \frac{b^2D + 2a^2c^2}{a^2c^2}$

(2) **Formation of an equation with given roots :** A quadratic equation whose roots are α and β is given by $(x - \alpha)(x - \beta) = 0$

$$\therefore x^2 - (\alpha + \beta)x + \alpha\beta = 0$$
 i.e. $x^2 - (\text{sum of roots})x + (\text{product of roots}) = 0$

 $\therefore x^2 - Sx + P = 0$

(3) Equation in terms of the roots of another equation : If α , β are roots of the equation $ax^2 + bx + c = 0$, then the equation whose roots are

(i) $-\alpha$, $-\beta \Rightarrow ax^2 - bx + c = 0$	(Replace x by – x)			
(ii) $1/\alpha, 1/\beta \implies cx^2 + bx + a = 0$	(Replace x by $1/x$)			
(iii) $\alpha^n, \beta^n; n \in N \Rightarrow a(x^{1/n})^2 + b(x^{1/n}) + c = 0$	(Replace x by $x^{1/n}$)			
(iv) $k\alpha$, $k\beta \Rightarrow ax^2 + kbx + k^2c = 0$	(Replace x by x/k)			
(v) $k + \alpha$, $k + \beta \implies a(x-k)^2 + b(x-k) + c = 0$	(Replace x by $(x - k)$)			
(vi) $\frac{\alpha}{k}, \frac{\beta}{k} \Rightarrow k^2 ax^2 + kbx + c = 0$	(Replace <i>x</i> by <i>kx</i>)			
(vii) $\alpha^{1/n}, \beta^{1/n}; n \in N \Rightarrow a(x^n)^2 + b(x^n) + c = 0$ (Replace x by x^n)				

(4) **Symmetric expressions** : The symmetric expressions of the roots α , β of an equation are those expressions in α and β , which do not change by interchanging α and β . To find the value of such an expression, we generally express that in terms of $\alpha + \beta$ and $\alpha\beta$.

Some examples of symmetric expressions are :

(i)
$$\alpha^2 + \beta^2$$
 (ii) $\alpha^2 + \alpha\beta + \beta^2$ (iii) $\frac{1}{\alpha} + \frac{1}{\beta}$ (iv) $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$
(v) $\alpha^2\beta + \beta^2\alpha$ (vi) $\left(\frac{\alpha}{\beta}\right)^2 + \left(\frac{\beta}{\alpha}\right)^2$ (vii) $\alpha^3 + \beta^3$ (viii) $\alpha^4 + \beta^4$

4.7 Biguadratic Equation

If α , β , γ , δ are roots of the biquadratic equation $ax^4 + bx^3 + cx^2 + dx + e = 0$, then $S_1 = \alpha + \beta + \gamma + \delta = -b/a$, $S_2 = \alpha \cdot \beta + \alpha \cdot \gamma + \alpha \delta + \beta \gamma + \beta \cdot \delta + \gamma \delta = (-1)^2 \frac{c}{a} = \frac{c}{a}$ or $S_2 = (\alpha + \beta)(\gamma + \delta) + \alpha \beta + \gamma \delta = c/a$, $S_3 = \alpha \beta \gamma + \beta \gamma \delta + \gamma \delta \alpha + \alpha \beta \delta = (-1)^3 \frac{d}{a} = -d/a$ or $S_3 = \alpha \beta (\gamma + \delta) + \gamma \delta (\alpha + \beta) = -d/a$ and $S_4 = \alpha \cdot \beta \cdot \gamma \cdot \delta = (-1)^4 \frac{e}{a} = \frac{e}{a}$

Example: 6 If the difference between the corresponding roots of $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ is same and $a \neq b$, then [AIEEE 2002]

(a)
$$a+b+4=0$$
 (b) $a+b-4=0$ (c) $a-b-4=0$ (d) $a-b+4=0$
Solution: (a) $\alpha+\beta=-a$, $\alpha\beta=b \Rightarrow \alpha-\beta=\sqrt{a^2-4b}$ and $\gamma+\delta=-b$, $\gamma\delta=a \Rightarrow \gamma-\delta=\sqrt{b^2-4a}$

Example: 7 According to question, $\alpha - \beta = \gamma - \delta \Rightarrow \sqrt{a^2 - 4b} = \sqrt{b^2 - 4a} \Rightarrow a + b + 4 = 0$ **Example: 7** If the sum of the roots of the quadratic equation $ax^2 + bx + c = 0$ is equal to the sum of the squares of their reciprocals, then a/c, b/a, c/b are in [AIEEE 2003; DCE 2000] (a) A.P. (b) G.P. (c) H.P. (d) None of these

Solution: (c) As given, if
$$a, \beta$$
 be the roots of the quadratic equation, then

$$\Rightarrow a + \beta = \frac{1}{a^4} + \frac{1}{p^2} = \frac{(a + \beta)^2}{a} - \frac{2a}{2b} = -\frac{b}{a} - \frac{b^2}{a^2} - \frac{a^2}{a^2} - \frac{b^2}{a^2} - \frac{b^2}{a^2} - \frac{b}{a} - \frac{b^2}{a^2} + \frac{b^2}{a} - \frac{b^2}{a^2} + \frac{b^2$$

	$\therefore x^2 - \frac{19}{3}x + 1 = 0 \implies 3$	$5x^2 - 19x + 3 = 0$		
Example: 12	Let α , β be the ro	ots of the equation ($(x-a)(x-b) = c$, $c \neq 0$, then the roots of the equation
	$(x-\alpha)(x-\beta)+c=0$ are			
			[11	T 1992; DCE 1998, 2000; Roorkee 2000]
	(a) <i>a</i> , c	(b) <i>b</i> , <i>c</i>	(c) a, b	(d) <i>a</i> , <i>d</i>
Solution: (c)		ts of $(x-a)(x-b) = c$ i.e. o		= 0
		$= \alpha + \beta$ and $\alpha\beta = ab - c \Rightarrow$		
		$f x^2 - (\alpha + \beta)x + \alpha\beta + c = 0 =$	$\Rightarrow (x-\alpha)(x-\beta)+c=0$	
	Hence (c) is the corre			
Example: 13				then [Rajasthan PET 1995; Karnataka CET
				V_{n-1} (d) $V_{n+1} = b V_n + a V_{n-1}$
Solution: (a)		ts of equation, $x^2 - ax + b$		
		$= (\alpha + \beta)(\alpha^{n} + \beta^{n}) - \alpha\beta(\alpha^{n-1} + \beta^{n-1}) - \alpha\beta(\alpha^{n-1}) - \alpha\beta(\alpha^{n-1})$		
Example: 14	If one root of the equa	ation $x^2 + px + q = 0$ is the	e square of the othe	r, then [IIT Screening 2004]
	(a) $p^3 + q^2 - q(3p+1) =$	0	(b) $p^3 + q^2 + q(1 + q)$	(-3p) = 0
	(c) $p^3 + q^2 + q(3p-1) =$	0	(d) $p^3 + q^2 + q(1 - q)$	(-3p) = 0
Solution: (d)	Let α and α^2 be the re-	boots then $\alpha + \alpha^2 = -p$, $\alpha . \alpha$	$\alpha^2 = q$	
	Now $(\alpha + \alpha^2)^3 = \alpha^3 + \alpha^6$	$+3\alpha^{3}(\alpha+\alpha^{2}) \Rightarrow -p^{3}=q+q$	$q^2 - 3pq \implies p^3 + q^2 + q^3$	q(1-3p) = 0
Example: 15	Let α and β be the roo	ots of the equation $x^2 + x$	+1 = 0, the equation	whose roots are α^{19}, β^7 is[IIT 1994; Pb.
	(a) $x^2 - x - 1 = 0$	(b) $x^2 - x + 1 = 0$	(c) $x^2 + x - 1 = 0$	(d) $x^2 + x + 1 = 0$
Solution: (d)	Roots of $x^2 + x + 1 = 0$	are $x = \frac{-1 \pm \sqrt{1-4}}{2}, = \frac{-1 \pm \sqrt{2}}{2}$	$\frac{\sqrt{3}i}{2} = \omega, \omega^2$	
	Take $\alpha = \omega, \beta = \omega^2$			
	$\therefore \alpha^{19} = w^{19} = w, \beta^7 = (w^7)^2$	$(x^2)^7 = w^{14} = w^2$		
	Required equation	is $x^2 + x + 1 = 0$		
Example: 16		atic equation is $\frac{1}{2+\sqrt{5}}$, t	then the equation is	[Rajasthan PET 1987]
	(a) $x^2 + 4x + 1 = 0$	(b) $x^2 + 4x - 1 = 0$	(c) $x^2 - 4x + 1 = 0$	(d) None of these
Solution: (b)	Given root $=$ $\frac{1}{2+\sqrt{5}} = -$	$\frac{2-\sqrt{5}}{-1} = -2 + \sqrt{5}$, : other	$\operatorname{root} = -2 - \sqrt{5}$	
	Again, sum of roots =	- 4 and product of roots	s = -1. The required	equation is $x^2 + 4x - 1 = 0$
4.8 Conditi	on for Common Ro	oots		
			the common	root of quadratic equations
	$= 0$ and $a_2 x^2 + b_2 x$			
$\therefore a_1 \alpha^2$	$+b_1\alpha + c_1 = 0$, $a_2\alpha^2 +$	$b_2 \alpha + c_2 = 0$		
1				

By Crammer's rule :
$$\frac{\alpha^2}{\begin{vmatrix} -c_1 & b_1 \\ -c_2 & b_2 \end{vmatrix}} = \frac{\alpha}{\begin{vmatrix} a_1 & -c_1 \\ a_2 & -c_2 \end{vmatrix}} = \frac{1}{\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}} \text{ or } \frac{\alpha^2}{b_1c_2 - b_2c_1} = \frac{\alpha}{a_2c_1 - a_1c_2} = \frac{1}{a_1b_2 - a_2b_1}$$
$$\therefore \ \alpha = \frac{a_2c_1 - a_1c_2}{a_1b_2 - a_2b_1} = \frac{b_1c_2 - b_2c_1}{a_2c_1 - a_1c_2}, \ \alpha \neq 0$$

 \therefore The condition for only one root common is $(c_1a_2 - c_2a_1)^2 = (b_1c_2 - b_2c_1)(a_1b_2 - a_2b_1)$

(2) Both roots are common: Then required condition is $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$.

Important Tips

- To find the common root of two equations, make the coefficient of second degree term in the two equations equal and subtract. The value of x obtained is the required common root.
- Two different quadratic equations with rational coefficient can not have single common root which is complex or irrational as imaginary and surd roots always occur in pair.

Example: 17 If one of the roots of the equation $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ is coincident. Then the numerical value of (a+b) is **[IIT 1986; Rajasthan PET 1992; EAMCET 2002]** (a) 0 (b) - 1 (c) (d) 5 **Solution:** (b) If α is the coincident root, then $\alpha^2 + a\alpha + b = 0$ and $\alpha^2 + b\alpha + a = 0$ $\Rightarrow \frac{\alpha^2}{a^2 - b^2} = \frac{\alpha}{b - a} = \frac{1}{b - a}$ $\alpha^2 = -(a+b), \ \alpha = 1 \Rightarrow -(a+b) = 1 \Rightarrow (a+b) = -1$ **Example: 18** If a, b, c are in G.P. then the equations $ax^2 + 2bx + c = 0$ and $dx^2 + 2ex + f = 0$ have a common root if $\frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in

(a) A.P. (b) G.P.

(c) H.P.

[IIT 1985; Pb. CET 2000; DCE 2000] (d) None of these

Solution: (a) As given, $b^2 = ac \Rightarrow ax^2 + 2bx + c = 0$ can be written as $ax^2 + 2\sqrt{ac}x + c = 0 \Rightarrow (\sqrt{a}x + \sqrt{c})^2 = 0 \Rightarrow x = -\sqrt{\frac{c}{a}}$ This must be common root by hypothesis

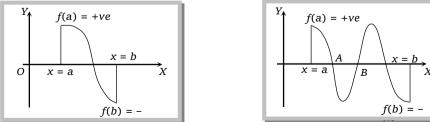
So it must satisfy the equation, $dx^2 + 2ex + f = 0 \implies d\left(\frac{c}{a}\right) - 2e\sqrt{\frac{c}{a}} + f = 0$

$$\frac{d}{a} + \frac{f}{c} = \frac{2e}{c} \sqrt{\frac{c}{a}} = \frac{2e}{\sqrt{c} \cdot \sqrt{a}} \implies \frac{d}{a} + \frac{f}{c} = \frac{2e}{b}$$

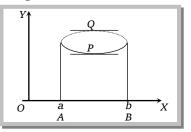
Hence $\frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in A.P.

4.9 Properties of Quadratic Equation

(1) If f(a) and f(b) are of opposite signs then at least one or in general odd number of roots of the equation f(x) = 0 lie between *a* and *b*.



(2) If f(a) = f(b) then there exists a point *c* between *a* and *b* such that f'(c) = 0, a < c < b.



As is clear from the figure, in either case there is a point *P* or *Q* at x = c where tangent is parallel to *x*-axis

i.e. f'(x) = 0 at x = c.

(3) If α is a root of the equation f(x) = 0 then the polynomial f(x) is exactly divisible by $(x - \alpha)$ or $(x - \alpha)$ is factor of f(x).

(4) If the roots of the quadratic equations $ax^2 + bx + c = 0$, $a_2x^2 + b_2x + c_2 = 0$ are in the same

ratio
$$\left(i.e. \frac{\alpha_1}{\beta_1} = \frac{\alpha_2}{\beta_2}\right)$$
 then $b_1^2 / b_2^2 = a_1 c_1 / a_2 c_2$.

(5) If one root is *k* times the other root of the quadratic equation $ax^2 + bx + c = 0$ then $\frac{(k+1)^2}{2} = \frac{b^2}{2}$.

$$\frac{k}{k} = \frac{k}{ac}$$

Example: 19 The value of 'a' for which one root of the quadratic equation $(a^2 - 5a + 3)x^2 + (3a - 1)x + 2 = 0$ is twice as large as the other is

[AIEEE 2003] (a) 2/3 (b) - 2/3 (c) 1/3 (d) - 1/3 Solution: (a) Let the roots are α and 2α Now, $\alpha + 2\alpha = \frac{1-3a}{a^2 - 5a + 3}$, $\alpha \cdot 2\alpha = \frac{2}{a^2 - 5a + 3} \Rightarrow 3\alpha = \frac{1-3a}{a^2 - 5a + 3}$, $2\alpha^2 = \frac{2}{a^2 - 5a + 3}$ $\Rightarrow 2\left[\frac{1}{9}\frac{(1-3a)^2}{(a^2 - 5a + 3)^2}\right] = \frac{2}{a^2 - 5a + 3} \Rightarrow \frac{(1-3a)^2}{a^2 - 5a + 3} = 9 \Rightarrow 9a^2 - 45a + 27 = 1 + 9a^2 - 6a \Rightarrow 39a = 26 \Rightarrow a = 2/3$

4.10 Quadratic Expression

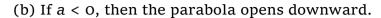
An expression of the form $ax^2 + bx + c$, where $a, b, c \in R$ and $a \neq 0$ is called a quadratic expression in x. So in general, quadratic expression is represented by $f(x) = ax^2 + bx + c$ or $y = ax^2 + bx + c$.

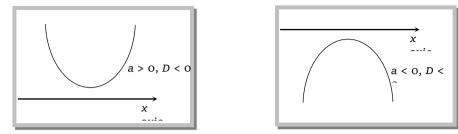
(1) Graph of a quadratic expression : We have $y = ax^2 + bx + c = f(x)$

$$y = a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{D}{4a^2} \right] \Rightarrow y + \frac{D}{4a} = a \left(x + \frac{b}{2a} \right)^2$$

Now, let $y + \frac{D}{4a} = Y$ and $X = x + \frac{b}{2a}$
 $Y = a \cdot X^2 \Rightarrow X^2 = \frac{1}{a} Y$
(i) The graph of the curve $y = f(x)$ is parabolic.
(ii) The axis of parabola is $X = 0$ or $x + \frac{b}{2a} = 0$ *i.e.* (parallel to *y*-axis).

(iii) (a) If a > 0, then the parabola opens upward.





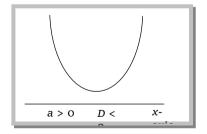
(iv) Intersection with axis

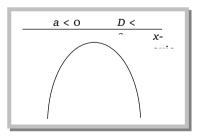
(a) *x-axis:* For x axis, $y = 0 \implies ax^2 + bx + c = 0 \implies x = \frac{-b \pm \sqrt{D}}{2a}$

For *D* > 0, parabola cuts *x*-axis in two real and distinct points *i.e.* $x = \frac{-b \pm \sqrt{D}}{2a}$. For *D* = 0, parabola touches *x*-axis in one point, x = -b/2a.



For D < 0, parabola does not cut *x*-axis(*i.e.* imaginary value of *x*).





(b) **y-axis :** For y axis x = 0, y = c

(2) **Maximum and minimum values of quadratic expression :** Maximum and minimum value of quadratic expression can be found out by two methods :

(i) **Discriminant method :** In a quadratic expression $ax^2 + bx + c$.

(a) If a > 0, quadratic expression has least value at x = -b/2a. This least value is given by $\frac{4ac-b^2}{4a} = -\frac{D}{4a}.$

(b) If a < 0, quadratic expression has greatest value at x = -b/2a. This greatest value is given by $\frac{4ac-b^2}{4a} = -\frac{D}{4a}$.

(ii) **Graphical method :** Vertex of the parabola $Y = aX^2$ is X = 0, Y = 0

i.e.,
$$x + \frac{b}{2a} = 0$$
, $y + \frac{D}{4a} = 0 \implies x = -b/2a$, $y = -D/4a$

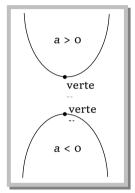
Hence, vertex of $y = ax^2 + bx + c$ is (-b/2a, -D/4a)

(a) For a > 0, f(x) has least value at $x = -\frac{b}{2a}$. This least value is given

by
$$f\left(-\frac{b}{2a}\right) = -\frac{D}{4a}$$
.

(b) For a < 0, f(x) has greatest value at x = -b/2a. This greatest value is (h)n

given by
$$f\left(-\frac{b}{2a}\right) = -\frac{b}{4a}$$
.



(3) Sign of quadratic expression : Let $f(x) = ax^2 + bx + c$ or $y = ax^2 + bx + c$

Where a, b, $c \in R$ and $a \neq 0$, for some values of x, f(x) may be positive, negative or zero. This gives the following cases :

(i) a > 0 and D < 0, so f(x) > 0 for all $x \in R$ *i.e.*, f(x) is positive for all real values of x.

(ii) a < 0 and D < 0, so f(x) < 0 for all $x \in R$ *i.e.*, f(x) is negative for all real values of x.

(iii) a > 0 and D = 0 so, $f(x) \ge 0$ for all $x \in R$ i.e., f(x) is positive for all real values of x except at vertex, where f(x) = 0.

(iv) a < 0 and D = 0 so, $f(x) \le 0$ for all $x \in R$ *i.e.* f(x) is negative for all real values of x except at vertex, where f(x) = 0.

(v) a > 0 and D > 0

Let f(x) = 0 have two real roots α and β ($\alpha < \beta$), then f(x) > 0 for all $x \in (-\infty, \alpha) \cup (\beta, \infty)$ and f(x) < 0 for all $x \in (\alpha, \beta)$.

(vi) a < 0 and D > 0

Let f(x) = 0 have two real roots α and β ($\alpha < \beta$),

Then f(x) < 0 for all $x \in (-\infty, \alpha) \cup (\beta, \infty)$ and f(x) > 0 for all $x \in (\alpha, \beta)$

Example: 20 If *x* be real, then the minimum value of $x^2 - 8x + 17$ is [MNR 1980] (a) - 1 (b) o (d) 2 **Solution:** (c) Since a = 1 > 0 therefore its minimum value is $= \frac{4ac - b^2}{4a} = \frac{4(1)(17) - 64}{4} = \frac{4}{4} = 1$ $x^2 - x + 1$

Example: 21 If x is real, then greatest and least values of
$$\frac{x^2 + x + 1}{x^2 + x + 1}$$
 are[IIT 1968; Rajasthan PET 1988](a) 3, -1/2(b) 3, 1/3(c) - 3, -1/3(d) None of these

Solution: (b) Let $y = \frac{x^2 - x + 1}{x^2 + x + 1}$ $x^{2}(y-1)+(y+1)x+(y-1)=0$ \therefore *x* is real, therefore $b^2 - 4ac \ge 0$ $\Rightarrow (y+1)^2 - 4(y-1)(y-1) \ge 0 \Rightarrow 3y^2 - 10y + 3 \le 0 \Rightarrow (3y-1)(y-3) \le 0 \Rightarrow \left(y - \frac{1}{3}\right)(y-3) \le 0 \Rightarrow \frac{1}{3} \le y \le 3$ Thus greatest and least values of expression are 3, 1/3 respectively. Example: 22 If f(x) is quadratic expression which is positive for all real value of x and g(x) = f(x) + f'(x) + f''(x). Then for any real value of *x* [IIT 1990] (a) g(x) < 0(b) g(x) > 0(c) g(x) = 0(d) $g(x) \ge 0$ **Solution:** (b) Let $f(x) = ax^2 + bx + c$, then $g(x) = ax^2 + bx + c + 2ax + b + 2a = ax^2 + (b + 2a)x + (b + c + 2a)$ \therefore f(x) > 0. Therefore $b^2 - 4ac < 0$ and a > 0Now for q(x), Discriminant = $(b + 2a)^2 - 4a(b + c + 2a) = b^2 + 4a^2 + 4ab - 4ab - 4ac - 8a^2 = (b^2 - 4ac) - 4a^2 < 0$ as $b^2 - 4ac < 0$ Therefore sign of g(x) and *a* are same *i.e.* g(x) > 0. If α , β ($\alpha < \beta$) are roots of the equation $x^2 + bx + c = 0$ where (c < 0 < b) then Example: 23 [IIT Screening 2000] (a) $0 < \alpha < \beta$ (b) $\alpha < 0 < \beta < |\alpha|$ (c) $\alpha < \beta < 0$ (d) $\alpha < 0 < |\alpha| < \beta$ **Solution:** (b) Since f(0) = 0 + 0 + c = c < 0 \therefore Roots will be of opposite sign, $\alpha + \beta = -b = -ve$ (b > 0) It is given that $\alpha < \beta$ So, $\alpha + \beta = -ve$ is possible only when $|\alpha| > \beta$ $\Rightarrow \alpha < 0, \beta > 0, |\alpha| > \beta \Rightarrow \alpha < 0 < \beta < |\alpha|$

4.11 Wavy Curve Method

Let $f(x) = (x - a_1)^{k_1} (x - a_2)^{k_2} (x - a_3)^{k_3} \dots (x - a_{n-1})^{k_{n-1}} (x - a_n)^{k_n}$ (i)

Where $k_1, k_2, k_3, ..., k_n \in N$ and $a_1, a_2, a_3, ..., a_n$ are fixed natural numbers satisfying the condition

$$a_1 < a_2 < a_3 \dots < a_{n-1} < a_n$$

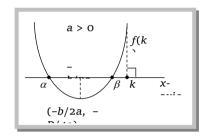
First we mark the numbers $a_1, a_2, a_3, \dots, a_n$ on the real axis and the plus sign in the interval of the right of the largest of these numbers, *i.e.* on the right of a_n . If k_n is even then we put plus sign on the left of a_n and if k_n is odd then we put minus sign on the left of a_n . In the next interval we put a sign according to the following rule :

When passing through the point a_{n-1} the polynomial f(x) changes sign if k_{n-1} is an odd number and the polynomial f(x) has same sign if k_{n-1} is an even number. Then, we consider the next interval and put a sign in it using the same rule. Thus, we consider all the intervals. The solution of f(x) > 0 is the union of all intervals in which we have put the plus sign and the solution of f(x) < 0 is the union of all intervals in which we have put the minus sign.

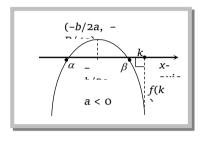
4.12 Position of Roots of a Quadratic Equation

Let $f(x) = ax^2 + bx + c$, where *a*, *b*, $c \in R$ be a quadratic expression and k, k_1, k_2 be real numbers such that $k_1 < k_2$. Let α , β be the roots of the equation f(x) = 0 *i.e.* $ax^2 + bx + c = 0$. Then $\alpha = \frac{-b + \sqrt{D}}{2a}$, $\beta = \frac{-b - \sqrt{D}}{2a}$ where *D* is the discriminant of the equation.

(1) Condition for a number k (If both the roots of f(x) = 0 are less than k)



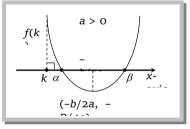
(i) $D \ge 0$ (roots may be equal)

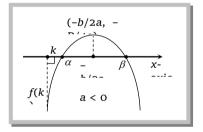


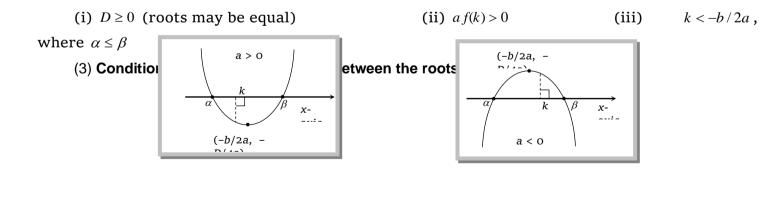
(ii)
$$a f(k) > 0$$
 (iii) $k > -b/2a$

where $\alpha \leq \beta$

(2) Condition for a number k (If both the roots of f(x) = 0 are greater than k)





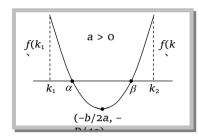


(i) D > 0 (ii) a f(k) < 0, where $\alpha < \beta$

(4) Condition for numbers k_1 and k_2 (If exactly one root of f(x) = 0 lies in the interval (k_1, k_2))

(i) D > 0

- (ii) $f(k_1)f(k_2) < 0$, where $\alpha < \beta$.
- (5) Condition for numbers k_1 and k_2 (If both roots of f(x) = 0 are confined between k_1 and k_2)



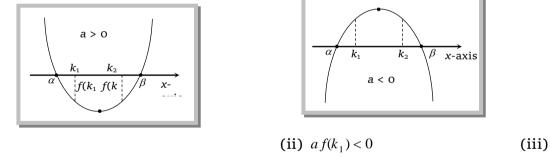
(i) $D \ge 0$ (roots may be equal)



(ii)
$$a f(k_1) > 0$$
 (iii)

 $af(k_2) > 0$

- (iv) $k_1 < -b/2a < k_2$, where $\alpha \le \beta$ and $k_1 < k_2$
- (6) Condition for numbers k_1 and k_2 (If k_1 and k_2 lie between the roots of f(x) = 0)



 $a f(k_2) < 0$, where $\alpha < \beta$

(i) D > 0

If the roots of the equation $x^2 - 2ax + a^2 + a - 3 = 0$ are real and less than 3, then [IIT 1999; MP PET 2000] Example: 24 (b) $2 \le a \le 3$ (a) *a* < 2 (c) $3 < a \le 4$ (d) a > 4Given equation is $x^2 - 2ax + a^2 + a - 3 = 0$ Solution: (a) If roots are real, then $D \ge 0$ $\Rightarrow 4a^2 - 4(a^2 + a - 3) \ge 0 \Rightarrow -a + 3 \ge 0 \Rightarrow a - 3 \le 0 \Rightarrow a \le 3$ As roots are less than 3, hence f(3) > 0 $9-6a+a^2+a-3>0 \implies a^2-5a+6>0 \implies (a-2)(a-3)>0 \implies a<2, a>3$. Hence a < 2 satisfy all the conditions. The value of a for which $2x^2 - 2(2a+1)x + a(a+1) = 0$ may have one root less than a and another root Example: 25 greater than a are given by [UPSEAT 2001] (a) 1 > a > 0(b) -1 < a < 0(c) $a \ge 0$ (d) a > 0 or a < -1The given condition suggest that a lies between the roots. Let $f(x) = 2x^2 - 2(2a+1)x + a(a+1)$ Solution: (d) For 'a' to lie between the roots we must have Discriminant \ge 0 and f(a) < 0Now, Discriminant ≥ 0 $4(2a+1)^2 - 8a(a+1) \ge 0 \implies 8(a^2 + a + 1/2) \ge 0$ which is always true. Also $f(a) < 0 \Rightarrow 2a^2 - 2a(2a+1) + a(a+1) < 0 \Rightarrow -a^2 - a < 0 \Rightarrow a^2 + a > 0 \Rightarrow a(1+a) > 0 \Rightarrow a > 0$ or a < -1

4.13 Descarte's Rule of Signs

The maximum number of positive real roots of a polynomial equation f(x) = 0 is the number of changes of sign from positive to negative and negative to positive in f(x).

The maximum number of negative real roots of a polynomial equation f(x) = 0 is the number of changes of sign from positive to negative and negative to positive in f(-x).

Example: 26	The maximum possible number of real roots of equation $x^5 - 6x^2 - 4x + 5 = 0$ is				[EAMCET 2002]	
	(a) 0	(b) 3	(c) 4	(d) 5		
Solution: (b)	$f(x) = x^5 - 6x^2 - 4$	x+5=0				
	+ +					
	2 changes of sig					
	$f(-x) = -x^5 - 6x^2$					
	+ +					
	1 changes of sign \Rightarrow maximum one negative roots.					
\Rightarrow total maximum possible number of real roots = 2 + 1 = 3.						

4.14 Rational Algebraic Inequations

(1) Values of rational expression P(x)/Q(x) for real values of x, where P(x) and Q(x) are quadratic expressions : To find the values attained by rational expression of the form $\frac{a_1x^2 + b_1x + c_1}{a_2x^2 + b_2x + c_2}$ for

real values of *x*, the following algorithm will explain the procedure :

Algorithm

Step I: Equate the given rational expression to *y*.

Step II: Obtain a quadratic equation in *x* by simplifying the expression in step I.

Step III: Obtain the discriminant of the quadratic equation in Step II.

Step IV: Put Discriminant \geq 0 and solve the inequation for *y*. The values of *y* so obtained determines the set of values attained by the given rational expression.

(2) Solution of rational algebraic inequation: If P(x) and Q(x) are polynomial in x, then the

inequation $\frac{P(x)}{Q(x)} > 0$, $\frac{P(x)}{Q(x)} < 0$, $\frac{P(x)}{Q(x)} \ge 0$ and $\frac{P(x)}{Q(x)} \le 0$ are known as rational algebraic inequations.

To solve these inequations we use the sign method as explained in the following algorithm. **Algorithm**

Step I: Obtain P(x) and Q(x).

Step II: Factorize P(x) and Q(x) into linear factors.

Step III: Make the coefficient of *x* positive in all factors.

Step IV: Obtain critical points by equating all factors to zero.

Step V: Plot the critical points on the number line. If there are n critical points, they divide the number line into (n + 1) regions.

Step VI: In the right most region the expression $\frac{P(x)}{Q(x)}$ bears positive sign and in other regions the expression bears positive and negative signs depending on the exponents of the factors.

4.15 Algebraic Interpretation of Rolle's Theorem

Let f(x) be a polynomial having α and β as its roots, such that $\alpha < \beta$. Then, $f(\alpha) = f(\beta) = 0$. Also a polynomial function is everywhere continuous and differentiable. Thus f(x) satisfies all the three conditions of Rolle's theorem. Consequently there exists $\gamma \in (\alpha, \beta)$ such that $f'(\gamma) = 0$ *i.e.* f'(x) = 0 at $x = \gamma$. In other words $x = \gamma$ is a root of f'(x) = 0. Thus algebraically Rolle's theorem can be interpreted as follows.

Between any two roots of polynomial f(x), there is always a root of its derivative f'(x).

Lagrange's theorem : Let f(x) be a function defined on [a b] such that

(i) f(x) is continuous on [a b] and

(ii) f(x) is differentiable on (a, b), then $c \in (a, b)$, such that $f'(c) = \frac{f(b) - f(a)}{b - a}$

Lagrange's identity : If $a_1, a_2, a_3, b_1, b_2, b_3 \in R$ then :

$$(a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2) - (a_1b_1 + a_2b_2 + a_3b_3)^2 = (a_1b_2 - a_2b_1)^2 + (a_2b_3 - a_3b_2)^2 + (a_3b_1 - a_1b_3)^2 + (a_3b_1 - a_2b_3)^2 + (a_3b_1 - a_3b_3)^2 = (a_1b_2 - a_2b_3)^2 + (a_2b_3 - a_3b_3)^2 = (a_2b_$$

Example: 27 If
$$\frac{2x}{2x^2 + 5x + 2} > \frac{1}{x+1}$$
, then [IIT 1987]
(a) $-2 > x > -1$ (b) $-2 \ge x \ge -1$ (c) $-2 < x < -1$ (d) $-2 < x \le -1$
Solution: (c) Given $\frac{2x}{2x^2 + 5x + 2} - \frac{1}{x+1} > 0 \Rightarrow \frac{2x^2 + 2x - 2x^2 - 5x - 2}{(2x + 1)(x + 2)(x + 1)} > 0 \Rightarrow \frac{-3x - 2}{(2x + 1)(x + 2)(x + 1)} > 0$
 $\Rightarrow \frac{-3(x + 2/3)}{(x + 1)(x + 2)(2x + 1)} > 0 \Rightarrow \frac{(x + 2/3)}{(x + 1)(x + 2)(2x + 1)} < 0$
Equating each factor equal to 0,
We get $x = -2, -1, -2/3, -1/2$ $\Rightarrow -2/3 < x < -1/2$ or $-2 < x < -1$
Example: 28 If for real values of $x, x^2 - 3x + 2 > 0$ and $x^2 - 3x - 4 \le 0$, then [IIT 1983]
(a) $-1 \le x < 1$ (b) $-1 \le x < 4$ (c) $-1 \le x < 1$ or $2 < x \le 4$ (d) $2 < x \le 4$
Solution: (c) $x^2 - 3x + 2 > 0$ or $(x - 1)(x - 2) > 0$
 $\therefore x \in (-\infty, 1) \cup (2, \infty)$ (i) $\frac{1}{x} + \frac{1}{x} + \frac{1}{x$

(c) Both roots in (b, ∞) (d) One root in $(-\infty, a)$ and other in $(b, +\infty)$ **Solution:** (d) We have, (x - a)(x - b) - 1 = 0 $(x-a)(x-b) = 1 > 0 \implies (x-a)(x-b) > 0 \quad [\because b > a]$ $\underbrace{\bigoplus}_{a \bigoplus b}$ $x \in]-\infty, a[\cup]b, +\infty[$, *i.e.* $(-\infty, a)$ and (b, ∞) . The number of integral solution of $\frac{x+1}{x^2+2} > \frac{1}{4}$ is Example: 30 [Orissa IEE 2002] (a) 1 (b) 2 (d) None of these (c) 5 $\frac{x+1}{x^2+2} - \frac{1}{4} > 0 \implies \frac{x^2 - 4x - 2}{x^2 + 2} < 0 \implies (x - (2 + \sqrt{6}))(x - (2 - \sqrt{6})) < 0$ $\implies 2 - \sqrt{6} < x < 2 + \sqrt{6}$ Solution: (c) Approximately, -0.4 < x < 4.4Hence, integral values of x are 0, 1, 2, 3, 4 Hence, number of integral solution = 5If 2a + 3b + 6c = 0 then at least one root of the equation $ax^2 + bx + c = 0$ lies in the interval Example: 31 [Kurukshetra CEE 2002; AIEEE 2002] (a) (0, 1) (b) (1, 2) (c) (2, 3) (d) (3, 4) **Solution:** (a) Let $f'(x) = ax^2 + bx + c$ $\therefore f(x) = \int f'(x) dx = \frac{ax^3}{3} + \frac{bx^2}{2} + cx$ Clearly f(0) = 0, $f(1) = \frac{a}{3} + \frac{b}{2} + c = \frac{2a + 3b + 6c}{6} = \frac{0}{6} = 0$ Since, f(0) = f(1) = 0. Hence, there exists at least one point *c* in between 0 and 1, such that f'(x) = 0, by Rolle's theorem. **Trick:** Put the value of a = -3, b = 2, c = 0 in given equation $-3x^{2} + 2x = 0 \implies 3x^{2} - 2x = 0 \implies x(3x - 2) = 0$ x = 0, x = 2/3, which lie in the interval (0, 1) 4.16 Equation and Inequation containing Absolute Value (1) Equations containing absolute values

By definition,
$$|x| = \begin{cases} x, \text{ if } x \ge 0 \\ -x, \text{ if } x < 0 \end{cases}$$

Important forms containing absolute value :

Form I: The equation of the form |f(x) + g(x)| = |f(x)| + |g(x)| is equivalent of the system $f(x).g(x) \ge 0$.

Form II: The equation of the form
$$|f_1(x)| + |f_2(x)| + |f_3(x)| + \dots + |f_n(x)| = g(x)$$
(i)

Where $f_1(x), f_2(x), f_3(x), \dots, f_n(x), g(x)$ are functions of x and g(x) may be a constant.

Equations of this form can be solved by the method of interval. We first find all critical points of $f_1(x), f_2(x), \dots, f_n(x)$. If coefficient of x is +ve, then graph starts with +ve sign and if it is negative, then graph starts with negative sign. Then using the definition of the absolute value, we pass form equation (i) to a collection of system which do not contain the absolute value symbols.

(2) Inequations containing absolute value

By definition,
$$|x| < a \Rightarrow -a < x < a (a > 0), |x| \le a \Rightarrow -a \le x \le a,$$

 $|x| > a \Rightarrow x < -a \text{ or } x > a \text{ and } |x| \ge a \Rightarrow x \le -a \text{ or } x \ge a$
Example: 32 The roots of $|x-2|^2 + |x-2| - 6 = 0$ are [UPSEAT 2003]
(a) 0, 4 (b) -1, 3 (c) 4, 2 (d) 5, 1
Solution: (a) We have $|x-2|^2 + |x-2| - 6 = 0$
Let $|x-2| = X$
 $X^2 + X - 6 = 0$
 $\Rightarrow X = \frac{-1 \pm \sqrt{1 + 24}}{2} = 2 - 3 \Rightarrow X = 2 \text{ and } X = -3$
 $\therefore |x-2| = 2 \text{ and } |x-2| = -3, \text{ which is not possible.}$
 $\Rightarrow x-2 = 2 \text{ or } x-2 = -2$
 $\therefore x = 4 \text{ or } x = 0$
Example: 33 The set of all real numbers x for which $x^2 - |x+2| + x > 0$, is [IIT Screening 2002]
(a) $(-\infty, -2) \cup (2, \infty)$ (b) $(-\infty, -\sqrt{2}) \cup (\sqrt{2}, \infty)$ (c) $(-\infty, -1) \cup (1, \infty)$ (d) $(\sqrt{2}, \infty)$
Solution: (b) Case I: If $x + 2 \ge 0$ i.e. $x \ge -2$, we get
 $x^3 - x - 2 + x > 0 \Rightarrow x^3 - 2 > 0 \Rightarrow (x - \sqrt{2})(x + \sqrt{2}) > 0$
 $\Rightarrow x = (-\infty, -\sqrt{2}) \cup (\sqrt{2}, \infty)$ $\xrightarrow{4 - \sqrt{2}} = \sqrt{4}$
But $x \ge -2$
 $\therefore x = [-2, -\sqrt{2}] \cup (\sqrt{2}, \infty)$ $\xrightarrow{4 - \sqrt{2}} = \sqrt{4}$
But $x \ge -2$
 $\therefore x = [-2, -\sqrt{2}] \cup (\sqrt{2}, \infty)$ $\xrightarrow{4 - \sqrt{2}} = \sqrt{4}$
From (i) and (ii), we get, $x \in (-\infty, -\sqrt{2}) \cup (\sqrt{2}, \infty)$
Example: 34 Product of real roots of the equation $x^3x^3 + |x| + 9 = 0$ ($t \ge 0$) (Alieer of all x
 $\therefore x \in (-\infty, -2)$ (ii)
From (i) and (ii), we get, $x \in (-\infty, -\sqrt{2}) \cup (\sqrt{2}, \infty)$
Example: 34 Product of real roots of the equation $x^3x^3 + |x| + 9 = 0$ ($t \ge 0$) (Alieer eoots of given equation does not exist.
Example: 35 The number of solution of $\log_2(x - 1) = \log_2(x - 3)$ [IIT Screening 2001]

(a) 3 (b) 1 (c) 2 (d) 0 Solution: (b) We have $\log_4(x-1) = \log_2(x-3)$ $(x-1) = (x-3)^2 \Rightarrow x-1 = x^2+9-6x \Rightarrow x^2-7x+10 = 0 \Rightarrow (x-5)(x-2) = 0$ x = 5 or x = 2But x-3 < 0, when x = 2. \therefore Only solution is x = 5. Hence number of solution is one.
