
11. Co-ordinate Geometry

(i) Distance PQ =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

- (ii) Slope of PQ = m = $y_2 y_1/x_2 x_1 = \tan \theta$
- (iii) Equation of PQ is $y y_1/y_1 y_2 = x x_1/x_1 x_2$ or y = mx + c
- (iv) The product of the slopes of two perpendicular lines is -1
- (v) The distance between the points (x_1, y_1) and (x_2, y_2) is $\sqrt{[(x_1 x_2)^2 + (y_1 y_2)^2]}$.
- (vi) If point P(x, y) divides the segmentAB, where
- (vii) $A \equiv (x_1, y_1)$ and $B \equiv (x_2, y_2)$, internally in the ratio m : n, then,

$$x = \frac{mx_2 + nx_1}{m + n}$$
 and $y = \frac{my_2 + ny_1}{m + n}$.

(viii) $A \equiv (x_1, y_1)$ and $B \equiv (x_2, y_2)$, externally in the ratio m : n, then,

$$x = \frac{mx_2 - nx_1}{m - n}$$
 and $y = \frac{my_2 - ny_1}{m - n}$.

- (ix) If P is the midpoint, then $x = x_1 + x_2/2$ and $y = y_1 + y_2/2$.
- (x) If G (x, y) is the centroid of triangle ABC, $A \equiv (x_1, y_1)$, $B \equiv (x_2, y_2)$, $C \equiv (x_3, y_3)$, then $x = x_1 + x_2 + x_3 / 3$ and $y = y_1 + y_2 + y_3 / 3$.
- (xi) If I (x, y) is the in-centre of triangle ABC,
- (xii) $A \equiv (x_1,y_1)$, $B \equiv (x_2, y_2)$, $C \equiv (x_3,y_3)$, then, $x = ax_1 + bx_2 + cx_3 / a+b+c$ and $y = ay_1$ $+ by_2 + cy_3 / a+b+c$ where a, b and c are the lengths of BC, AC and AB respectively.
- (xiii) The equation of a straight line is y = mx + c, where m is the slope and c is the y-intercept (tan θ = m, where θ is the angle that the line makes with the positive X-axis)