PART FOUR

OSCILLATIONS AND WAVES

4.1 MECHANICAL OSCILLATIONS

4.1 ()
)
42 (a)

Given, x = gcos (mr--:-t-)

So, v, = X = —a sin wt-% and w, = X = — aw’ cos mt-g’- (1)

On-the basis of obtained expressions plots x(¢), v, (¢) and w, (¢) can be drawn as
shown in the answersheet, (of the problem book ).
From Eqn (1)

v,-—amsin(mt--’}] So, v3=a2mzsin2(mt-%) (2)

But from the law x = acos (o f~n/4), so,x2 = 020082(0.)1'-3(/4)
2

or, cosz(mt-u/4) = x*/a® or sinz(mr-n:/él) - 1—% 3)
a
Using (3) in (2),
vi-azmz(l--fi-) or V= w(d-2*) C))

Again from Eqn (4),w, = —awlcos(wt-n/4) = ~’x

From the motion law of the particle
X = asinz((nt—uﬂl) -2 [l-—cos(2mt-—£)]

2 2
a a x a . a .
or, x-z--zcos(2mt—2)--23m2u)t-231n(2u)t+n)
. a a._.
i.ce. x-—E-—z-sm(2mt+u). 1)

Now compairing this equation with the general equation of harmonic osciilations :
X = ASill((Dof*’(l)

Amplitude, A = -;— and angular frequency, wy = 2 ©.

Thus the period of one full oscillation, T = i—na =
0



(b) Differentiating Eqn (1) w.r.t. time

Ve=awcos (2wt+m) or V2 =a®w’cos Qaot+n)=adw [l-am (2wr+n)] (2)

2 2
From Eqn (1) (x--g-] =%sin2(2mt+n)
2
or, 45-2-+1—ix-=sinz(2mr+n) or 1-sin (2mt+n)éi£(1—£) (3)
a a a a
From Eqns (2) and (3), v,=a’ @’ —— 4; (1 - ﬁ-] =40’ x(a - x)
Plot of v  (x ) is as shown in the answersheet.
4.3 Let the general equation of S.HM. be
x=acos{wt+aq) (1)
So, v, = —awsin(wt+a) (2)
Let us assume thatats = 0 , x =xy and v, = A
Thus from Eqns (1) and (2) forz = 0, x5 = acosc., and Ve, = — aWsina

v v
Therefore tano, = ~ —2  and g = Vx?ﬁ (-ﬁ] = 35.35 c¢m
W Xp ®

Under our assumption Eqns (1) and (2) give the sought x and v, if

= . = 2 \2 - -1 -— X = - '-J-t-
t=1t=240s, a ‘\/x0+(vxn/m) and o = tan ( mxu) y
Putting all the given numerical values, we get :
Xx=-29cm and v = - 8lcm/s
4.4 From the Eqn, v> = mz(az-xz) (see Eqn. 4 0f41)

vi= 0’ (ad® -x¥2) apnd V2 = @’(a® —x;)
Solving these Eqns simultancously, we get

-V -9/ (3-2) , o=V g /-

4.5 (a) When a particle starts from an extreme position, it is useful to write the motion law as
X = acoswt (1)

(However x is the displacement from the equlibrium position)
It #; be the time to cover the distence @/2 then from (1)

1 n
a - = acoswi or cosmtlr:—-cosE(as t,<T1/4)

¢ .8
2 2 2

o R _
Jo  3(2x/T) 6

=3

Thus H =



As X = acoswt, so,v, = —gmsinnt
Thus Ve |vy|=-v, =cwsinet, for ts ¢ = T/6

Hence sought mean velocity
T/6
. 3a
-f a(2x/Dsinwrdt | T/6 = <= 0-5m/s

<€V> =

(b) In this case, it is easier to write the motion law in the form :

X = asinwt (2)
If t, be the time to cover the distance a/2, then from Eqn (2)
a/2-asin2-;£r2 or sinz?nrz-%-sin% (astp,<7/74)

2n T
Thus T‘2=6 01',[2312
Differentiating Eqn (2) w.r.t time, we get

v =amcosmt=a2'—’-‘-cosg-£t
x T T
So, valv|s= az—cosz—nt for t<s 1, = T/12
T T
Hence the sought mean velocity
f"d‘ 1 i 2n 2xn 6a
v [ (T/lz)f Toeos T = o = 1ws
46 (3) Asx = asinwt? §0, V,mawcosaf

3r

8

Jawcos2n/T)eadt /3

o 2V2aw 2x
Tous <y = o g B i 7 - )

8

(b) In accordance with the problem
—_ o —
v=vei, 80 [<v>| =]<v.>]

Hence, using part (a), l <V > ‘ - I 23/3_2—: w - 2\/33;, w

(c) We have got, v, = awcoswt

So, v=|v,|=awcoswt, for ts T/4

= —~gocoswil for T/4st < %T



/4 37/8
fvdt famcosmtdt+f—amcosmtdr

0 /4
Hence, <V> = fdt = 37/8
Using w = 2x/T, and on evaluating the integral we get
24-V2)aw
<vV>=
3n

4,7 From the motion law, x = acos w{,, it is obvious that the time taken to cover the distance
equal to the amplitude (a), starting from extreme position equals 7/4.
Now one can write

4 4
As the particle moves according to the law, x = a cos w ¢,

t = nZ-i-to, where 1, <Zand n = 0,1,2,...)

so at n = 1,35 ... or for odd n values it passes through the mean positon and for even
numbers of n it comes to an extreme position (if ¢, = 0).

Case (1) when 7 is an odd number :
In this case, from the equation

x = x asinwi, if the t is counted from nT/4 and the distance covered in the time interval

4 2
Thus the sought distance covered for odd » is

. ) T , nn
to becomes,s; = asinwiy = asinwif-n~>| =asin| wt - ——

- nn . nin
S=na+s = na+asm(mr—*—i—*) = Q[H'PSIII([DI—T)

Case (2), when »n is even, In this case from the equation

x = acos w1, the distance covered (5, ) in the interval ¢, is given by

T E1 A
A~$5, = ACOSW Iy = acosm(r-nz =qcos|{ wt=-n-—

2
nm
or, 32=a[1—cos(mt——2—)]

Hence the sought distance for » is even

nmwx nnx
Smna+s; = na-i-a[l—cos(mt——-;]] - a[n+l—cos(mt——————}]

In general

L



4.8

4.9

Obviously the motion law is of the from, x = asinw¢ and v, = wacos W&
Comparing v, = wacos w¢ with v, = 35 cos ¢, we get

m-n,a-%,thus T-%‘--z and 7/4 = 05s

Now we can write

t=28s= 5x Z+0-3 (where I = 0-53]
4 4
As n = § is odd, like (4:7), we have to basically find the distance covered by the particle
starting from the extreme position in the time interval 0-3 s.

Thus from the Eqn.

X =gcosmi = %cmx(ﬂﬁ)

35 35 35
=5 = —cosn(03) or 5 = ?{l-cosl]ﬁn}

Hence the sought distance

s=Sx 2,35 01 cos03x)
R 4
= %—f—{6—cos0-3::}- —g—g—x'l(6—coss4°)- 60 em

As the motion is periodic the particle repeatedly passes through any given region in the range
—-as xs a. The probability that it lies in the range (x, x + d x) is defined as the fraction
At
4
total time 7. Because of periodicity this is

dP dt 2dx
dP = Zrdx =7 =7

where the factor 2 is needed to take account of the fact that the particle is in the range
{x, x+dx) during both up and down phases of its motion. Now in a harmonic oscillator.

(as ¢t — x) where At is the time that the particle lies in the range (x, x + d x) out of the

vex=wacoswt =V & -x

Thus since @ I’ = 2x (T is the time period)

We get dst—de-l—-gx—-
X R A2 2
+a dP
Note that f T dx =1
SO dp - L is properly normalized
X =n 2 2
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4.10 (a) We take a graph paper and choose an axis (X - axis)

4.11

and an origin, Draw a vector of magnitude 3 inclined

r . .
at an angle 3 with the X -axis. Draw another vector ,7/5
of magnitude 8 inclined at an angle -g- /3

(Since sin (Wt +n/6)= cos{wt-n/3)) with the
X - axis, The magnitude of the resultant of both these
vectors (drawn from the origin) obtained using paral-
lelogram law is the resultant, amplitude.

Clearly R*>=3%4+8%+238- cos gf- 9 + 64 - 43 x %
=73 - 24 = 49
Thus R = 7 units

(b) One can follow the same graphical method here but the result can be obtained more
quickly by breaking into sines and cosines and adding :

Resultant X = (3+%)oosmr+(6— -\{%)sinmt
= Acos(wsf+a)
2 'Y 5\ 30 - 60
Then A =(3+;f_—2—) +(6"ﬁ] =09+254+ NES +36
-70-15V2 = 70-212
So, A = 6985 o 7 unils

Note- In using graphical method convert all oscillations to either sines or cosines but do not
use both.

Given, x; = gacosw¢ and x, = acos2m¢
so, the net displacement,
X=x3+4x, = a{coswt+cos2nt } = a{coswt+2cos’wsr-1}
and V.=x=ag{-asinor-4wcoswrsinwz}
For x to be maximum,

X = amzcosmt-4am2cos2mt+4amzsin2mt = 0

2

or, 8cos“wt+coswt-4 = 0, which is a quadratic equation for cos w ¢,

Solving for acceptable value
coswt = 0-644
thus sinw? = 0765
and Voax = [V | = +a@0[0765+4x0765x0644] = +273 aw



4.12 We write :

acos21£00s500¢ = o {cos521¢+cos 4791

Thus the angular frequencies of constituent oscillations are

5215 ! and 47957}

To get the beat period note that the variable amplitude acos2-1¢ becomes maximum
(positive or negative), when

21t =nn

Thus the interval between two maxima is

L .15s nearly.

21

4.13 If the frequency of A with respect to K’ is vy and K’ oscillates with frequency v with respect
to K, the beat frequency of the point A in the K-frame will be v when

v = Votv

In the present case v = 20 or 24. This means

vo=22. &v =2

Thus beats of 2v = 4 will be heard when v = 26 or 18.

414 (a)

(b)

From the Eqn : x = asinw1?
2

sinfwt = x*/a® or coszwt-l-% (¢}
And from the equation : y =bcoswt
cos’wt = y*/b (2)
From Eqns (1) and (2), we get :
2 2 2 2
1- x——2 = Lz or % + Xi = ]
a b a b

which is the standard equation of the ellipse shown in the figure.
we observe that,

at t=0,x=0 and y =b

4
and at t=—-(;,x=+aandy=0

Thus we observe that at ¢ = 0, the point is at point 1 (Fig.) and at the following moments,
the co-ordinate y diminishes and x becomes positive. Consequently the motion is clock-
wise.

Asx = asinwt? and y = bcoswt?

. —-> . - —>
So we may write 7 = asinwt i1+bcoswt )

r b —>» —>
Thus r = w = -~ co2r



4.15 (a) From the Eqn. : x = asinw ¢, we have

4.16

4.17

COS W f = VI - (xz/az)

and from the Eqn. :y = gsin2 w¢

[ %]

y=2asinwt cosw! = Zx\/l-(xz/az) or y2 = 4x° (I—E—)

=~

(b) From the Eqn. : x = asinw ¢
sin“wt = x*/a°

Fromy = acos 2w¢

2
. 2 X
y=a(l-2sin“wt) = a(l-ZZ)

For the plots see the plots of answersheet of the problem book.

AsU(x) =Uy(l-cosax)
dU :
So, F, = -E—-—ansmax
or, F, = - Uyaax (because for small angle of oscillations sinax = ax)
or, F, = - Uga®x

But we know F, = - m mﬁx , for small oscillation

U, a* ‘/U
2 _ ¢ - =0
Thus Wy = - or Wy = a -

Hence the sought time period

(1)0 a a
a b
IfU(x) = e
then the equilibrium position is x = xo when U’ (x5) = 0
or _2_a+£)_ 0= x, = 2a
X X% N
Now write : X =xp+ Y
Then U(x)=%-—£+(x—xo)U'(xn) +-1-(x-x0)2U”(x0)
xg %o 2
But U”(xo)=9—:?—-—2—3E-’-=(2a/b)'3(3b—2b) = b'/84°
X0 Xp

\ 1{ »* 2
So finaily : U(x)=U(x0)+-2~ -8—;13 Yo+ ...

M

1)



4.18

4.19

o

We neglect remaining terms for small oscillations and compare with the P.E. for a harmonic,
oscillator : )

.lmmzyz_ 1(5_4)),2 w0 © b
—_ = - 3 s = r———
2 2| 8a v 8dm
V8ma
b2
Note : Equilibrium position is generally a minimum of the potential energy. Then
U(xp) =0, U'(xp)>0. The equilibrium position can in principle be a maximum but then

Thus T=2=n

U" (xy ) < 0 and the frequency of oscillations about this equilibrium position will be imaginary.
The answer given in the book is incorrect both numerically and dimensionally.

Let us locate and depict the forces acting on the ball at the position when it is at a distance
x down from the undeformed position of the siring.

At this position, the unbalanced downward force on the ball
=mg-2Fsin0

By Newton’s law, mx =mg-2Fsin0
mg-2F0 (when Ois small )

X 4 F
-mg—ZFm- mg——X
. 4F 4F mgl
Thus x = g-2 7% ml(x 4F]
putting x’ = x—ﬂf’—l , we get
..' 4T'
x'= -—x
ml
Thus T= = VL = 025
7 :

Let us depict the forces acting on the oscillating ball at an
arbitraty angular position 0. (Fig.), relative to equilibrium
position where Fp is the force of buoyancy. For the ball
from the equation :

Nz = Iz, (where we have taken the positive sense of Z
axis in the direction of angular velocity i.e. 0 of the ball — — - =p— -
and passes through the point of suspension of the — 71 ~
pendulum O ), we get :

~mglsin@+Fylsin® = mP@ @)

Using m = g—:rr.rso, Fp = %nrsp and sin 6 =« 0 for small 6, in Eqn (1), we get :
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4.20

4.21

Thus the sought time period

1
T=2n = 2 /g

Vi(-g)

!

Hence T =2a V -——nl— = 1-1s

g(n-1)

Obviously for smail B the ball execute part of SH.M. Due to the perfectly elastic collision
the velocity of ball simply reversed. As the ball is in SHM. (|0} < o on the left)its motion
law in differential from can be written as

6 - -fo=-ufo (1)

If we assume that the ball is released from the extreme position, 8 =  at ¢ = 0, the solution
of differential equation would be taken in the form

B-ﬁcoswut-ﬁcosv}f- t 2

If ¢’ be the time taken by the ball to go from the extreme position 8 = B to the wall i.c.
0 = - a, then Eqn. (2) can be rewritten as

- a=f cos ﬁt'
or f'=vgoos"l(-%)=\/?(n-cos"1%)

g

Thus the sought time T = 21 = 2‘\/ .;_ (n-cos"lg)

[ b1 o . -1C S | -1
=2 — | —+sin " — |, because sin” x+cos " x = /2
' (2 ﬂ) [ 1

Let the downward acceleration of the elevator car has continued for time t’, then the sought
time

t = V %7}: +t', where obviously V % is the time of upward acceleration of the elevator.

One should x{ote that if the point of suspension of a mathematical pendulum moves with an
acceleration w , then the time period of the pendulum becomes

2z S — ( see 4.30)

| g-w|
In this problem the time period of the pendulum while it is moving upward with acceleration
w becomes



4.22

11

2n v L and its time period while the clevator moves downward with the same

g+w
2\ ——
g-w

magnitude of acceleration becomes

. . 2h o1 oes .
As the time of upward acceleration equals g the total number of oscillations during
this time equals

V 2h/w

2n\/l/(g+w)
Thus the indicated time = 2h/w -2V i/g =V2h/w \/(g+w)/g

Zn\/l/(g+w)

Similarly the indicated time for the time interval ¢’

= d 2aVi/g =t'V(g-w)/g
2aV I/(g-w)
we demand that

vVoh/w \/(g+w)/g +t'V(g-w)g = V2h/w+t'

Veg+w - Vg
Vg-Vg-w
Hence the sought time

f='\/_:_2;h_+t,__. 2h \fg+w—\/g—w

w Vg-Ve-w

_\/Zh Vi+p-vVi-8
T w 1-vV1-8

If the hydromoter were in equlibrium or floating, its weight will be balanced by the buoyancy
force acting on it by the fluid. During its small oscillation, let us Jocate the hydrometer when
it is at a vertically downward distance x from its equilibrium position. Obviously the net
unbalanced force on the hycrometer is the excess buoyancy force directed upward and equals

of, t' =V 2h/w

, where § = w/g

nrx p g. Hence for the hydrometer.

mx = -nr'pgx
2
or, y =_2res,
m
Hence the sought time period
T=20 B = 2:5s.

nrng



12
4.23

4.24

At first let us calculate the stiffness x; and x; of both the parts of the spring. If we subject
the original spring of stiffness Kk having the natural length l; (say), under the deforming forces
F - F (say) to elongate the spring by the amount x, then

) F=xx (1)
Therefore the elongation per unit length of the spring is x//; . Now let us subject one of the
parts of the spring of natural length 7 /; under the same deforming forces F — F. Then the

clongation of the spring will be

x
7 M =nx
0
Thus F =x; (nx) (2)
Hence from Eqns (1) and (2)
K =NK; OF K3 = K/7) 3)
X
Similarl Ky =
y 2 1- n

The position of the block m when both the parts of the spring are non-deformed, is its
equilibrium position O. Let us displace the block m towards right or in positive x axis by
the small distance x. Let us depict the forces acting on the block when it is at a distance x
from its equilibrium position (Fig.). From the second law of motion in projection form i.c.
F,=mw,

—K X=X X =mXx

K K .. y -« Kax
or, - Tl + 1-m X =mx , K’ Kwo( Ko
Thus PR3 1 X - > -
mn(m) 0 «x—

Hence the sought time period
T = Zu\/n(lln)m/lc = 0-13s

Similar to the Soln of 4.23, the net unbalanced force on the block m when it is at a small
horizontal distance x from the equilibrium position becomes ( x; + x; ) x.

From F, = mw, for the block :
—(K+Ky)x = mx

Ki + K
Thus i- (-——-——-)x
m
Hence the sought time period 7 = 2 & i
K] + %

Alternate : Let us set the block m in motion to perform small oscillation. Let us locate the
block when it is at a distance x from its equilibrium position.

As the spring force is restoring conservative force and deformation of both the springs are
same, so from the conservation of mechanical energy of oscillation of the spring-block system :



4.25

4.26

4.27

13

2
1 (&), 1, 2.1 2
Zm(dr) +2l(1x +2|c2x Constant

Differentiating with respect to time

1 T | .
EmZxx +§(x1+x2)2xx =0

(xy+x;)
-y
m

Hence the sought time period T = 2 n‘\/ =
K; + Ky

During the vertical oscillation let us locate the block at a vertical down distance x from its
equilibrium position. At this moment if x; and x, are the additional or further elongation
of the upper & lower springs relative to the equilibrium position, then the net unbalanced
force on the block will be x; x, directed in upward direction. Hence

—KyXp = mX ¢))

Ol', X =

We also have X = X +X (2)
As the springs are massless and initially the net force on the spring is also zero so for the
spring

Ky X = KX &)
Solving the Eqns (1), (2) and (3) simultancously, we get

Ki1X2

Thus X = -

. . vV, (KiK2)
Hence the sought time period 7 = 2n ¥ m

K Ko

The force F, acting on the weight deflected from the position of equilibrium is 2 T sin 0.

Since the angle O is small, the net restoring force, F = 2 T, {%

21,
i

< 21 —

or, F s kx, where &k =

So, by using the formula,
\ [k 4 /2T,
Wy = m’ Wy = ml

If the mercury nises 1n the left arm by x it must fall by a slanting length equal to x in the
other arm. Total pressure difference in the two arms will then be

pgx+pgxcost = pgx(1+cos0)
This will give rise to a restoring force
-pgSx(l+cosB)
This must equal mass times acceleration which can be obtained from work energy principle.
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4.28

H—-R-q
M l!|l|ll"l :

|
!
'

b
|
]

AT A

PRRHERHRY)

The KE. of the mercury in the tube is clearly : -;-m #

So mass times acceleration must be : mx’
Hence mx +pgS(l+cosB)x =-0
This is SH.M. with a time period

m
- 2ﬂ:‘\/pgS(l+¢«::$E))'

In the equilibrium position the C.M. of the rod lies nid way between the two rotating wheels.
Let us displace the rod horizontally by some small distance and then release it. Let us depict
the forces acting on the rod when its C.M. is at distance x from its equilibrium position (Fig.).
Since there is no net vertical force acting on the rod, Newton’s second law gives :

|-<—~Z/2-—>!<——l/2-——>- N’T 0C TNz

] . ¢ . ]

AN

et mg

Ni+N; = mg (1)
For the translational motion of the rod from the Eqn. : F, = mw,,
kNy—kN; = mx (2)

As the rod experiences no net torque about an axis perpendicular to the plane of the Fig.
through the C.M. of the rod.

I+ I-
M5 =M 3)
Solving Eqns. (1), (2) and (3) simultaneously we get
x = - k%g-x

Hence the sought time period

1/ l 1/21
T=2n kg n ke 1:5s
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429 (a) The only force acting on the ball is the gravitational force F: of magnitude y g':lt pmr,

where y is the gravitational constant p, the density of the Earth and r is the distance of
the body from the centre of the Earth,

47 . = .
But, g = y —— p R, so the expression for F can be wrilten as,

3

—»

Fe-m g;;- , bere R is the radius of the Earth and the equation of motion in projection

form has the form, or, mx +~”—‘é£x =0

{(b) The equation, obtained above has the form of an equation of S.H.M. having the time

petiod, T-zuvg-,

Hence the body will reach the other end of the shaft in the time,

r-z=nV§- = 42 min.
2 g

(c) From the conditions of S.H.M., the speed of the body at the centre of the Earth will be
maximum, having the magnitude,

v=Rw=RVg/R=VgR =7 9km/s.

4.30 In the frame of point of suspension the mathematical pendulum of mass m (say) will oscillate.
In this frame, the body m will experience the inertial force m ( - ?) in addition to the real
forces during its oscillations. Therefore in equilibrium position m is deviated by some angle
say o. In equilibrium position

Tocosa = mg+mwcos(n-$) and Tysino = mwsin(n-§)
So, from these two Eqns
anaw8oeosp

wsin B

and msa.\/mz"}ﬁﬂzﬁ+(mg-mwcosﬁ)2 (1)

mg-—-mwcos B
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4.31

4.32

Let us displace the bob m from its equilibrium position by some small angle and then release

it. Now locate the ball at an angular position (ot + 6) from vertical as shown in the figure.

From the Eqn. : Ny = 1P,

—mglsin(a+9)—mwcos(Jt—ﬁ)lsin(a+0)+mwsin(3t—B)lcos(a+B)=m12é.

or,— g (sin & cos O + cos a. sin 8) -~ w cos (1 - B) (sin o cos O + cos a sin 8) + wsin
{cos a cos O — sin a sin 0)

=18
But for small O, sin0 « 0O cosO = 1
So, ~ g (sin o + cos a. 8) — w cos (w - B) (sin a + cos a ) + w sin p (cos o — sin o )
- 16
. l ..
or, (tana +0)(wceosBf-g)+wsinBf(1l-tanc Q) = cosaB (2)

Solving Eqns (1) and (2) simultaneously we get

~(g2—2wgcosﬁ+w2)9= I\/g2+w2-2wgcosﬁ 0

Thus é'z_]_g—l_wle

Hence the sought time period T = %—){t- =27 V ’—.—-éy

0 g-wl

Obviously the sleeve performs small oscillations in the frame of rotating rod. In the rod’s
frame let us depict the forces acting on the sleeve along the length of the rod while the sleeve
is at a small distance x towards right from its equilibrium position. The free body diagram
of block does not contain Coriolis force, because it is perpendicualr to the length of the rod.
From F, = mw, for the sleeve in the frame of rod

—CKX+mMOoX = mx

, 2y
or, X = - -}%-—wl x @ A me> 8
Thus the sought time period
T=—228 _ -07s
K _ w2
m

It is obvious from Eqn (1) that the sleeve will not perform small oscillations if

w2 V L3 10 rod/s.
m

When the bar is about to start sliding along the plank, it experiences the maximum restoring
force which is being provided by the limiting friction,
Thus

kN-mmga or, kmg-mwga



or,
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4.33 The natural angular frequency of a mathematical pendulum equals wy, = V g/!

@)

(b)

(©

We have the solution of S.H.M. equation in angular form :
0 =0,cos(myz+ )

If at the initial momentie atz = 0, 0 = 8, than a = 0.

Thus the above equation takes the form

O = 0,coswy’
- \/S_ < 3° -\/_9_§
0, cos ! 3° cos 08 t
Thus 8 = 3%°cos35 ¢

The S.H.M. equation in angular form :
0 =0,sin{wgt+o)
If at the initial moment ¢z = 0, 0 = O, then a = .Then the above equation takes the
form
0 =0,sinwg¢
Let v be the velocity of the lower end of pendulam at 0 = 0, then from conserved of
mechanical energy of oscillaton

Epean = Ecrene % Tonean = Usiirem
or, -;-mvg-mgl(l-cosem)
Thus
0 " i cos™'|1 (0:22) = 4-5°
- = €O 2g! 2x9-8x0-8| -

Thus the sought equation becomes
0 = 0,sinwgt = 45°sin3-5¢

Let 6 and v, be the angular deviation and lincar velocity at ¢ = 0.
As the mechanical energy of oscillation of the mathematical pendulum is conservation

—12-mvt2,+mgl(1—coseo) =mgl(l-cos0,)

g1 (cos 8y -cos 8, )

o
8

NS
I

2 2
-1 Vo -1 o _ (0'22} - 5.4°
Thus 0, = cos {oosﬁo-————-} cos {ms3 3 %98 =08 54
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Then from O = 5.4° sin (3.5¢ + &), we see that sin o = 3;% and cos o < 0 because

X

the velovity is directed towards the centre. Thus o = 5

+ 1.0 radians and we get the

answcr.

4.34 While the body A is at its upper extreme position, the spring is obviously elongated by the

amount
mi,g
¢
If we indicate y-axis in vertically downward direction, Newton’s second law of motion in
projection form i.e. F, =m w, for body A gives :

m m

mlg-l-x(a———:c—g)-ml(o:a or,x[a——i—g-]-ml(wza-g) (1)

(Because at any extreme position the magnitude of acceleration of an oscillating body equals
w?a and is restoring in nature.)

If N be the normal force exerted by the floor on the body B, while the body A is at its upper
extreme position, from Newton’s second law for body B
m

N+|c(a——%g—) =m,g
mg 2 .

or, Ne=mg-x a-—= = mg-m(wa~-g)(using Egn. 1)
HenceN = (m;+m,)g-m, w’a
When the body A is at its lower extreme position, the spring is compresed by the distance

m
(a+ ____18).

K

From Newton’s second law in projeciton forn i.e. F, = m w, for body A at this state:

. m m
mg-x a+-—-‘-1c-g- -ml(-wza) or,x(ai- 18

-ml(g-l-mza) (3)
In this case if N' be the normal force exerted by the floor on the body B, From Newton’s
second law

' mg 2 .
for body Bwe get: N' = x| a+ < |t™8 = my(g+w”a)+myg (using Eqn. 3 )
Hence N =(m+m)g+rmo’a
From Newton’s third law the magnitude of sought forces are N' and N, respectively.

4.35 (a) For the block from Newton’s second law in projection form F, = mw,

N-mg=my )
But from y=a({l-coswt)
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4.36 (a)
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We get y = @a’acosmt (2

From Eqns (1) and (2)
2
N=mg 1+-ulg—acosmt 3)

From Newtons’s third law the force by which the body m exerts on the block is directed

2
vertically downward and equls N = mg ( 1+ 01_89_ COS 0 r]

When the body m starts, falling behind the plank of loosing contact, N = 0, (because the
normal reaction is the contact force). Thus from Eqn. (3)

2
mg[l-rg;q-cosmt) = for some &

Hence Qpp = g/cn)2 = 8 cm.

We observe that the motion takes place about the mean position y = a. At the initial

instant y = (. As shown in (b) the normal reaction vanishes at a height ( g/u)z) above
the position of equilibrium and the body flies off as a free body. The speed of the body

at a distance ( g/wz) from the equilibrium position is m\/az-(g/mz)z, so that the
condition of the problem gives
[w\/az- (g/0* ) P
+Z5+a=h
2g ®
Hence solving the resulting quadratic equation and taking the positive roof,

a= —Ei.+ \/2—"28— w 20 cm.
w w

Let y(t) = displacement of the body from the end of the unstreched position of the
spring (not the equilibrium position). Then
my = -xy+mg

This equation has the solution of the form
y=A+Bcos{(wt+a)

if —mszcos(mt+a)--K[A+Bcos((ot+a)]+mg
Then w =2 and A =28

m X
we have y=0 and y=0 at z=20.So0

—wBsina = 0
A+Bcecosa =0
Since B>0 and A> 0 we must have ¢ = &t

B=A=DE
K
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138

and y-%&(l-mmt)

(b) Tension in the spring is
T=xy=mg(l-cosat)

SO T =2mg, I, =0
In accordance with the problem -
Fewamr

So, m(xXis yj)=-oam(xi%tyj)
Thus X =-axed y =-ay
Hence the solution of the differential equation

X = —ox becomes x = acos(wpf+d), where wf = o )
So, X = awpsin(wgf+a) (2)

From the initial conditions of the problem, v, = 0 and x = r, at 7 =0
So from Eqn. (2) o = 0, and Eqn takes the form

X = rgcoswgl S0, cOS Wyl = X/ry 3)
One of the solution of the other differential Eqny’ = -y, becomes
y = a'sin (gt +8'), where vz = o 4

From the initial condition,y = 0 at t = 0, so 8 = 0 and Eqn (4) becomes :
y = a sin @y 45)
Differentiating w.r.t. time we get

y = a’ wycos wgt (6)
But from the initial condition of the problem, y = v, at ¢ = O,
So, from Eqn (6) vop=a' @y o1, a =vym,
Using it in Eqn (5), we get
y = -Y—q-sinmot or sinwy? = So¥ Q)
Wy Vo

Squaring and adding Eqns (3) and (7) we get :

[

i

+ 5
vi 15

sin’ o £ + cos? Wot =

2 2
or, ("o] +a(v0) 1*( as o, mo)

(a) As the elevator car is a translating non-inertial frame, therefore the body m will experience
an inertial force m w directed downward in addition to the real forces in the elevator’s
frame. From the Newton’s second law in projection form

F, = mw, for the body in the frame of elevator car:

_x(%&-ry)-l-mg-l-mw-rn)‘f' (A)



(b)

( Because the initial elongation in the spring is m g/x )

.. mw

80, my -—Ky+mw-—x(y-——-£—-

o L mw _ x( mw
, rrei Bt y=-

Eqn. (1) shows that the motion of the body m is S.H.M. and its solution becomes

mw
-_———
y K

Differentiating Eqn (2) w.r.t. time

a sin

VE-)

Using the initial condition y (0 ) = 0 in Eqn (2), we get :

mw

asing = — ——

X

and using the other initial condition y (0) = 0 in Eqn (3)

‘/K
we get a — cosa =0
m

mw

Thus a=-o/2 and a-T

Hence using these values in Egn (2), we get

m

y =

s

Proceed up to Eqn.(1). The solution of this differential Eqn be of the form :

mw .

y-—— = gsin
or *-g-{—-asin
’ Y x/m

Vi)
Ve

or, y—%-asin(w0t+6) (wher Wy = V -;—]

Wy

From the initial condition that att= 0, y ()= 0, so 0 =

Thus Eqn.(4) takes the from :y - 9—;— = @ sin wy !
o

Differentiating Eqn. (5) we get : y

g

= aWyCcos !

asind

or 0 =0

21

@)

2

()

4)

()

(6)
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4.39

4.40

But from the other initial condition y (0) = 0 at £ = 0.

So, from Eqn.(6) __c%_ =awg of a=-a/wy
g
Putting the value of g in Eqn. (3), we get the sought y (). ie.
at o . a .
y-—3 =-~—3sinwgt or y = —{(wpr-sinwy?)
o Wo ®g

There is an important difference between a rubber cord or steel coire and a spring. A spring
can be pulled or compressed and in both cases, obey’s Hooke’s law. But a rubber cord becomes
loose when one tries to compress it and does not then obey Hooke’s law. Thus if we suspend
a'body by a rubber cord it stretches by a distance m g/x in reaching the equilibrium
configuration. If we further strech it by a distance A £ it will execute harmonic oscillations
when released if Ak < m g/K because only in this case will the cord remain taut and obey
Hooke’s law.

Thus Ahgy = mg/x

The energy of oscillation in this case is

- Z 2
1 2 1mg
S X (Al ) = 5

As the pan is of negligible mass, there is no loss of kinetic energy even though the collision
is inelastic. The mechanical energy of the body m in the field generated by the joint action
of both the gravity force and the elastic force is conserved i.e. AE = 0. During the motion
of the body m from the initial to the final (position of maximum compression of the spring)
position AT = O, and fherefore AU = A U, +AU;, = O

or —mg(h+x)+%—xx2-0

On solving the quadratic equation :

x______i\/mg 2mgh

K

As minus sign is not acceptable

x__g_ \/m 2mgh

If the body m were at rest on the spring, the correspondmg position of m will be its equilibrium
position and at this position the resultant force on the body m will be zero. Therefore the
equilibrium compression A x (say) due to the body m will be given by

KAx=mg or Ax =mg/x
Therefore seperation between the equilibrium position and one of the extreme position i.e.
the sought amplitude

a=x-— Ax-‘\/m""7 ngh
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The mechanical energy of osciflation which is conserved equals £ = U_,.,,. ,because at the
extreme position Kinetic energy becomes zero.

Although the weight of body m is a conservative force , it is not restoring in this problem,
hence U yeme i only concerned with the spring force. Therefore

m'g

E = Uppone = 3%0° = mgh+ 25

2
Unlike the previous (4.40) problem the kinetic energy of body m decreases due to the perfectly
inelastic collision with the pan.Obviously the body m comes to strike the pan with velocity

vo=V2gh If v be the common velocity of the " body m+ pan " system due to the

collision then from the conservatioh of linear momentum
mvg = (M+m)v

v = mvg _m 2gh .
(M+m) (M+m)

At the moment the body m strikes the pan, the spring is compressed due to the weight of “he

pan by the amount M g/k . If I be the further compressian of the spring due to the \ ciocity

acquired by the "pan - body m " system, then from the censervation of mechanical encrgy

of the said system in the field generatad by the joint action of both the gravity and spring

forces

or

%(M+m)v2+(M+m)g‘I=%K(%&+1)2 %K(M—ngz
,2(M+ )’” 23’)' (M+m)gl-1 (%E}i-;-m%Mgz-%x %5)2 (Using 1)
or, -2-x12-mgf Z%—;%
’”3*‘/’”3 Af/jl;

Thus -

As minus sign is not acceptable

_____g_ 1 2, 21(:1 rn
. + vm (1‘/‘+Jr)

If the oscillating “pan + body m’ system were at rest it correspond to their equilbgum position

i.c. the spring were compressed by gM—;ng- therefore the amplitude of oscillation

gl Mg _mgsf, 28k
K K

mg
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4.42

The mechanical energy of oscillation which is only conserved with the restoring forces

1

becomes E = Uppeme = =K a° (Because spring force is the only restoring force not the

2
weight of the body)

Aliemately E =Tpesp = —;—(Mﬂ':n)o:zzm2

thus E =l(M+m)a:z2 =
2 M+m

WchaveF-a(j:I': i)

or, m{(xityj)=a(yi=x])

So, mx =ay snd my » -ax

From the initial conditionat¢ = 0, x = Q0 and y = 0
So, integrating Eqnmx’ = ay

. . a
we get . ~ay or x= -y
Using Eqn (2) in the Eqn m* = -ax, we get
Y R Y
my = - —y ory ol I

one of the solution of differential Eqn (3) is
y = A sin(wpt+a), where wg = a/m.

Asatt = 0, y = O, so the solution takes the form y = A sin wy¢

On differentiating w.r.t. time y = A g c0s Wy !

From the initial condition of the problem, at ¢ = 0, y = vo
So, vo=Awyg or A = vg/uy
Thus ¥ = { vo/ @y ) sin wg ¢

Thus from (2) x = v, sin wy? so integrating

p-2o
x =5 - - COS (g £
. Vo
On using x=0att=0B=—
Wy
Vo
Hence finally x = ;0-(1-0030:‘0:)

Hence from Eqns (4) and (6) we get
[x-(vo/0) T + " = (w/ap)*

1
2

Ka

2

L

2

)

“

e}

(6)

which is the equation of a circle of radius (vyp/wy) with the centre at the point

Xp = vo/wg, yp = 0
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4.44

£O

If water has frozen, the system consisting of the light rod and the frozen water in the hollow
sphere constitute a compound (physical) pendulum to a very good approximation because we
can take the whole system to be rigid. For such systems the time period is given by

/ : / 2
T, =2n é 1+ I;—z where k2 = -2—1"\’2 is the radius of gyration of the sphere.

5

The situation is different when water is unfrozen. When dissipative forces (viscosity) are
neglected, we are dealing with ideal fluids. Such fluids instantaneously respond to (unbalanced)
internal stresses. Suppose the sphere with liquid water actually executes small rigid
oscillations. Then the portion of the fluid above the centre of the sphere will have a greater
acceleration than the portion below the centre because the linear acceleration of any element
is in this case, equal to angular acceleration of the element multiplied by the distance of the
element from the centre of suspension (Recall that we are considering small oscitlations).
Then, as is obvious in a frame moving with the centre of mass, there will appear an
unbalanced couple (not negated by any pseudoforces) which will cause the fluid to move
rotationally so as to destroy differences in acceleration. Thus for this case of ideal {luids the
pendulum must move in.such a way that the elements of the fluid all undergo the same
acceleration. This implies that we have a simple (mathematical) pendulum with the time

period :
.‘/l
Ty, =2n -
’ g
2
Thus T = T, V1+%(§—)

(One expects that a liquid with very small viscosity will have a time period close T, while
one with high viscosity will have a time period closer to T,.)

Let us locate the rod at the position when it makes an angle 6 from the vertical. In this
problem both, the gravity and spring forces are restoring conservative forces, thus from the
conservation of mechanical energy of oscillation of the oscillating system :

2
;m; (9) +mg (1 COSB)+—K(IB) = constant
Differentiating w.r.t. time, we get :
1mi*, - mgl o 1 o, .
73 299+ 5 sm90+2xl 200 =0

Thus for very smali 0

2
Hence, mozvsf‘%(1+i§l).
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4.45 (a) Let us locate the system when the threads are deviated through an angle o’ < a , during
the oscillations of the system (Fig.). From the conservation of mechanical energy of the

system :

2.
%mllii 0’+ mgi(1-cosa’') = constant (1)

Where L is the length of the rod, 0 is the angular
deviation of the rod from its equilibrium position i.c.
0 =0

Differentiating Eqn. (1) w.r.t. time

1mL?

00 -
213 —2 + mglsina’'a =0

2

12
But from the Fig.

So, BB+gIa o' = O(forsmalla’, sina’ w o)

I—'B-la ora-LB

2 21
L
SO: Cl. = 219
Putting these values of a' and d—;—- in Eqn. (2) we get
2
a’6 324
de? I

(b) The sought oscillation energy

EwU,pmpe =mgi(l-cosa) = mngsinzg-

2 2
-mgIZ(: _mg;a (because for small angle sin® »« 0 )
4.46 The £ €. of the disc is Iq: - _’P_E_ tp lmthiaz
2 2{ 2 4

The torsional potential energy is -;—k (pz. Thus the total energy is ¢

1 2 1 1
—mR cp+2kcp a

. 1
7] mqu;§+§kap§

By definition of the amplitude @,,, ¢ = 0 when ¢ = ¢,. Thus total energy is

(@)
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1, 2 1 2"

-z-—k(p,, 4mR tpu+2kcpo
or P ‘_%\/“mxzﬁ

- 2k o

2
Moment of inertia of the rod equals L"sL about its onc end and perpendicular to its length
1{ml?)., mi? .,

'I’husrotationalkineticenagyoftherod--i- 3 6 = 6 —0

when the rod is displaced by am angle O its C.G. goes up by a distance

! 10
2(1—0039)- n for small ©,

Thus the P.E. becomes : m g -l-gi

As the mechanical energy of oscillation of the rod is conserved.

1(m2)e2 1(mgl) e
2( 3 )92+2[ > ]B-Constant

on differentiating w.rt. time and for the simplifies we get : 8= - ?% 0 for small 6.

we sce that the angular frequency w is
= V3g/21

we write the general solution of the angular oscillation as :
O =Acoswr+Bsinw¢?

But B=08, at t=0, s0A =0
and 6=0, at +=0,s0
B-éo/w
G .
Thus 9=%msmt+;smmt
Thus the KE. of the rod
2 .
T--m—ﬁl—- =[-8 sinwi+Oycoswi [
ML 32 cos? 02 sin w £ - 2 @ Oy Oy si
--—-6-—[ 0 COS W1+ 0 osSin“wz-2m0,0gsinwzcoswe]

On averaging over one time period (he last term  vanishes

<sin2mr>=<c052mt>=1/2. Thus

<T>= —3—-m1263+-1—mg1203 (where @? = 3 g/2 1)

12 8

and
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4.49

Let I = distance between the C.G. (C) of the pendulum and its point of suspension C
Originally the pendulum is in inverted position and its C.G. is above O. When it falls to th
normal (stable) position of equilibrium its C.G. has fallen by a distance 2 L In the equilibriun

position the total energy is equal to K.E. = %—I ®? and we have from cneIgy conservation :

1. 2 4mygl
2!0) mg2l or I T

Angular frequency of oscillation for a physical pendulum is given by 03 = mg I/I

/ l / 2
Thus T=2n mI -2 Amgliw iz

gl mgl T3

Let, moment of inertia of the pendulum, about the axis, concerned is I, them writing
N, = IB,, for the pendulum,

—mgxsina® =16 or é-—f'—-f—EB (For small 0)

which is the required equation for S.H.M. So, the frequency of oscillation,

Mgx I vz
W, = _Ig— o, x= E[f—-g o} (1)
Now, when the mass m is attached to the pendulum, at a distance ! below the oscillating axis,
d2e

~Mgxsin® -mglsin® -(“""2)—&—?
t

2
- 3Eﬁ“}’;‘)’) o = ‘;—tg,(Forsmall 8)
m

which is again the equation of S.H.M., So, the new frequency,

or,

_Vg(Mx+ml)

it
2 (I+m1?)

2

Solving Eqns. (1) and (2),

5, - VW mD)

(T+ml?)
or m%_lmfﬂ'ngl
’ F+mi?
or, I(o)%——mf)-=mg.!-mm§l2

and hence, ]-mlz[mg-g/l)/(w‘-f—wﬁ)-0-8g-m2
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When the two pendulums are joined rigidly and set to oscillate, each exert wrques on the
other, these torques are equal and opposite. We write the law of motion for the two pendulums
as

L0 = -021,0 +G
L0 = -wiho -G

where £ G is the torque of mutual interactions. We have written the restoring forces on each
pendulum in the absence of the other as — w21, 0 and - 3 I, O respectively. Then

Lo} + o

. 2
= -w°0
0 YA 0= -
Il (l)i + Iz (D%
Hm W =
Il + 12
Let us locate the rod when it is at small angular position © relative to its equilibriuvm position.

If @ be the sought distance, then from the conservation of mechanical energy of oscillation
mga(l-cosB)+ ';‘Ioo' [é)2 = constant
Differentiating w.r.ty time we get :

mgasinﬁé+ -;—IOO'Zéé- =0

2
But Ioor = %+ ma? and for small 0, sin@ = O, we get
S+ a?

Hence the time period of one full osscillation becomes

$? 2 4xif I
T=2x 12+a or T° = p L;.a'm
ag
F T obvious] j— -—1-2-4- a{=20
of ma 2 ! y.do:z 12 a -
So I +1 0 or a d
' 120 W3

Hence v \/—
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4.52

4.53

Consider ihe moment of inertia of the triangular plate about AB.

= [fdm = [[Xpdxdy

A hex 2R h 5 A -8
“fPpdi—% 5= = [P R n-x)d x
[oedsm= g = [ ¥ G tonds
_2p (K _KY_ pht _mi &

V3 i3 4 6v3 6

2
On using the area of the triangle AABC = % and m = pA.

2

Thus K.E. =%—£—’g—l—92
1 0’
PE. =mg (l1-cosB) = —mgh?

Here 0 is the angle that the instantaneous plane of the plate makes with the equilibrium
position which is vertical, (The plate rotates as a rigid body)

Thus E---;----—"""e2 Lngh h g
2

2_2g_mgh mh

Hence w 7 3 /-—-—6

‘\/ h \/2h
So T=2n -_— . — . and ! - h/2.
2g g reduiced

Let us go to the rotating frame, in which the disc is
stationary. In this frame the rod is subjected to coriolis
and  centrifugal forces, F,, and F.;, where

-f2dm(v’x w0 ) and Fes -fdmm%r,
where r is the position of an clemental mass of the
rod (Fig.) with respect to point O (disc’s centre) and

s_dr
dt
As r=0P = OA+ AP
dr d(AP) , .
So, x -z v (as OA is constant)

As the rod is vibrating transversely, so v’ is directed perpendicular to the length of the rod.
Hence Zdm (v x @) for each elemental mass of the rod is directed along PA. Therefore the
net torque of coriolis about A becomes zero. The not torque of centrifulgal force about point
A:

Now, -i:_:f“) -fAPx dmmgr =fAPx (?st'u}g(OAh-\P)
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=fAPx (L?—ds)mﬁOA af-'-?-dsm%sasinﬂ(—k)

f
?mﬁ smﬂ(-k)fsds - mmﬁalsinﬁ(—k)

2
~ 2 1,
SO, t,f(z)-t,fw'k--mmoaisme
According to the equation of rotational dynamics : T,z = }, oy
or, -m aismﬂ-——l—z-é'
] (% 2 3
2
X Jwga
or, O = - 271 sin0
. 2
Thus, for small O, 0 m - % u;_lae
3pla

This implies that the frequency wg of escillation is wy = 5]

The physical system consists with a pulley and the block. Choosing an intertial frame, let us
direct the x-axis as shown in the figure,

71177

A
X
Initially the systc:rcn 15 in equilibrium position. Now from the condition of translation
equilibrium for the block
To=mg (1)
Similarly for the rotational equilibrium of the pulley
xA/R= T, oR

or. Ty=xAl (2)
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4.55

from Eqns. (1) and (2) Al- =& 3

Now let us disturb the equilibrium of the system no matter in which way to analyse its motion.
At an arbitrary position shown in the figure, from Newton’s second law of motion for the
block

F.=mw,
mg-T= mw=mx (4)
Similarly for the pulley
N = I§,
TR-x(Al+x)R= 160 ()
But w=BR or, ¥=R0O (6)
from (5) and (6) TR-x(Al+x)R= fizf )

Solving (4) and (7) using the initial condition of the problem

—lcRx-(mR-l-é)f

or, X =~ x

l
m+—5

RZ
2
Hence the sought time period, 7= %;:2- 2n V ﬂ*t’-:éﬁ-

Note : we may solve this problem by using the conservation of mechanical energy also
At the equilbrium position, N,, = 0 (Net torque about 0)
So, my,gR-mgRsina =0 or m, = msina (1)

From the equation of rotational dynamics of a solid body about the stationary axis (say z-axis)
of rofation i.c. from N, = I B,

when the pulley is rotated by the small angular displacement € in clockwise sense relative to

the equilibrium position (Fig.), we get : Llin
mgR-mgRsin(a+0)
MRZ 2 2] -
.[ > + mR +mAR]9 cl A
Using Eqn. (1) R4y
!

mgsina-mg(sinctcos8+ cosaxsinB)

{MR-I- 2m(1+sina)R}é'
- 2




But for small @, we may write cos§ « 1 and sin6 « 0

Thus we have

{MR+2m(1+ sina)R}g
2

mgsina-mg(sinat+cosaaQ) =

2mgcosa
T [MR+2m(1+ sma)R]

Hence, 0 =

Hence the sought angular frequency w, = v MR: ;:’:3?0;_? sinc)

Let us locate solid cylinder when it is displaced from its
stable equilibrium position by the small angle O during its
oscillations (Fig.). If 'v. be the instantaneous speed of the

CM. (C) of the solid cylinder which is in pure rolling,
then its angular velocity about its own centre C is
w = v,/r

(1)
Sitce C moves in a circle of radius (R - r), the speed of C at the same moment can be written
as

Vo = O(R~-r) 2
Thus from Eqns (1) and (2)
® = éfﬁ;'il 3)

As the mechanical energy of oscillation of the solid cylinder is conserved, i.e. E = T+ U =
constant

So, %mv§+%fcw2+mg(1{-r) (1-cos0) = constant
(Where m is the mass of solid cylinder and 7, is the moment of inertia of the solid cylinder
about an axis passing through its C.M. (C) and perpendicular to the plane of Fig. of solid

cylinder)

2
or, :,lz-mmzrz-o-%%—w +mg(R-r){(1 —cos0)= constant (using Eqn (1) and
I,=mr ;)

%rz(é)z(_ﬁ;:z]‘_ﬁ +8(R~-r)(1~cosB) = constant, (using Eqn. 3)
’

Differentiating w.r.t. titne
%(R-r)2é6'+gsineé =0

So, 0 = - 3—(—12‘73—5 8, (because for small 6, sin B 0 )

Thus Wy = V-——l‘g—-—

3(R-r)
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4.57

4.58

Hence the sought time period

Tall oy HUR=r)
g 28

Let x; and k,; be the spring constant of left and right sides springs. As the rolling of the
solid cylinder is pure its lowest point becomes the instanteneous centre of rotation. If © be
the small angular displacement of its upper most point relative to its equilibrium position,
the deformation of each spring becomes (2R 0 ). Since the mechanical energy of oscillation
of the solid cylinder is conserved, E = T+ U/ = constant

ie. %—;(é)’+%x1(2R0)2 +-;-x2(2R9)2- constant
Differentianting w.r.t. time

%1,2éé'+%(xl+x2)4ﬂzzeé-o

2 .
or, (m; +mR2]B +4R¥x0 =0
2 mR2
(Because [p = Ic+mR* = — + mR?
Hence 0 = _.g..‘.‘_g

Thus wy = 1.3 and sought time period

3Im
T-——- -2 .‘/3m .31/3m
8x

In the C.M. frame (which is rigidly attached with the centre of mass of the two cubes) the
cubes oscillates. We know that the kinetic energy of two body system equals 5 Il".u , where

M is the reduced mass and v, is the modulus of velocity of any one body particle relative

to other. From the conservation of mechanical energy of oscillation :
2

1 1 d

2|cx2+2 1Y dt(lo-l-x)} = constant
Here [ is the natural lengih of the spring.
Differenting the above equation w.r.t time, we get :

1 L 1 L[] LN d(%+x) L]
2x2xx+2p2xx -G[becomcs o =X
L) m
Thusr = -S-x where p = 17
M my +my

mym,
m; + my

Hence the natural frequency of oscillation : @y = ‘v -:i- where p =
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459 Suppose the balls 1 & 2 are displaced by x,, x, from their initial position. Then the energy
iS:E = %ml.ﬁ + Pﬂg;tz + %k(xl - .11:2)2 - %mlvf

Also total momentum is : my X; + myXx; = my v,
mx, + myx;

Define X= Fa——— X =Xy - Xp
Then II-X-I-——"-"E?——.I,I -X o —
m +m m +m

Hence X =

lmlmzxz —kx2-1 2 _1 mv: 1 my M 2
2m +m, 2 2
{a) From the above equation

k Ix24 -1 mym, 2
We seec @ vll 2 65, when p — Skg.

(b) The energy of oscillation is
lMﬁ.%%x (0.12)> = 48 x 107™* = 48 mJ

So

2mt+m
We have x = asin (¢ + o)
Initially x=0att=0s0 a=0
Then x =g sin wi. Also x = v; at 7 = 0.
v
So ma-vlmdhcncea-;l--%-Zcm

4.60 Suppose the disc 1 rotates by angle 0, and the disc 2 by angle 8, in the opposite sense. Then
total torsion of the rod = 0; + 0,

. 1 2
and torsional PE. = —x (0;+0,)
5 (6,+6, (1) (2)

The K.E. of the system (neglecting the moment of inertia

of the rod) is

1, 2.1,;

sh6+2 56 K
So total energy of the rod

1,:0 1,2 1
E-—2-119f+5129§+-2-x(91+92)2

We can put the total angular momentum of the rod equal to zero since the frequency associated
with the rigid rotation of the whole system must be zero (and is known).




4.61

: 0 0 0, +0
Thus 1,6, = L6, or —t w —2 1772

VAV ARV AV A
. L . - . I ..
So 0, = Y (6,+0;) and 92"]“_[2 (8,+86;)
I T
and 5.%1” (8, +8,)%+~ u:(elwz)2

The angular oscillation, frequency corresponding to this is

LI .‘/ LI
2 _ 7 S _.hh
» lc/ YA x/I' and T=2n , where [’ YA

In the first mode the carbon atom rem=ins fixed and the oxygen atoms move in equal &
opposite steps. Then total encrgy is

)
1 9 1
5 2 mo.r2 +3 2k x
where x is the displacement of one of the 0 atom (say left one). Thus
(o% = X/myg.
2

In this mode the oxygen atoms move in equal steps in the same direction but the carbon atom
moves in such a way as to keep the centre of mass fixed.

2!?!0
Thus 2mgx+m.y =0 o,y = - X
2my .Y 2 1 2
KE.= %2m0?+%mc[ LY ]- —2m0x2+ 2m0 m‘:'x2 - EZmO(l +-—';'—-m-9-)x2
L2 t‘.’ c

[ 2 ' mc mt‘

2 : 2 2
2
PE.= %k(1+2mo)xz +—]1-x(1+ mo)f -%2!: (11- mo)xz

2my
mc

Hence, = ) V 32 Wy V % = 191 w,

2
Thus m% ( mo) and w, = @; 1+
ny
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-, 462 Let, us displace the piston through small distance x, towards right, then from F, = mw,

4.63

i-.

v
e — — —

Py

“——h,8
x|
(p,-p,)5 = ~mx
But, the process is adiabatic, so from P VY = const,

Po Vg Po VJ_
(Vo-5x)7 T (Vo+Sx)’
as the new volumes of the left and the right parts are now (Vy + S x) and (V — S x) respectively.
So, the Eqn (1) becomes.

P WS 11 oy

m {(Vo—Sx)"' [Vo-i-Sx)"}

AN l(vo+3x)*- (Vo-Sx)’} .- i

1)

or,

P2 = d p

or,
m (v§-5%x2)"

(115X (g 12
PoVo S Vo Vo .
or, pon 4 / ‘s2x2 =~ X
Tae=
v
0
782x2
Neglecting the term VI in the denominator, as it is very small, we get,
0
i 2poS 2 YX
- m Vo ’

which is the equation for S.H.M. and hence the oscillating frequency.

o = 5V 22

mVo

In the absence of the charge, the oscillation period of the ball
T=2nVi/g
when we impart the charge g to the ball, it will be influenced by the induced charges on the

conducting plane. From the electric image method the electric force on the ball by the plane
2

9 7 and is directed downward. Thus in this case the effective acceleration
dneg(2h)

ol the ball

equals
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4.64

4.65

2
' q
=g+ ———
£ -¢f 16tegmh

and the corresponding time period i

r'-zu\/l,-zu\/ L
g
g

+ 2 3
16neyamh

From the conditon of the problem

T=nI'
So, T2 w n?T'? o ,1__"2 1
g q2
g+ 2
16xeymh
Thus on solving
g=4h \/::somg(nz- 1) =2ucC
In a magnetic field of induction B the couple on the magnet is — M B sin 6 = - M B 0 equating

this to 10 we get

19 +MBO =0
2 MB - ‘\/L.
or W 7 or T=2nxn B
Given I, = T,/n
o '\/,l.,v..l__l_ or L =1
‘ By By m B, B, y
or Bg"l’lzBl

The induction of the field increased n?” times.

We have in the circuit at a certain instant of time (¢ ), from Faraday’s law of electromagnetic
induction :

di dx .

Ldt -Bldt or Ldi=Bldx
. ., Bl
As at t=0,x=0, so Li=Blx or :-Tx(l.)
i
For the rod from the second law of motion F, = m w,
-ilB=mx
_ .. 1>B? 2

Using Eqn. (1), we get : X =o)X —apx (2)
where Wy = IB/V mL

The solution of -the above differential equation is of the form
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4.67

39

x=asin{wyt+ a)
From the initial condition, at ¢ = 0, x = 0, so a = 0
Hence, X = asinwyt 3)
Differentiating w.r.t. time, x = a wycos wyt
But from the initial condition of the problem at 1 = 0, x = v,
Thus Vowawyg Or a = vy/wg ¢
Putting the value of a from Eqn. (4) into Eqn. (3), we obtained

x-—‘:gsincoot(where wy = B )
Wy

VmL
As the connector moves, an emf is set up in the circuit and a current flows, since the emf is
E=-Blx, we musthave:-Bli:-rL%- 0 ,: L
so, I=BIx/L 100000000001
provided x is measured from the initial position. X XX X
We then have X XX X x
. Bilx X XX X
mx =-——_B.l+mg
L
for by Lenz’s law the induced current will oppose
downward sliding. Finally
. (Bl
Tt x=g
on putting Wy = Bl
0 VymL
X+wgx =g
A solution of this equation is x = -35+A cos{(wpr+a)
®p
But x =0 and x = 0 at ¢ = (. This gives

X = -85 (1-cosmwyt).
Wo

We are given x = age ?* sinw ¢
(a) The velocity of the point at # = 0 is obtained from
vo=(x).0=wa
The term "oscillation amplitude at the moment ¢ = 0" is meaningless. Probably the im-

plication is the amplitude for 7 < < 1 . Then x = a4 sin w ¢ and amplitude is ao.

B

() * = (-Paysinwt+wagcoswr)e P =0
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4.68

4.69

when the displacement is 2n extremum. Then

o
tanwit = —
p
or m:-mn'1%+nn,n-0,1,2,...
Gi -Bi
iven @ = @ge ' coswt

we have @ = —Btp—mq)oe"ﬁ'sinmr
B

B

B

¢ =-Pop+Ppogre Psinmr-wipe Pcosnrs

=plo+2pugye Plsinwr-wle

S0
@ (9= -8B, (¢ ) = (B*-0) gy

(b) ¢ =~ —gpe P (Bcoswr+wsinwt) becomes maximum (or minimum) when

B

@ = q:no(ﬁz-wz)e'ﬂ‘cosmh-?.ﬁwtpoe_ ‘'sinwt = 0

2 2
w -
or tanmt-i

and tn-_a tan "~ 2B +tnr|,n=0,1,2, ...

B

We write x = age "' cos(wt+a).

J
(@ x{(0)=0=>qa = 2 —215 =>x =% gge P'sinwt
x(0) = (x).0=% wa
Since a, is + ve, we must choose the upper sign if x (0 ) <0 and the lower sign if

x(0)> 0. Thus

ao,_]ﬂ_oll and a = [+Z if x(0)<0
® 2

-5’2‘- i€ X(0)>0

_5r+lm!’ A = aoelq

(b) we write x = Re A e
Then x=v,=Re (-B+iw)Ade Prtivs
Fromv,(0) = OwegetRe (-f+im)A =0
This implies A = * i(8+iw )B where B is real and positive. Also

Xo=ReAd =+ wB

X
Thus B = I—-ﬁ—?—l with + signinA if x3<0
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~ signinA if x5>0

So A-:imlxd- +_1+:t£-E|xD|
) w

Finally ay = 1+(%) [xo]
tano = -Toﬁ’ a = tan-l(i)

@

o is in the 4% quadrant (— g<u < 0) if xo> 0 and a is in the 2™ quadrant

(%<a< Jt) if xg< 0.

470 x = age Plcos (wr+a)

471

Then (x),.0=~-Bagcosa~waysina = 0
or tana-—ﬁ.
)
a
Also (x),_o==a0cosu=;'2

sec’q = N, tana = -V y?-1
Thus B=owVni-1

(We have taken the amplitude at ¢ = O to be q; ).

We write x = ac,e'"ﬁr cos{(wt+a)
- ReAe—-Bu-imr’A - aoeia
x=Re A(-B+im)e Priof
Velocity amplitude as a function of time is defined in the following manner. Put ¢ = 7, + T,
then
x = Re Ae Ploat?) pin(h+3)

-ReAe—Brn eiuloi-imt”ReAe-ﬁleimr

1 : . . . : -
for T < < % . This means that the displacement amplitude around the time t, is age P and

B

we can say that the displacement amplitude at time ¢ is a e P’ Similarly for the velocity
amplitude.
Clearly

(a) Velocity amplitude at time ¢ = a,V B+ @’ e P!

Since A(-B+io) = qpe'*(-B+iw)
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= a,V B2+’ et

where ¥ IS anotner constant.

() x(0)=0=>ReA =0 or A==zxiqg
where a, is real and positive,

Also v{(0)Y=xg=Reziay-pf+iw)
=+ W ap
Thus a, = I—EA and we take ~ ( +) sign if x, is negative (positive). Finally the velocity

amplitude is obtained as

X|.r—=
|£I ﬂ2+(02 e-—Bt'

4.72 The first oscillation decays faster in time. But if one takes the natural time scale, the period
T for each oscillation, the second oscillation attenuates faster during that period.

4.73 By definition of the logarithemic decrement (JL - %;u_) we get for the original decrement

o
2Zn - 2nunf
=P \/_——ﬂ and finally A \/;%_;3_23—2
Now B =l° or -E-- i
-\/W 2x Wo \/ 2
1+(i)
2
Ao
" A2n - "3x
2
\/1,,[%) \/H(i]
x 2n
A niy/2n
Hence - -
2n
Voo ()
For critical damping wg = n B
1.t el n 1+ 2—“2
or n, [M)

nc u’o
Vo]

4.74 The Eqn of the dead weight is



mx +2Bmx+mal x =mg

S0 Axs-—g— ormﬁ-i.

u)% Ax

2anf @ 2=nP Uy A
Now A= " -\/W or -—-—-‘--—mg-ﬁz- \/11-( )

Thus T = 2 .2" V1+( )

A
1/03%_'32 o 2x
r
-2x \/éé’ﬁ Vu(%) -\/%(4:&1’) = 0.70 sec.

4.75 The displacement amplitude decrease 7 times every n oscillations. Thus

2n
_a._ﬂ_.‘

_’e

L |

0 2nn’

w nn
So Q-zﬁ-lnn-499.

476 From x =age P’ cos (w £+ &), we get using

(x)y_g=1=ajcosa
0=(x),.0 = —P apcos &t — m aysin o {

@ 1

Then tana--E Of COSOL » ———=

) -‘f m2+ﬂ2
N ‘t
I———O%Di e B! cos(mr--l;au"1 %)

and x =

2
Total distance travelled in the first lap =

To get the maximum displacement in the second lap we note that

X = [-Bcos(mr-tan‘l-(%)—msin(mt—tan'i-(%)]
| IW -B¢

x —e =0
W

x=0 att=1 (nn:+£+ tam'l‘E
w 11

when wt=x,2n,3xn,... efc.

43
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-np’w

Thus Xpax = —ap€ " cos 0 = - e for ¢+ = n/w®
so, distance traversed in the 2*° lap = 21 g~ *H
Continuing total distance traversed = [+21e " "P® 421270 .
L lem 21
1-e fve ef™® _q
- Iep“/“'-;-l . Il+ew2
ef™°_1 e -1

where A = 2—:)& is the logarithemic decrement. Substitution gives 2 metres.

1 2

4.77 For an undamped oscillator the mechanical energy E = %m 2+ om (o(,x2 is conserved. For

a damped oscillator.

2

x=aqe Poos(wt+a), m =V on

and E(t) --;-m.i'u-;-mm%xz

2

+-;-ma§m%e'2ﬁ‘cos2(wr+u)

2

2 2

= lmaﬁmﬁe'“'-&-}-magﬂze'zﬂ‘cos(2mr+20r,) +lma§

_52

=lmaﬁe'2°'[ﬁzms2({nt+a)+2ﬂmcos(mt-ra)x sin(mt+a)+mzsin2(wt+u)]

Buwe ?Psin(2mt+2a)

If f <<, then the average of the last two terms over many oscillations about the time ¢

will vanish and
-2pr

<E(1)> = %ma%mge

and this is the relevant mechanical energy.
In time t© this decreases by a factor -;-l‘-so

P11 N S ]

! 287
g - nn
2T
2
and A= ::ﬂz_ 2x - 2n_ .
“’0"[3 "/ (')02 1 45‘52_1
(ﬂ)‘ Ha'n
1 2
and Q= = 227 1 « 130

since m%-?—.



4.78 The restoring couple is

4.79

I' = -mgRsing « ~-mgRo
The moment of inertia is

3mR®
I= >
Thus for undamped oscillations
3ImR? ..
2 ¢ +mgRop =20
2 _ 28
0, ©®o = 3R
Also e
wo - B
Hence B -21' or —_ . ‘\/1+ —-—-2
V w2 - B2 n vV o - B2 2n

2
r-22.22, Zu\/ﬂ[“ o ]
w 0 ws - B2 2g 2%

Let us calculate the moment G of all the resistive forces on the disc. When the disc rotates

an element ( r d r d 0 ) with coordinates ( 7, 8 ) bas a velocity r @, where @ is the instantaneous

angle of rotation from the equilibrium position and » is measured from the centre. Then
2n R

Gy =[de [drr-(Fixr)
0 0

R
4
=fnrtbr2dyx2n=n%R—ti)
0
mR>
Also moment of inertia = >
mR? .. :rtnR"-
Thus 5 P+ ) pt+ogp =0
2
! . ANMR" . 2o .
o © +2 ™ qa+mR2cp 0
2
Hence Wy = 2a and ﬁaa—;‘:;
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481

2
and angular frequency 0 = \/( 2 uz ) - ( MR—)
mR

Note :- normally by frequency we mean -é% .

From the law of viscosity, force per unit areca = n Z
so when the disc executes torsional oscillations the resistive couple on it is

R 4
-fn-Z:rtr. r—;?-r-drx 2 = n’;—Rq)
H

(factor 2 for the two sides of the disc; sce the figure<in the book)

where @ is torsion. The equation of motion is
4
16,'1'+I|——:;IR p+cp =0

Comparing with P +2BQ+mig = 0 we get

B =naR*2h01
Now the logarithmic decrement A is given by A = § T, T = time period
Thus M =2AkI/"R*T

If ¢ = angle of deviation of the frame from its normal position, then an e.m.f.
¢ = Ba*g
2 .
is induced in the frame in the displaced position and a current ;7 = ER-—Q flows in it. A

couple

Ba*g B?a* .
R Baas= "B

then acts on the frame in addition to any elastic restoring couple ¢ ¢. We write the equation
of the frame as

.. 2 4.
I + R P+cop =0
B*d*
Thus @8 = >R where f is defined in the book.

gt

Amplitude of oscillation die out according to e 7 so time required for the oscillations to

1 ) .
decrease to :; of its value is

1 _ 2IR
B Bd’
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4.82 We shall denote the stiffness constant by k. Suppose the spring is stretched by x; . The bar

in then subject to two horizontal forces (1) restoring force — x x and (2) friction kmg opposing
motion. If

xo>'k_'£'& = A

the bar will come back. «X—

(If xps A, the bar will stay put.) M&gﬂﬂﬂ:

The equation of the bar when it is :
moving to the left is

mx = -xx+kmg
This equation has the solution

x=A+(xyg-A) cos'\/ ﬁ- t

where we have used x = xy,x = 0 at t = 0. This solution is only valid till the bar comes

b=/ E

and at that time x = x; = 2A -x, if xo> 2 A the tendency of the rod will now be to move
to the right .(if A < xy < 2 A the rod will stay put now ) Now the equation for rightward motion
becomes”

to rest. This happens at

mx = -xx-kmg
( the friction force has reversed).

We notice that the rod will move to the right only if
K(xg—2A)>kmg ie xp>3A
In this case the solution is

‘/k
x=-A+(x9-3A) cos mt
. . / k
Since x=2A-xyand x =0 at t=¢ =n m

The rod will next come to rest at

t=t2=2ﬂ1/v;‘l;‘

and at that instant x = x, = x5 - 4 A. However the'rod will stay put unless x> 5 A.
Thus

(a) time period of one full oscillation = 2xn / V %

(b) There is no oscillation if 0 <xp< A
One half oscillation if A<xp3<3A
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2 half oscillation if 3A<x;<5 A elc.
We can say that the number of full oscillations is one half of the integer n

kol
where n =

2ZA
where [ x } = smallest non-negative integer greater than x.

4.83 The equation of motion of the ball is
m(x +oix) = Fycos wt
This equation has the solution

x =Acos{wygt+a)+Bcoswt

where A and a are arbitrary and B is obtained by substitution in the above equation
Fo/m

wﬁ-wz

B =

The conditions x = 0, x = 0 at 7 = 0 give

Fo/m :
Acosa+———7 =0 and -wgAsina = 0
G-
Fy/m Fo/m
This gives a = 0, A=- 20/2= 20/2
Wy — W w - g
Fo/m
Finally, X = —-5{-}—/————5(cosmot—cosmt)
o -Wg

4.84 We have to look for solutions of the equation
mx +kx = F, 6 0<ty<v,

mx +kx =0,1>1
subject to x(0) = x(0) = 0 where F is constant.

The solution of this equation will be sought in the form

X = £+Acos(m0t+a), Ost=s 7

k

x=Bcos(we(t-T)+Pp), t>71
A and oo will be determined from the boundary condition at ¢ = 0.

0 = -E--i—Acosa

0 = —wpAsina
Thus a--OandA-—% and x={-(1-cosm0t) O <.
B and §§ will be determined by the continuity of x and x at r = T . Thus

F
;(1—cosm01;) = Bcosf and 960 {-sinmor = —560 Bsin B
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F 2
Thus 32-(1") (2-2cosmwyt)
F | gip @0%
or B-Zk sin 2
()

/N
N

£

2 _ K _
wotm Al’

ﬁ e ety —— —

485 Foi ihe spring mg = x Al
where x is its stifness coefficient. Thus

The equation of motion of the ball is

- - 2 Fo
X +2fx+uwgx = -,-;!—coscot
Here NP B NM2m
Vwi-g° © vYis(a2n)?
To find the solution of the above equation we look for the solution of the auxiliary equation

- - Fo -
z+2ﬁz+m§z-;e"‘”

Clearly we can take Re 2 = x . Now we look for a particular integral for 2 of the form
Z - Aeiﬂl
Thus, substitution gives A and we get
(Fo/m ) eiml

m%—mz-i-Zime

so taking the real part
(Fo/m)[(mﬁ—wz)msmt-l-zﬂwsinmt]

X =
(wg~w ) +4 8w’
F, -
__’_"g cos{wt -p) ,(p-lﬂn_122 mz
.2 232 2 2 Wy = @
{wg-w' )Y +4p ©

The amplitude of this oscillation is maximum when the dcnominator is minimum.

Tthis happens when



50

4.86

4.87

m4-2m§m2+4ﬁ2m2+m3s(mz-m§+252)+4ﬁ2mﬁ-4ﬂ4 i minimum. ie for

mzsm%—Zﬂz
2 g2
Thus mfu-mg[l__%)
Wo
. 2
2 /
(] ot
& PR kil S B SO Gdid &
Al . 2 \2 Al 1.,.(_&_‘2
+( “) . \ 27,
and Fo/m Foy/m Fo/m )
a - - - .
T Vaptal-apt 2pVei-p? 28 27
2
A
14| 5—
Fy (Zn) FoAlIn(, ax’
2mwg M2wm “4nmg 22
. Fo/m
Since a =
V(o' -wg+2B° Y +4B (w5- )
we must have - mi—m§+2ﬁ2=-(uﬁ—mﬁ+2ﬂ2)
2, .2
+ W
or m§—2ﬁ2=m1 zswf,,
_an(m%-mz)oosmt+2ﬂmsinmt
m V(mz_mg)z.'_dﬂzmz
. Foo 2Ppwcoswt+ (0 -wy)sinwt
Then x = 2 22 2, 2
m (ng-0°)+4f°w
Thus the velocity amplitude is
an
Vo-
m“/(m%-mz)zul % w?
Fa
- 2
1/ 2
m (%—m) +4Bz
This is maximum when @’ = m;‘; = m:f,,

and then Vores = ImpB’
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2
Now at half maximum (%g-m] =12 [32
or w? = Zﬁﬁw—m3=0

) =+_ﬁ\/? +V ag+3p°

where we have rejected a solution with — ve sign before there dical. Writing

w, = Veors+3p2+pV3, wy=Veor+3p-gV3

we get (a) w,,; = wy = V w; w, ( Velocity resonance frequency)

| Wy~ Uy |
f = — =" and damped oscillation frequenc
(b) V3 p quency

2
Voot = Voo (22020

12
4.88 In general for displacement amplitude
F, 1
a= —
m vV (wg- o) +4p° @
FO 1
mV (o - wj+28°) +4 8% (wf - B)
Th Ares w(z) (D%
us n= a N \/ orpnanrvratl 2 a2
low 4p"(wo~P") 2BV p-p
A2
But _[:'_S_ A 4

wo Vis(a2nP 2% V2-p?

2
[h]
1+2n

2
wo A _1 -
Hence 11-2 2 5x " 2 . = 2.90
2
4.89 The work done in one cycle is
T T
A =dex =fdet -=fFocosmr(—wasin(mr—(p))dt
0 0

T

=fFoma(—coswrsinwtcoqu+Coszcntsin(p)dt
0
1

= EFoma%sincp = ntaFysing
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4.90

4.91

4.92

In the formula x = acos(wi-¢)

Fy .
we have a= —— -
m\/(mﬁ-—m2)2+4|32m‘
2w
ang =
Ve
2 2
- )ta
- G ;ow) ne
Hence wy = VK/m = 205",

and (a) the quality factor

X \‘mg‘ﬁz l‘\/ 4(020){2)

C=87" 25 "2 (02— Pune

-1 =217

(b) work done is A = ma Fysing

=ama*V(of-? P +4p0lsing = nma*x2Bw’
= nmaz(mﬁ—u}z)tantp = 6 mJ.

2w

Here as usual tang = —

ol - : where @ is the phase lag of the displacement

Fy 1
x=acos(wt-@), a = —
m \/(m%_wz)2+4ﬁzmz

(a) Mean power developed by the force over one oscillation period

nFyasing 1F .
= T =5 0@ ©sin @

_ f_% B _ F3B 1
m (wg-w’)+4p° 0’ moo? ‘
0 2
—-w] +4f
w
(b) Mean power < P > is maximum when w = wy (for the denominator is then minimumr
Also

Fy
T 4amp
Given B = ®wy/7. Then from the previous prol;lem

F?
P> = 0o 12

nm 2 2
W w
{——ﬂ-w) +4—~g—

W

M

<P >.ux
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At displacement resonance @ = V mg -2 62

pi
<P Fy o 1 Fozwo 1
Zres = 4 7 3, 4 3
nm 4B 4 o nm 4 wo/M Wp
w-2F F 2 Z)
g ~ ] wg 1 -— n
n
__Fg . Fon -2
41 m oy 21 b1 Amo 0 -1
n -2
Fgn
while <P > . = .
X dAmay
<P >, ..—-<P >
Thus == = = 200 %
<P>mu 1‘]-1
. e e . 2 Nycoswt
493 The equation of the discis @ +2Bp+ws¢p = —7
Then as before P = @Pucos(wi-a)
where Py = N ana = —2P%
" I(wg-0® ) P’} g - o

(a) Work performed by frictional forces
r

= -[N.do where N, = ~2[B¢ = ~[2BiI¢*dt = -2nBwlidg]
H

- - an},z,,[(mg-mz)2+4ﬂzm2]w sino = -~ N, @, sin a

(b) The quality factor
12

0=T. " VUJ%:Bz . oV oj-p* __1 40’ ap _ 4 B2 w?
A B 2p (02-w?)ana 2100 | (©d-w?)? (wi-e®)?
172
4wl P o N
.1 D 02 Pm_ tanlal  since ws = 0’ + 2 cos o
2tanat | A2 cos’a J Iy,
12

1 [40’wilek
2sina | N

1 4w’ P ¢l 3 N,cosa 2
* - W' +—————|+1~-cos°qa
2 sin & N

- —— ) wecosa+cos a-1
2sina | N2 N,

m

1 l412¢'3| 4, 419, , 2 } - 1



