
Chapter 5

Dynamic Programming

  Dynamic programming

  Multi-stage graph

  All pairs shortest path problem

  Hashing methods

  Mid-square method

  Folding method

  Resolving collisions

  Matrix chain multiplication

  Longest common subsequence

  Optimal substructure of LCS

  NP-hard and NP-complete

  P-problem

  NP-problem

  P, NP, and Co-NP

  Cooks theorem

  Non-deterministic search

LEARNING OBJECTIVES

dynAmic ProgrAmming
Dynamic programming is a method for solving complex problems 
by breaking them down into simpler sub problems. It is applicable 
to problems exhibiting the properties of overlapping sub problems 
which are only slightly smaller, when applicable; the method takes 
far less time than naive method. 

 • The key idea behind dynamic programming is to solve a given 
problem, we need to solve different parts of the problem (sub prob-
lems) then combine the solutions of the sub problems to reach an 
overall solution. Often, many of these sub problems are the same. 

 • The dynamic programming approach seeks to solve each sub 
problem only once, thus reducing the number of computations. 
This is especially useful when the number of repeating sub prob-
lems is exponentially large. 

 • There are two key attributes that a problem must have in order 
for dynamic programming to be applicable ‘optimal sub struc-
ture’ and ‘overlapping sub-problems’. However, when the over-
lapping problems are much smaller than the original problem, 
the strategy is called ‘divide-and-conquer’ rather than ‘dynamic 
programming’. This is why merge sort-quick sort are not classi-
fi ed as dynamic programming problems. 

Dynamic programming is applied for:
 • Multi stage graph
 • All pairs shortest path

Principle of Optimality
It states that whatever the initial state is, remaining decisions must 
be optimal with regard to the state following from the fi rst decision.

To solve a problem using dynamic programming strategy, it 
must observe the principle of optimality.

multi-stAge grAPh
A multi-stage graph is a graph

 • G = (V, E) with V partitioned into K > = 2 disjoint subsets such 
that if (a, b) is in E, then a is in V

i
, and b is in V

i + 1 for some sub 
sets in the partition; 

 • |V1| = |V
K
| = 1 the vertex S in V1 is called the source; the vertex t

is called the sink. 
 • G is usually assumed to be a weighted graph. 
 • The cost of a path from node V to node W is sum of the costs of 

edges in the path. 
 • The ‘multi-stage graph problem’ is to fi nd the minimum cost 

path from S to t. 

Example:
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Stage I Stage II Stage III Stage IV Stage V Stage VI

Costs of edges
1 – 2 → 10
1 – 3 → 20
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    1 – 4  →  30
    2 – 5  →  10
    2 – 6  →  20
    2 – 7  →  30
    3 – 5  →  40
    3 – 7  →  50
    4 – 6  →  40
    4 – 7  →  30
    5 – 8  →  10
    5 – 9  →  20
  5 – 10  →  30
  5 – 11  →  40
    6 – 9  →  20
  6 – 10  →  30
  7 – 10  →  30
  7 – 11  →  20
  8 – 12  →  10
  8 – 13  →  20
  8 – 14  →  30
  9 – 13  →  20
  9 – 14  →  10
10 – 13  →  10
10 – 14  →  20
11 – 13  →  10
11 – 14  →  30
12 – 15  →  20
13 – 15  →  10
14 – 15  →  30

Solution Using Backward Cost

Format: COST (Stage, node) = minimum cost of travelling 
to the node in stage from the source node (node 1)

Step I:
Cost (I, 1) = 0

Step II:

Cost (II, 2) = cost (I, 1) + cost (1, 2) = 0 + 10 = 10
Cost (II, 3) = cost (I, 1) + cost (1, 3) = 0 + 20 = 20
Cost (II, 4) = cost (I, 1) + cost (1, 4) = 0 + 30 = 30

Step III:

Cost (III, 5) = min {cost (II, 2) + cost (2, 5), 
cost (II, 3) + cost (3, 5),
cost (II, 4) + cost (4, 5)

	            = min {10 + 10, 20 + 40, 30 + ∞}
         = 20 → Via path 1 – 2 – 5

Cost (III, 6) = min {cost (II, 2) + cost (2, 6), 
cost (II, 3) + cost (3, 6),
cost (II, 4) + cost (4, 6)}

	            = min {10 + 20, 20 + ∞, 30 + 40}
	            = 30 → via the path 1 – 2 – 6

Cost (III, 7) = min {cost(II, 2) + cost (2, 7), 
Cost (II, 3) + cost (3, 7),
 Cost (II, 4) + cost (4, 7)}

           = min {10 + 30, 20 + 50, 30 + 30}
          = 40 → Via the path 1 – 2 – 7

Step IV:
Cost (IV, 8) = min {cost (III, 5) + cost (5, 8),

 Cost (III, 6) + cost (6, 8), 
  Cost (III, 7) + cost (7, 8)}

   = min {20 + 10, 30 + ∞, 40 + ∞}
    = 30 → Via path 1 – 2 – 5 – 8

 Cost (IV, 9) = min {cost (III, 5) + cost (5, 9), 
Cost (III, 6) + cost (6, 9),
Cost (III, 7) + cost (7, 9)}

     = min {20 + 20, 30 + 20, 40 + ∞}
     = 40 → Via the path 1 – 2 – 5 – 9 

 Cost (IV, 10) = min {cost (III, 5) + cost (5, 10), 
Cost (III, 6) + cost (6, 10), 
Cost (III, 7) + cost (7, 10}

      = min {20 + 30, 30 + 30, 40 + 30}
      = 50 → Via the path 1 – 2 – 5 – 10

Cost (IV, 11) = min {cost (III, 5) + cost (5, 11)
Cost (III, 6) + cost (6, 11),
Cost (III, 7) + cost (7, 11)}

          = min {20 + 40, 30 + ∞, 40 + 20}
      = 60 → Via the path 1 – 2 – 5 – 11

   or Via the path 1 – 2 – 7 – 11

Step V:
Cost (V, 12) = min {cost (IV, 8) + cost (8, 12)

Cost (IV, 9) + cost (9, 12),
Cost (IV, 10) + cost (10, 12),
Cost (IV, 11) + cost (11, 12)}

                 = min {30 + 10, 40 + ∞, 50 + ∞, 60 + ∞}
                    = 40 → Via the path 1 - 2 - 5 – 8 – 12

Cost (V, 13) = min {cost (IV, 8) + cost (8, 13)
Cost (IV, 9) + cost (9, 13),
Cost (IV, 10) + cost (10, 13),
Cost (IV, 11) + cost (11, 13)}

                    = min {30 + 20, 40 + 20, 50 + 10, 60 + 10}
                    = 50 → Via the path 1 – 2 – 5 – 8 – 13

Cost (V, 14) = min {cost (IV, 8) + cost (8, 14)
   Cost (IV, 9) + cost (9, 14),
   Cost (IV, 10) + cost (10, 14),
   Cost (IV, 11) + cost (11, 14)}

                    = min {30 + 30, 40 + 10, 50 + 20, 60 + 30}
     50 → Via the path 1 – 2 – 5 – 9 – 14 
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Step VI:

  Cost (VI, 15) = min {cost (V, 12) + cost (12, 15), 
      Cost (V, 13) + cost (13, 15),
      Cost (V, 14) + cost (14, 15)}

       = min {40 + 20, 50 + 10, 50 + 30}
      = 60 → Via the path 1 – 2 – 5 - 8 – 13 – 15 

           (or) 1 – 2 – 5 – 8 – 12 – 15 

All Pairs Shortest Path Problem 
(Floyd–Warshall Algorithm)
A weighted graph is a collection of points (vertices) con-
nected by lines (edges), where each edge has a weight (some 
real number) associated with it.

Example:  A graph in the real world is a road map. Each 
location is a vertex and each road connecting locations is an 
edge. We can think of the distance travelled on a road from 
one location to another as the weight of that edge. 

•• �The Floyd–Warshall algorithm determines the shortest 
path between all pairs of vertices in a graph. 

•• �The vertices in a graph be numbered from 1 to n. Consider 
the subset {1, 2, … K} of these n vertices. 

•• �Finding the shortest path from vertex i to vertex j that uses 
vertex in the set {1, 2, … K} only. There are two situations. 

		  1. K is an intermediate vertex on the shortest path.
		  2. K is not an intermediate vertex on the shortest path. 
In the first situation, we can break down our shortest path 
into two paths: i to K and then K to j. Note that all the ver-
tices from i to K are from the set {1, 2, … K – 1} and that 
all the intermediate vertices from K to j are from the set {1, 
2, … K –1}. Also in the second situation, we simply have 
that all intermediate vertices are from the set {1, 2, ... K – 
1}. Now define the function D for a weighted graph with the 
vertices {1, 2, … n} as follows. 

D (i, j, K) = the shortest distance from vertex i to vertex j 
using the intermediate vertices. In the set {1, 2, … K}

Using the above idea, we can recursively define the func-
tion D.

D(i, j, K) = W(i, j) if K = 0 
min (D(i, j, K – 1), D(i, K, K –1) + D(K, j, K – 1)) if K > 0

•• The first line says that if we do not allow intermediate verti-
ces, then the shortest path between two vertices is the weight 
of the edge that connects them. If no such weightexists, we 
usually define this shortest path to be of length infinity.

•• The second line pertains to allowing intermediate vertices. It 
says that the minimum path from i to j through vertices {1, 
2, … K} is either the minimum path from i to j  through ver-
tices {1, 2, … K – 1} OR the sum of the minimum path from 
vertex i to K through {1, 2, … K – 1} plus the minimum path 
from vertex K to j through {1, 2, … K – 1}. Since this is the 
case, we compute both and choose the smaller of these.

Example:
1
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1
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V5

V1
V2

V3V4

2

The weight matrix will be 

1 2 3 4 5

1 0 1 ∞ 1 5

2 9 0 3 2 ∞

3 ∞ ∞ 0 4 ∞

4 ∞ ∞ 2 0 3

5 3 ∞ ∞ ∞ 0

Let D(K) [i, j] =  weight of a shortest path from v
i
 to v

j
 using 

only vertices from {v
1
, v

2
, … v

k
} as intermediate vertices in 

the path. 

•• D(0) = W
•• D(n) = D which is the goal matrix.

How to compute D(K) from D(K–1)?

Case I:   �A shortest path from v
i
 to v

j
 restricted to using only 

vertices from {v
1
, v

2
, … v

K
} as intermediate verti-

ces does not use V
K
. 

   Then D(K) [i, j] = D(K-1) [i, j]
Case II: � A shortest path from v

i
 to v

j 
restricted to using only 

vertices from {v
1
, v

2
 … v

K
} as intermediate vertices 

does use V
K
. Then D(K) [i, j] = D(K-1) [i, K] + D(K-1) 

[K, j]
  Since D(K) [i, j] = D(K-1) [i, j]
  �or D(K) [i, j] = D(K-1) [i, K] + D(K –1) [K, j]
   �We conclude: D(K) [i, j] = min{D(K-1) [i, j], D(K –1) [i, 

K] + D(K–1) [K, j]}

Example:  1

1

2

3

−3

4 2

5

1 2 3

1 0 4 5

W = D° = 2 2 0 ∞
3 ∞ –3 0

1 2 3
1 0 0 0

P = 2 0 0 0
3 0 0 0
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K = 1, vertex 1 can be intermediate node 
D1 [2, 3] = min (D°[2, 3], D°[2, 1] + D°[1, 3])

= min (∞, 7)
= 7

D1 [3, 2] = min (D°[3, 2], D°[3, 1] + D°[1, 2])
= min (−3, ∞)
= –3

1 2 3
D1 = 1 0 4 5

2 2 0 7
3 ∞ –3 0

1 2 3
P = 1 0 0 0

2 0 0 1
3 0 0 0

K = 2, vertices 1, 2 can be intermediate nodes, 
D2 [1, 3] = min (D′[1, 3], D′[1, 2] + D′[2, 3])

= min (5, 4 + 7) = 5
D2 [3, 1] = min (D′[3, 1], D′[3, 2] + D′[2, 1])

= min (∞, –3 + 2)
= –1

1 2 3
D2 = 1 0 4 5

2 2 0 7
3 –1 –3 0

1 2 3
P = 1 0 0 0

2 0 0 1
3 2 0 0

K = 3 vertices 1, 2, 3 can be intermediate 
D3[1, 2] = min (D2[1, 2], D2[1, 3] + D2[3, 2])

= min (4, 5 + (–3))
= 2

D3[2, 1] = min (D2[2, 1], D2[ 2, 3] + D2[3, 1])
 = min (2, 7 + (–1))
 = 2

1 2 3
1 0 2 5

D3 = 2 2 0 7
3 –1 -3 0

1 2 3
 1 0 3 0
P = 2 0 0 1

3 2 0 0

Example 2:

13

5

3

4
2 3

4

2

5
1

1

6

50
1

7

The final distance matrix and P

1 2 3 4 5 6

1 0 2(6) 2(6) 4(6) 3 1

2 2(6) 0 2(6) 4(6) 5(6) 1

D6 = 3 2(6) 2(6) 0 2 5(4) 1

4 4(6) 4(6) 2 0 3 3(3)

5 3 5(4) 5(4) 3 0 4(1)

6 1 1 1 3(3) 4(1) 0

The values in parenthesis are the non-zero P values.

Table 1  Divide and conquer vs dynamic programming. 

1. � This design strategy 
divides the problem into 
sub problems, conquer the 
each sub problem recur-
sively, finally combine all 
the sub problem solutions, 
for the original problem. 

1. � This design strategy 
chooses an optimal solu-
tion for the problem, by 
recursively defining the 
value of optimal solution, 
these values are computed 
in bottom up fashion or top 
down fashion. 

2. � each sub problem is solved 
recursively, and consumes 
more time at each sub 
problem

2. � Each sub problem is 
solved only once and is 
stored in table 

3. � Sub problems are inde-
pendent of each other e.g., 
Binary search

3. � The sub problems are 
dependent e.g., Traveling  
sales person problem

Dynamic Programming  
vs Greedy Method
The main difference between greedy method (GM) and 
dynamic programming (DP) methodology is, DP consid-
ers all possible solutions for the given problem and picks 
the optimal one. Where as greedy, considers only one set of 
solutions to the problem. 

The other difference between GM and DP is that, GM 
considers the choice, which is best at that step, which is done 
at each level of the sub problem. That is, it won’t reconsider 
its choice. The choices reflect only present, won’t consider 
the future choices, where as DP tries out all the best alterna-
tives and finds the optimal solution. It implements principle of 
optimality. At each stage of the problem, it decides based on 
the previous decision made in the previous stage. 
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Hashing Methods

Uniform Hash Function
If the keys, K, are integers randomly distributed in [0, r] 
then hash function H(K) is given as 

H K
mk

r
( ) = 





H(K) is a uniform hash function 
Uniform hashing function should ensure 

Σ Σ ΣP K P K P K
mK h K K h K K h K

( ) ( ) ( )
| ( ) | ( ) | ( )= = =

= = =
0 1 0

1
�

P(K) = probability that a key K, occurs that is the number of 
keys that map to each slot is equal.

Division method
Hashing an integer x is to divide x by M and then to use the 
remainder modulo M. This is called the division method of 
hashing. In this case the hash function is 

h(x) = x mod M

Generally this approach is quite good for just about any 
value of M. However, in certain situations some extra care is 
needed in the selection of a suitable value for M. For exam-
ple, it is often convenient to make M an even number. But 
this means that h(x) is even if x is even, and h(x) is odd of x 
is odd. If all possible keys are equiprobable, then this is not 
a problem. However, if say even keys are more likely than 
odd keys, the function h(x) = x mod M will not spread the 
hashed values of those keys evenly.

•• Let M be a power of two, i.e., M = 2k for some integer k > 1.
In this case, the hash function h(x) = x mod 2k simply 
extracts the bottom k-bits of the binary representation of 
x. While this hash function is quite easy to compute, it is 
not a desirable function because it does not depend on all 
the bits in the binary representation of x.

•• For these reasons M is often chosen to be a prime number. 
Suppose there is bias in the way the keys are created that 
makes it more likely for a key to be a multiple of some 
small constant, say two or three. Then making M a prime 
increases the likelihood that those keys are spread out 
evenly. Also if M is a prime number, the division of x by 
that prime number depends on all the bits of x, not just the 
bottom k-bits, for some small constant k. 

Example:  Hash table size = 10
Key value = 112
Hash function = h(k) = k mod M
	          = 112 mod 10 = 2

Disadvantage: A potential disadvantage of the division 
method is due to the property that consecutive keys map to 
consecutive hash values. 

h(i) = i
h(i + 1) = i + 1 (mod M)
h(i + 2) = i + 2 (mod M)

.

.

.
While this ensures that consecutive keys do not collide, it 
does not mean that consecutive array locations will be occu-
pied. We will see that in certain implementations this can 
lead to degradation in performance. 

Multiplication method
A variation on the middle-square method that alleviates its 
deficiencies is called, multiplication hashing method. Instead 
of multiplying the key x by itself, we multiply the key by a 
carefully chosen constant ‘a’ and then extract the middle k 
bits from the result. In this case, the hashing function is 

h x
M

W
ax W( ) ( mod ))= 





if we want to avoid the problems that the middle-square 
method encounters with keys having a large number of 
leading (or) trailing zero’s then we should choose an ‘a’ that 
has neither leading nor trailing zero’s.

Furthermore, if we, choose an ‘a’ that is relatively prime 
to W, then there exists another number ‘a’ such that aa′ = 1 
(mod W). Such a number has the nice property that if we 
take a key x, and multiply it by ‘a’ to get ax, we can recover 
the original key by multiplying the product again by a′, 
since a × a′ = aa′x = 1x.

The multiplication method for creating a hash function 
operates in two steps:

Step 1: Multiply the key K by a constant A in the 
range 0 < A < 1 and extract the fractional part of KA.
Step 2: Multiply this value by M and take the floor of the 
result. 

In short the hash function is 

h k M KA( ) ( mod )= ⋅ 1

Where (KA mod 1) denotes the fractional part of KA, that 

is KA KA 

Example:
Let m = 10000, K A= = −

123456
5 1

2
and

	 	 	              = 0.618033

Then h k( ) ( . mod )= ⋅ ⋅ 10000 123456 0 61803 1

= ⋅ 10000 76300 00412 1( . mod )

= ⋅  =10000 0 00412 41.
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Practical issues
•• Easy to implement 

	 –On most machines multiplication is faster than division. 
	 –We can substitute one multiplication by shift operation. 
	 –We don’t need to do floating-point operations.
•• If successive keys have a large interval, A = 0.6125423371 

can be recommended. 

Mid-square method
A good hash function to use with integer key values is the 
mid-square method. The mid-square method squares the key 
value, and then takes out the middle ‘r’ bits of the result, giv-
ing a value in the range 0 to 2r – 1. This works well because 
most (or) all bits of the key value contribute to the result. 

Example:
Consider records whose keys are 4-digit numbers in base 
10. The goal is to hash these key values to a table of size 
100(i.e., a range of 0 to 99).

This range is equivalent to two digits in base 10. 
That is r = 2. If the input is the number 4567, squaring 

yields an 8-digit number, 20857489. The middle two digits of 
this result are 57. All digits of the original key value (equiva-
lently, all bits when the number is viewed in binary) contribute 
to the middle two digits of the squared value. Thus, the result is 
not dominated by the distribution of the bottom or the top digit 
of the original key value. Of course, if the key values all tend 
to be small numbers, then their squares will only affect the low 
order digits of the hash value. 

Example:  To map the key 3121 into a hash table of size 
1000, we square it (3121)2 = 9740641 and extract 406 as 
the hash value. 

Folding method
The folding method breaks up a key into precise segments 
that are added to form a hash value, and still another tech-
nique is to apply a multiplicative hash function to each seg-
ment individually before folding. 

Algorithm  H(x) = (a + b + c) mod m. Where a, b, and c 
represent the preconditioned key broken down into three 
parts, m is the table size, and mod stands for modulo. In other 
words: The sum of three parts of the pre conditioned key is 
divided by the table size. The remainder is the hash key. 

Example:
Fold the key 123456789 into a hash table of ten spaces (0 
through 9)

We are given x = 123456789 and the table size (i.e., m = 10)
Since we can break x into three parts any way, we will 

break it up evenly.
Thus a = 123, b = 456 and c = 789
H(x) = (a + b + c) mod M
H(123456789) = (123 + 456 + 789) mod 10 
	 	  = 1368 mod 10 = 8

123456789 are inserted into the table at address 8. 
The folding method is distribution independent. 

Resolving collisions  In collision resolution strategy 
algorithms and data structures are used to handle two hash 
keys that hash to the same hash keys. There are a number of 
collision resolution techniques, but the most popular are open 
addressing and chaining.

•• Chaining: An array of linked list, Separate chaining 
•• Open Addressing: Array based implementation: 

	 – Linear probing (Linear Search)
	 – Quadratic probing (non-linear search)
	 – Double hashing (use two hash functions)

Separate chaining  Every linked list has each element 
that collides to the similar slot. Insertion need to locate the 
accurate slot and appending to any end of the list in that slot 
wherever, deletion needs searching the list and removal. 

[0]
[1]

[2]

[3]
[4]

[5]

[6]

[7]

18

72

10

43

36
5

6

15

Hash key = key % table size
4 = 36% 8
2 = 18% 8
0 = 72% 8
3 = 43% 8
6 = 6% 8
2 = 10% 8
5 = 5% 8
7 = 15% 8

Figure 1  Separate chaining

Open addressing  Open addressing hash tables are used to 
stock up the records straight inside the array. This approach 
is also known as closed hashing. This procedure is based on 
probing. Well known probe sequence include:
•• Linear probing: In which the interval between probes is 

fixed often at 1.
•• Quadratic probing: In which the interval between probes 

increases proportional to the hash value (the interval thus 
increasing linearly and the indices are described by a 
quadratic function).

•• Double hashing: In which the interval between probes is 
computed by another hash function. 

	 (i)	 Linear probing: Linear probing method is used for 
resolving hash collisions of values of hash functions 
by sequentially searching the hash table for a free loca-
tion. The item will be stored in the next available slot 
in the table in linear probing. Also an assumption is 
made that the table is not already full. 

This is implemented via a linear search for an empty 
slot, from the point of collision. 

If the physical end of table is reached during the 
linear search, the search will again get start around to 
the beginning of the table and continue from there. The 
table is considered as full, if an empty slot is not found 
before reaching the point of collision. 
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72

18

43

36

6

7

5

72

18

43

36

10

6

7

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Add the keys 10, 5 and 
15 to the previous 
example. 
Hash key = key % table 
size
2 = 10% 8
5 = 5% 8
7 = 15% 8

Figure 2  Linear probing

		  Limitation: A problem with linear probe method is 
primary clustering. In primary clustering blocks of data 
may possibly be able to form collision. Several attempts 
may be required by any key that hashes into the cluster 
to resolve the collision. 

	(ii)	 Quadratic probing: To resolve the primary clustering 
problem, quadratic probing can be used. With quadratic 
probing, rather than always moving one spot, move i2 
spots from the point of collision where i is the number 
of attempts needed to resolve the collision.

[0]

[1]

[2]
[3]
[4]
[5]
[6]

[7]

49

58
69

18
89

[8]

[9]

 

89% 10 = 9
18% 10 = 8
49% 10 = 9 → 1 attempt needed → 12 = 1 spot 
58% 10 = 8 → 2 attempts needed → 22 = 4 spot
69% 10 = 9 → 2 attempts needed → 22 = 4 spot

		  Limitation: Maximum half of the table can be used 
as substitute locations to resolve collisions. Once the 
table gets more than half full, its really hard to locate 
an unfilled spot. This new difficulty is recognized as 
secondary clustering because elements that hash to the 
same hash key will always probe the identical substi-
tute cells. 

	(iii)	 Double hashing: Double hashing uses the idea of 
applying a second hash function to the key when a col-
lision occurs, the result of the second hash function 
will be the number of positions from the point of col-
lision to insert. There are some requirements for the 
second function: 

	 1.	 It must never evaluate to zero 
	 2.	 Must make sure that all cells can be probed.

A popular second hash function is:
Hash(key) = R-(Key mod R) where R is a prime num-
ber smaller than the size of the table. 

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

49

18
89

[8]

[9]

Table size = 10 elements 
Hash1(key) = key %10
Hash 2(key) = 7 − (key %7)
Insert keys: 89, 18, 49, 58 and 69
Hash key (89) = 89% 10 = 9
Hash key (18) = 18% 10 = 8
Hash key (49) = 49% 10 = 9 (collision)
      = (7 − (49% 7)
      = (7 − (0))
      = 7 positions from [9]

Figure 3  Double hashing

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]

49

18
89

[8]
[9]

69

58

Insert keys = 58, 69
       Hash key (58) = 58% 10 = 8 a collision!
       = (7 − (58% 7) = (7 − 2 ) = 5 positions from [8]
Hash key (69) = 69% 10 = 9 a collision!
       = (7 − (69 % 7)) = (7 − 6) = 1 position from [9]

Figure 4  Double hashing

Matrix-chain Multiplication
We are given a sequence of n matrices m

1
, m

2
 … m

n
 to be mul-

tiplied. If the chain matrices is < m
1
, m

2
, m

3
, m

4
>, the product 

m
1
, m

2
, m

3
, m

4
 can be fully parenthesized in 5 distinct ways:

	 1.	 (m
1
 (m

2
 (m

3
 m

4
)))

	 2.	 (m
1
 ((m

2
 m

3
) m

4
))

	 3.	 ((m
1
 m

2
) (m

3
 m

4
))

	 4.	 ((m
1
 (m

2
 m

3
)) m

4
)

	 5.	 (((m
1
 m

2
) m

3
) m

4
)

The way we parenthesize a chain of matrices can have a 
dramatic impact on the cost of evaluating the product. We 
can multiply 2 matrices A and B only if they are compatible 
i.e., the number of columns of A must equal the number 
of rows of B. If A is a (p × q) matrix and B is a (q × r) 
matrix, the resulting matrix C is a (p × r) matrix. The time 
to compute C is the number of scalar multiplications, which 
is (pqr).

Example:  Consider the problem of a chain <m
1
, m

2
, m

3
> of 

three matrices. Suppose that the dimensions of the matrices 
are (6 × 8), (8 × 14), (14 × 20) respectively. Which parenthe-
sization will give least number of multiplications?
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Soluation: 

	 (i)	 ((m1 m2) m3)
		  [m1]6 × 8 × [m2]8 × 14 = [m1 m2]6 × 14

		  Number of multiplications performed 
		  = 6 × 8 × 14 = 672
		  [m1 m2]6 × 14 × [m3]14 × 20 = ((m1 m2) m3)6 × 20

		  Number of multiplications performed 
		  = 6 × 14 × 20 = 1680
		  Total number of multiplications 
		  = 672 + 1680 = 2352
	 (ii)	 (m1 (m2 m3))
		  [m2]8 × 14 × [m3]14 × 20 = [m2 m3]8 × 20

		  Number of multiplications performed 
		  = 8 × 14 × 20 = 2240
		  [m1]6 × 8 × [m2 m3]8 × 20 = (m1 (m2 m3))6 × 20

		  Number of multiplications performed 
		  = 6 × 8 × 20 = 960
		  Total number of multiplications = 960 + 2240 = 3200

∴ ((m1 m2) m3) gives least number of multiplications.
We need to define the cost of an optimal solution recur-

sively in terms of the optimal solutions to sub problems. For 
Matrix-chain multiplication problem, we pick as our sub 
problem the problems of determining the minimum cost of 
a parenthesization of A

i
 A

i+1 … A
j
 for 1 ≤ i ≤ j ≤ n let m[i, j] 

be the minimum number of scalar multiplications needed to 
compute the matrix A

i
 … 

j
; for the full problem, the cost of 

a cheapest way to compute A1 … 
N
 would be m[1, n]. We can 

define m[i, j] recursively as follows:

m [i, j] = m [i, k] + m [k + 1, j] + P
i-1

 P
k
 P

j

If i = j, the problem is trivial. The chain consists of just one 
matrix A

i
 … 

i
 = A

i
, so that no scalar multiplications are nec-

essary to compute the product.
Minimum cost of parenthesizing the product A

i
 A

i+1 … 
A

j
 becomes

m i j

if i j

m i k m k j

p p p if i j i k ji k i

[ , ] min{ [ , ] [ , ]

} ,

=
=

+ +
+ < ≤ <





 −

0

1

1

The m[i, j] values give the costs of optimal solutions to sub 
problems.

At this point, to write a recursive algorithm based on 
recurrence to compute the minimum cost m[1, n] for mul-
tiplying A1 A2 … A

n
. However, this algorithm takes expo-

nential time, which is not better than the brute force method 
of checking each way of parenthesizing the product. The 
important observation we can make at this point is that we 
have relatively few sub problems, one problem for each 
choice of i and j satisfying 1 ≤ i ≤ j ≤ n (or) 

n
n n

2
2






 + = θ ( )  in all. The property of overlapping 

sub problems is the second hallmark of the applicability of 
dynamic programming. 

The first hall mark being optimal substructure.
Algorithm
  1.  n ← length [p] – 1
  2.  for i ← 1 to n
  3.  do m[i, i] ← 0
  4.  for i ← 2 to n
  5.  do for i ← 1 to n – i + 1
  6.  do j ← i + i – 1
  7.  m[i, j] ← ∞
  8.  for k ← i to j – 1
  9.  do q ← m [i, k] + m [k + 1, j] + P

i – 1
 P

k
 P

j

10.  if q < m [i, j]
11.  then m [i, j] ← q
12.  S[i, j] ← k
13.  return m and S

It first computes m[i, j] ← 0 for i = 1, 2 … n (the minimum 
costs for chains of length 1). To compute m[i, i + 1] for i = 1, 
2, … n – 1(the minimum costs for chains of length l = 2 and 
so on). At each step, the m[i, j] cost computed depends only 
on table entries m[i, k] and m[k + 1, j] already computed. An 
entry m[i, j] is computed using the products P

i–1
 P

k
 P

j
 for k 

= i, i + 1, … j – 1. A simple inspection of the nested loop 
structure of the above algorithm yields a running time of 
O(n3) for the algorithm.

Longest Common Subsequence
A sub sequence of a given sequence is just the given 
sequence with 0 or more elements left out. Formally, given a 
sequence x = <x

1
, x

2
 … x

m
>, another sequence z = <z

1
, z

2
 … 

z
k
 > is a subsequence of x if there exists a strictly increasing 

sequence <i
1
, i

2 
… i

k
> of indices of x such that for all j = 1, 

2 … k, we have x
ij
 = z

j

Example: z = < B, C, D, B > is a subsequence of x = <A, 
B, C, B, D, A, B> with corresponding index sequence <2, 
3, 5, 7>

Example: Given 2 sequences x and y, we say that a sequence 
z is a common sub sequence of x and y if z is a sub sequence 
of both x and y.

If x = <A, B, C, B, D, A, B>
 y = <B, D, C, A, B, A>

The sequence <B, C, A> is a common subsequence of both 
x and y.

The sequence <B, C, A> is not a longest common sub-
sequence (LCS) of x and y since it has length ‘3’ and the 
sequence <B, C, B, A>, which is also common to both x 
and y, has length 4. The sequence <B, C, B, A> is an LCS 
of x and y, as is the sequence <B, D, A, B>, since there is no 
common subsequence of length 5 or greater.
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•• In the longest-common-sub sequence problem, we are 
given 2 sequences x = <x1, x2, x3 … x

m
> and y = <y1, y2 … 

y
n
> and wish to find a maximum length common subse-

quence of x and y.
•• LCS problem can be solved efficiently using dynamic 

programming.
•• A brute force approach to solve the LCS problem is to enu-

merate all subsequences of x and check each subsequence 
to see if it is also a subsequence of y, keeping track of the 
longest subsequence found. Each subsequence of x corre-
sponds to a subset of the indices {1, 2 … m} of x. There are  
2m subsequences of x, so this approach requires exponen-
tial time, making it impractical for long sequences.

•• The classes of sub problems correspond to pairs of ‘pre 
fixes’ of 2 input sequences:
Given a sequence x = <x1, x2 … x

m
>, we define the ith 

prefix of x, for i = 0, 1, … m, as 
x

i
 = <x1 x2 … x

i
>

Example: If x = <A, B, C, B, D, A, D>, then x
4
 = <A, B, C, 

B> and x
0
 is the empty sequence. LCS problem has an opti-

mal sub-structure property.

Optimal Substructure of LCS
Let x = <x

1
, x

2
 … x

m
> and y = <y

1
, y

2
 … y

n
> be sequences 

and let z = <z
1
, z

2
 … z

k
> be any LCS of x and y then 

	 1.	 If x
m
 = y

n
, then z

k
 = x

m
 = y

n
 and z

k–1 is an LCS of x
m –1 and 

y
n – 1.

	 2.	 If x
m
 ≠ y

n
, then z

k
 ≠ x

m
 implies that z is an LCS of x

m–1 
and y.

	 3.	 If x
m
 ≠ y

n
, then z

k
 ≠ y

n
 implies that z is an LCS of x and 

y
n – 1.

NP-hard and NP-complete
A mathematical problem for which, even in theory, no short-
cut or smart algorithm is possible that would lead to a sim-
ple or rapid solution. Instead the only way to find an optimal 
solution is a computationally intensive, exhaustive analysis in 
which all possible outcomes are tested. Examples of NP-hard 
problems include the travelling salesman problem. 

P-problem
A problem is assigned to the P (polynomial time) class if 
there exists at least one algorithm to solve that problem, 
such that number of steps of the algorithm is bounded by a 
polynomial  in n, where n is the length of the input. 

NP-problem
A problem is assigned to the NP (non-deterministic poly-
nomial time) class if it is solvable in polynomial time by a 
non-deterministic turing machine. 

A P-problem (whose solution time is bounded by a pol-
ynomial) is always also NP. If a problem is known to be 

NP, and a solution to the problem is somehow known, then 
demonstrating the correctness of the solution can always be 
reduced to a single P (polynomial time) verification. If P 
and NP are not equivalent then the solution of NP-problems 
requires (in the worst case) an exhaustive search. 

A problem is said to be NP-hard, if an algorithm for 
solving it can be translated into one for solving any other 
NP-problem. It is much easier to show that a problem is NP 
than to show that it is NP-hard. A problem which is both 
NP and NP-hard is called an NP-complete problem. 

P versus NP-problems
The P versus NP problem is the determination of whether 
all NP-problems are actually P-problems, if P and NP are 
not equivalent then the solution of NP-problem requires an 
exhaustive search, while if they are, then asymptotically 
faster algorithms may exist. 

NP-complete problem
A problem which is both NP (verifiable in non-deterministic 
polynomial time) and NP-hard (any NP-problem can be 
translated into this problem). Examples of NP-hard prob-
lems include the Hamiltonian cycle and travelling sales man 
problems. 

Example:

Circuit satisfiability is a good example of problem that we 
don’t know how to solve in polynomial time. In this prob-
lem, the input is a Boolean circuit. A collection of and, or 
and not gates connected by wires. The input to the circuit is 
a set of m Boolean (true/false) values x

1
 … x

m
. The output 

is a single Boolean value. The circuit satisfiability problem 
asks, given a circuit, whether there is an input that makes 
the circuit output TRUE, or conversely, whether the circuit 
always outputs FLASE. Nobody knows how to solve this 
problem faster than just trying all 2m possible inputs to the 
circuit but this requires exponential time. 

P, NP, and Co-NP

•• P is a set of yes/no problems that can be solved in poly-
nomial time. Intuitively P is the set of problems that can 
be solved quickly. 

•• NP is the set of yes/no problems with the following 
property: If the answer is yes, then there is a proof of this 
fact that can be checked in polynomial time. Intuitively 
NP is the set of problems where we can verify a YES 
answer quickly if we have the solution in front of us. 

Example:  The circuit satisfiability problem is in NP. 

If the answer is yes, then any set of m input values that pro-
duces TRUE output is a proof of this fact, we can check the 
proof by evaluating the circuit in polynomial time.

•• Co-NP is the exact opposite of NP. If the answer to a 
problem in co-NP is no, then there is a proof of this fact 
that can be checked in polynomial time. 
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•• π is NP-hard ⇒ if π can be solved in polynomial time, 
then P = NP.

This is like saying that if we could solve one particular 
NP-hard problem quickly, then we could solve any problem 
whose solution is easy to understand, using the solution to 
that one special problem as a subroutine. NP-hard problems 
are atleast as hard as any problem in NP. 

•• Saying that a problem is NP-hard is like saying ‘If I own 
a dog, then it can speak fluent English’. You probably 
don’t know whether or not I own a dog, but you’re prob-
ably pretty sure that I don’t own a talking dog. Nobody 
has a mathematical proof that dogs can’t speak English. 
The fact that no one has ever heard a dog speak English 
is evidence as per the hundreds of examinations of dogs 
that lacked the proper mouth shape and brain power, but 
mere evidence is not a proof nevertheless, no sane person 
would believe me if I said I owned a dog that spoke fluent 
English. So the statement ‘If I own a dog then it can speak 
fluent English’ has a natural corollary: No one in their 
right mind should believe that I own a dog ! Likewise if 
a problem is NP-hard no one in their right mind should 
believe it can be solved in polynomial time.

Co−NP NP

NP−complete

NP−hard

P

Cooks Theorem
Cook’s theorem states that CNFSAT is NP-Complete 

It means, if the problem is in NP, then the deterministic 
Turing machine can reduce the problem in polynomial time. 

The inference that can be taken from these theorems is, 
if deterministic polynomial time algorithm exists for solv-
ing satisfiability, then to all problems present in NP can be 
solved in polynomial time.

Non-deterministic Search
Non-deterministic algorithms are faster, compared to 
deterministic ones. The computations are fast as it always 
chooses right step

The following functions are used to specify these algorithms 
	 1.	 Choice (A), which chooses a random element from set A
	 2.	 Failure (A), specifies failure 
	 3.	 Success ( ), Specifies success 

The non-deterministic search is done as follows. 
Let us consider an array S[1 … n], n ≥ 1 we need to get 

the indice of ‘i’ such that S[i] = t (or) i = 0. The algorithm 
is given below. 
Steps: 

	 1.	 i = Choice (1, n); 
	 2.	 if S[i] = t, then 
		   (i)	 Print (i);
		  (ii)	 Success ( );
	 3.	 Print (0)
		  failure 
	 4.	 Stop. 

If the search is successful it returns the indice of array ‘S’, 
otherwise it returns ‘0’, the time complexity is Ω(n).

Exercises

Practice Problems 1
Directions for questions 1 to 15:  Select the correct alternative 
from the given choices.
	 1.	 Hash the keys 12, 44, 13, 88, 23, 94, 11, 39, 20 using 

the hash function with chaining (2 k + 5) mod 11, which 
of the following slots are empty?

	 (A)	 0, 1, 2, 3, 4	 (B)	 0, 2, 3, 4, 8, 10
	 (C)	 0, 1, 2, 4, 8, 10	 (D)	 0, 1, 2, 4, 8
	 2.	 Using linear probing on the list given in the above ques-

tion with the same hash function, which slots are not 
occupied?

	 (A)	 3, 4	 (B)	 4, 5
	 (C)	 3, 6	 (D)	 4, 6
	 3.	 In hashing, key value 123456 is hashed to which 

address using multiplication method (m = 104)?
	 (A)	 40	 (B)	 41
	 (C)	 42	 (D)	 44

	 4.	 Insert element 14 into the given hash table with double 
hashing? h

1
 (k) = k mod 13, h

2
 (k) = 1 + (k mod 11). The 

element will occupy, which slot?

0
1 79
2
3
4 69
5 98
6
7 72
8
9
10
11 50
12
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	 (A)	 7th	 (B)	 8th
	 (C)	 2nd 	 (D)	 9th 

	 5.	 Consider the below given keys:

		  257145368, 25842354, 12487654, 248645452. Find 
the hash values of keys using shift folding method?

	 (A)	 770, 221, 153, 345	 (B)	 221, 770, 153, 345
	 (C)	 760, 770, 153, 345	 (D)	 815, 770, 153, 345

	 6.	 Consider the following two problems on unidirected 
graphs.

		  β : Given G(V, E), does G have an independent set of 
size |V|-4?

		  α : Given G(V, E), does G have an independent set of 
size 5?

		  Which of the following is true?
	 (A)	 β is in P and α is in NP-Complete
	 (B)	 β is in NP-Complete and α is in P
	 (C)	 Both α and β are NP-Complete
	 (D)	 Both α and β are in P

	 7.	 Let S be an NP-complete problem and Q and R be 
two other problems not known to be in NP. Q is pol-
ynomial-time reducible to S and S is polynomial-time 
reducible to R. Which one of the following statements 
is true?

	 (A)	 R is NP-Complete	 (B)	 R is NP-Hard
	 (C)	 Q is NP-Complete	 (D)	 Q is NP-Hard

	 8.	 Let FHAM
3
 be the problem of finding a Hamiltonian cycle 

in a graph G = (V, E) with |V| divisible by 3 and DHAM
3
 

be the problem of determining if a Hamiltonian cycle 
exists in such graphs. Which of the following is true?

	 (A)	 Both FHAM
3
 and DHAM

3
 are NP-hard

	 (B)	 FHAM
3 
is NP-hard but DHAM

3
 is not

	 (C)	 DHAM
3
 is NP-hard but FHAM

3
 is not

	 (D)	 Neither FHAM
3
 nor DHAM

3
 is NP-hard

	 9.	 Consider a hash table of size 7, with starting index ‘0’ 
and a hash function (3x + 4) mod 7. Initially hash table 
is empty. The sequence 1, 3, 8, 10 is inserted into the 
table using closed hashing then what is the position of 
element 10?

	 (A)	 1st	 (B)	 2nd
	 (C)	 6th	 (D)	 0th

	10.	 Place the given keys in the hash table of size 13, index 
from ‘0’ by using open hashing, hash function is h(k) 
mod 13.

		  Keys: A, FOOL, HIS, AND

		  (hint : Add the positions of a word’s letters in the alpha-
bet, take A → 1, B → 2, C → 3. D → 4 … Z → 26).

		  Which of the following shows the correct hash 
addresses of keys?

	 (A)	 A – 1, FOOL – 10, HIS – 9, AND – 6
	 (B)	 A – 1, FOOL – 9, HIS – 10, AND – 6
	 (C)	 A – 0, FOOL – 6, HIS – 10, AND – 9
	 (D)	 A – 0, FOOL – 9, HIS – 9, AND – 6

	11.	 Consider the following input (322, 334, 471, 679, 989, 
171, 173, 199) and the hash function is x mod 10 which 
statement is true?

		  I.	 679, 989, 199 hash to the same value

		  II.	 471, 171, hash to the same value

		  III.	 Each element hashes to a different value

		  IV.	 All the elements hash to the same value
	 (A)	 I Only	 (B)	 II Only
	 (C)	 I and II	 (D)	 III

	12.	 For the input 30, 20, 56, 75, 31, 19 and hash function 
h (k) = k mod 11, what is the largest number of key 
comparisons in a successful search in the open hash 
table.

	 (A)	 4	 (B)	 3
	 (C)	 5	 (D)	 2

	13.	 The keys 12, 18, 13, 2, 3, 23, 5 and 15 are inserted into 
an empty hash table of length 10 using open address-
ing with hash function, h (k) = k mod 10 and linear 
probing.

			   Which is the resultant hash table?
	 (A)	

0

1

2 2

23 3

13 4

15 5

6

7

8

9

	 (B)	 0

3 1

12 2

13 3

4

15 5

6

7

8

9

	 (C)	 0

1

12 2

13 3

2 4

3 5

23 6

5 7

18 8

15 9

	 (D)	 0

1

2 2

3 3

12 4

13 5

23 6

5 7

18 8

15 9

	14.	 Which one of the following is correct?
	 (A)	� Finding shortest path in a graph is solvable in poly-

nomial time.
	 (B)	� Finding longest path from a graph is solvable in 

poly-nomial time.
	 (C)	� Finding longest path from a graph is solvable in 

polynomial time, if edge weights are very small values.
	 (D)	 Both (A) and (B) are correct
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	15.	 In the following pair of problems

		  2 CNF Satisfiability

I
Vs

3 CNF Satisfiability

II
.

	 (A)	� I is solvable in polynomial time, II is NP complete 
problem.

	 (B)	� II is solvable in polynomial time, I is NP complete 
problem.

	 (C)	 Both are solvable in polynomial time
	 (D)	 None can be solved in polynomial time.

Practice Problems 2
Directions for questions 1 to 15:  Select the correct alterna-
tive from the given choices.
	 1.	 For NP-complete problems
	 (A)	� Several polynomial time algorithms are available
	 (B)	 No polynomial time algorithm is discovered yet
	 (C)	� Polynomial time algorithms exist but not discovered
	 (D)	� Polynomial time algorithms will not exist, hence 

cannot be discovered

	 2.	 In the division method for creating hash functions, we 
map a key k into one of m slots by taking the remainder 
of k divided by m. That is, the hash function is

	 (A)	 h(k) = m mod k	 (B)	 h(k) = m mod m/k
	 (C)	 h(k) = k mod m	 (D)	 h(k) = mk mod k

	 3.	 In the division method for creating hash function, which 
of the following hash table size is most appropriate?

	 (A)	 2	 (B)	 7
	 (C)	 4	 (D)	 8

	 4.	 Which of the following techniques are commonly used to 
compute the probe sequence required for open addressing?

	 (A)	 Linear probing	 (B)	 Quadratic probing
	 (C)	 Double hashing	 (D)	 All the above

	 5.	 Which of the following problems is not NP-hard?
	 (A)	 Hamiltonian circuit problem
	 (B)	 The 0/1 knapsack problem
	 (C)	 The graph coloring problem
	 (D)	 None of these

	 6.	 For problems x and y, y is NP-complete and x reduces 
to y in polynomial time. Which of the following is true?

	 (A)	 If x can be solved in polynomial time, then so can y
	 (B)	 x is NP-hard
	 (C)	 x is NP-complete
	 (D)	 x is in NP, but not necessarily NP-complete

	 7.	 If P
1
 is NP-complete and there is a polynomial time 

reduction of P
1
 to P

2, 
then P

2
 is

	 (A)	 NP-complete
	 (B)	 Not necessarily NP-complete 
	 (C)	 Cannot be NP-complete
	 (D)	 None of these

	 8.	 A problem is in NP, and as hard as any problem in NP. 
The given problem is

	 (A)	 NP hard
	 (B)	 NP complete
	 (C)	 NP
	 (D)	 NP-hard ∩ NP-complete

	 9.	 Which of the following is TRUE?
	 (A)	 All NP-complete problems are NP-hard.
	 (B)	� If an NP-hard problem can be solved in polyno-

mial time, then all NP-complete problems can be 
solved in polynomial time.

	 (C)	� NP-hard problems are not known to be NP-complete.
	 (D)	 All the above

	10.	 If a polynomial time algorithm makes polynomial num-
ber of calls to polynomial time subroutines, then the 
resulting algorithm runs in

	 (A)	 Polynomial time	 (B)	 No-polynomial time
	 (C)	 Exponential time	 (D)	 None of these

	11.	 If a polynomial time algorithm makes atmost constant 
number of calls to polynomial time subroutines, then 
the resulting algorithm runs in

	 (A)	 Polynomial time	 (B)	 No-polynomial time
	 (C)	 Exponential time	 (D)	 None of these

	12.	 When a record to be inserted maps to an already occu-
pied slot is called

	 (A)	 Hazard
	 (B)	 Collision
	 (C)	 Hashing
	 (D)	 Chaining

	13.	 Worst-case analysis of hashing occurs when
	 (A)	 All the keys are distributed
	 (B)	 Every key hash to the same slot
	 (C)	� Key values with even number, hashes to slots with 

even number
	 (D)	� Key values with odd number hashes to slots with 

odd number

	14.	 Main difference between open hashing and closed 
hashing is

	 (A)	� Closed hashing uses linked lists and open hashing 
does not.

	 (B)	� Open hashing uses linked list and closed hashing 
does not

	 (C)	� Open hashing uses tree data structure and closed 
uses linked list

	 (D)	 None of the above

	15.	 The worst case scenario in hashing occurs when 
	 (A)	� All keys are hashed to the same cell of the hash table
	 (B)	� The size of hash table is bigger than the number of 

keys
	 (C)	� The size of hash table is smaller than the number 

of keys
	 (D)	 None of the above
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Previous Years’ Questions

	 1.	 Consider a hash table of size seven, with starting index 
zero, and a hash function (3x + 4) mod7. Assuming 
the hash table is initially empty, which of the follow-
ing is the contents of the table when the sequence 1, 3, 
8, 10 is inserted into the table using closed hashing? 
Note that − denotes an empty location in the table.
� [2007]

	 (A)	 8, −, −, −, −, −, 10	 (B)	 1, 8, 10, −, −, −, 3
	 (C)	 1, −, −, −, −, −, 3	 (D)	 1, 10, 8, −, −, −, 3

Common data for questions 2 and 3: Suppose the let-

ters a, b, c, d, e, f have probabilities 
1

2

1

4

1

8

1

32 32
, , , , , ,

1

16

1

respectively.

	 2.	 Which of the following is the Huffman code for the 
letter a, b, c, d, e, f  ?� [2007]

	 (A)	 0, 10, 110, 1110, 11110, 11111
	 (B)	 11, 10, 011, 010, 001, 000
	 (C)	 11, 10, 01, 001, 0001, 0000
	 (D)	 110, 100, 010, 000, 001, 111

	 3.	 What is the average length of the correct answer to 
above question?

� [2007]

	 (A)	 3	 (B)	 2.1875
	 (C)	 2.25	 (D)	 1.9375

	 4.	 The subset-sum problem is defined as follows: Given 
a set S of n positive integers and a positive integer W, 
determine whether there is a subset of S whose ele-
ments sum to W.

An algorithm Q solves this problem in O(nW) 
time. Which of the following statements is false?

� [2008]

	 (A)	� Q solves the subset-sum problem in polynomial 
time when the input is encoded in unary

	 (B)	� Q solves the subset-sum problem in polynomial 
time when the input is encoded in binary

	 (C)	 The subset sum problem belongs to the class NP
	 (D)	 The subset sum problem is NP-hard

	 5.	 Let π
A
 be a problem that belongs to the class NP. Then 

which one of the following is TRUE?

� [2009]

	 (A)	 There is no polynomial time algorithm for π
A
.

	 (B)	� If π
A
 can be solved deterministically in polyno-

mial time, then P = NP.
	 (C)	 If π

A
 is NP-hard, then it is NP-complete.

	 (D)	 π
A
 may be undecidable.

	 6.	 The keys 12, 18, 13, 2, 3, 23, 5 and 15 are inserted 
into an initially empty hash table of length 10 using 
open addressing with hash function h(k) = k mod 10 

and linear probing. What is the resultant hash table?
� [2009]

	 (A)	 0
1
2 12
3 23
4
5 15
6
7
8 18
9

	 (B)	 0
1
2 12
3 13
4
5 5
6
7
8 18
9

	 (C)	 0
1
2 12
3 13
4 2
5 3
6 23
7 5
8 18
9 15

	 (D)	 0
1
2 12,2
3 13,3,23
4
5 5,15
6
7
8 18

9

Common data for questions 7 and 8: A sub-sequence 
of a given sequence is just the given sequence with some 
elements (possibly none or all) left out. We are given two 
sequences X[m] and Y[n] of lengths m and n, respectively, 
with indexes of X and Y starting from 0.

	 7.	 We wish to find the length of the longest common sub-
sequence (LCS) of X[m] and Y[n] as l(m, n), where an 
incomplete recursive definition for the function l(i, j) 
to compute the length of the LCS of X[m] and Y[n] is 
given below:

		  I(i, j) = 0, if either i = 0 or j = 0
		  = expr1, if i, j > 0 and X[i - 1] = Y[ j - 1]
		  = expr2, if i, j > 0 and X[i - 1] ≠ Y [ j - 1]

		  Which one of the following options is correct?� [2009]
	 (A)	 expr1 ≡ I(i - 1, j) + 1
	 (B)	 expr1 ≡ I(i, j - 1)
	 (C)	 expr2 ≡ max(I(i - 1, j), I(i, j - 1))
	 (D)	 expr2 ≡ max(I(i -1, j - 1), I(i, j))

	 8.	 The values of l(i, j) could be obtained by dynamic 
programming based on the correct recursive defini-
tion of l(i, j) of the form given above, using an array 
L[M, N], where M = m + 1 and N = n + 1, such that  
L[i, j] = l(i, j).

		  Which one of the following statements would be 
TRUE regarding the dynamic programming solution 
for the recursive definition of l(i, j)?� [2009]

	 (A)	� All elements of L should be initialized to 0 for 
the values of l(i, j) to be properly computed.
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	 (B)	� The values of l(i, j) may be computed in a row 
major order or column major order of L(M, N).

	 (C)	� The values of l(i, j) cannot be computed in either 
row major order or column major order of L(M, N).

	 (D)	� L[p, q] needs to be computed before L[r, s] if 
either p < r or q < s.

	 9.	 The weight of a sequence a
0
, a

1
, …, a

n-1
 of real num-

bers is defined as a
0
 + a

1
/2 + … + a

n-1
/2n-1. A subse-

quence of a sequence is obtained by deleting some 
elements from the sequence, keeping the order of the 
remaining elements the same. Let X denote the maxi-
mum possible weight of a subsequence of a

0
, a

1
, …., 

a
n-1

. Then X is equal to� [2010]
	 (A)	 max (Y, a

0
 + Y)	 (B)	 max (Y, a

0
 + Y/2)

	 (C)	 max (Y, a
0
 + 2Y)	 (D)	 a

0
 + Y/2

	10.	 Four matrices M
1
, M

2
, M

3
 and M

4
 of dimensions p × 

q, q × r, r × s and s × t respectively, can be multiplied 
in several ways with different number of total scalar 
multiplications. For example when multiplied as ((M

1
 

× M
2
) × (M

3
 × M

4
)), the total number of scalar multipli-

cations is pqr + rst + prt. When multiplied (((M
1
 × M

2
) 

× M
3
) × M

4
) the total number of scalar multiplications 

is pqr + prs + pst.

If p = 10, q = 100, r = 20, s = 5 and t = 80, then the 
minimum number of scalar multiplications needed is
� [2011]

	 (A)	 248000
	 (B)	 44000
	 (C)	 19000
	 (D)	 25000

	11.	 Assuming P ≠ NP, which of the following is TRUE?
� [2012]

	 (A)	 NP-complete = NP
	 (B)	 NP-complete ∩ P = ∅
	 (C)	 NP-hard = NP
	 (D)	 P = NP-complete 

	12.	 Which of the following statements are TRUE?
		  (i)	� The problem of determining whether there exists 

a cycle in an undirected graph is in P.
		  (ii)	� The problem of determining whether there exists 

a cycle in an undirected graph is in NP.
		  (iii)	If a problem A is NP-Complete, there exists a non-

deterministic polynomial time algorithm to solve A. 
� [2013]

	 (A)	 1, 2 and 3	 (B)	 1 and 2 only
	 (C)	 2 and 3 only	 (D)	 1 and 3 only

	13.	 Suppose a polynomial time algorithm is discov-
ered that correctly computes the largest clique in 
a given graph. In this scenario, which one of the 
following represents the correct Venn diagram of 
the complexity classes P, NP and NP-complete 

(NPC)?� [2014]

	 (A)	

NPC

P NP
	 (B)	

NPP

NPC

	 (C)	 P = NP

NPC
	 (D)	 P = NP = NPC

	14.	 Consider a hash, table with 9 slots. The hash func-
tion is h(K) = K mod 9. The collisions are resolved 
by chaining. The following 9 keys are  inserted in the 
order: 5, 28, 19, 15, 20, 33, 12, 17, 10. The maximum, 
minimum, and average chain lengths in the hash table, 
respectively, are � [2014]

	 (A)	 3, 0 and 1	 (B)	 3, 3 and 3
	 (C)	 4, 0 and 1	 (D)	 3, 0 and 2

	15.	 Consider two strings A = ‘qpqrr’ and B = ‘pqprqrp’. 
Let x be the length of the longest common subsequence 
(not necessarily contiguous between A and B and let y 
be the number of such longest common subsequences 
between A and B. then x + 10y = ––––––––� [2014]

	16.	 Suppose you want to move from 0 to 100 on the 
number line. In each step, you either move right by 
a unit distance or you take a shortcut. A shortcut is 
simply a pre-specified pair of integers i, j with i < 
j. Given a shortcut i, j if you are at position i on the 
number line, you may directly move to j. Suppose 
T(k) denotes the smallest number of steps needed to 
move from k to 100. Suppose further that there is at 
most 1 shortcut involving any number, and in particu-
lar from 9 there is a shortcut to 15. Let y and z be 
such that T(9) = 1 + min(T(y), T(z)). Then the value of 
the product yz is _______� [2014]

	17.	 Consider the decision problem 2CNFSAT defined as 
follows:� [2014]

		  {φ | φ is a satisfiable propositional formula in CNF 
with at most two literals per clause}

		  For example, φ = (x
1
 ∨ x

2
) ∧ (x

1
 ∨ x

3
) ∧ (x

2
 ∨ x

4
) is a 

Boolean formula and it is in 2CNFSAT.

		  The decision problem 2CNFSAT is 

	 (A)	 NP-complete 

	 (B)	� Solvable in polynomial time by reduction to di-
rected graph reach ability.

	 (C)	� Solvable in constant time since any input in-
stance is satisfiable. 

	 (D)	 NP-hard, but not NP-complete

	18.	 Consider a hash table with 100 slots. Collisions are 
resolved using chaining. Assuming simple uniform 
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hashing, what is the probability that the first 3 slots 
are unfilled after the first 3 insertions?� [2014]

	 (A)	 (97 × 97 × 97)/1003

	 (B)	 (99 × 98 × 97)/1003

	 (C)	 (97 × 96 × 95)/1003

	 (D)	 (97 × 96 × 95)/(3! × 1003)

	19.	 Match the following [2014]

(P) � prim’s algorithm for minimum 
spanning tree

(i)  Backtracking

(Q) � Floyd-Warshall algorithm for 
all pairs shortest paths

(ii)  Greedy method

(R)  Mergesort (iii)  Dynamic programming

(S)  Hamiltonian circuit (iv)  Divide and conquer

	 (A)	 P–iii, Q–ii, R–iv, S–i
	 (B)	 P–i, Q–ii, R–iv, S–iii
	 (C)	 P–ii, Q–iii, R–iv, S–i
	 (D)	 P–ii, Q–i, R–iii, S–iv

	20.	 Given a hash table T with 25 slots that stores 2000 
elements, the load factor ∝ for T is _______� [2015]

	21.	 Language L
1
 is polynomial time reducible to language 

L
2
. Language L

3
 is polynomial time reducible to L

2
, 

which in turn is polynomial time reducible to lan-
guage L

4
. Which of the following is/are true?� [2015]

	 (1)	 if L
4
 ∈ P, then L

2
 ∈ P

	 (2)	 if L
1
 ∈ P or L

3
 ∈ P, then L

2
 ∈ P

	 (3)	 L
1
 ∈ P, if and only if L

3
 ∈ P

	 (4)	 if L
4
 ∈ P, then L

1
 ∈ P and L

3
 ∈ P

	22.	 The Floyd - Warshall algorithm for all -pair shortest 
paths computation is based on� [2016]

	 (A)	 Greedy paradigm
	 (B)	 Divide-and-Conquer paradigm
	 (C)	 Dynamic Programming paradigm
	 (D)	� Neither Greedy nor Divide-and-Conquer nor 

Dynamic Programming paradigm.

	23.	 Let A
1
,A

2
,A

3
, and A

4
 be four matrices of dimensions 10 × 5,  

5 × 20, 20 × 10, and 10 ×5, respectively. The minimum 
number of scalar multiplications required to find the 
product A

1 
A

2 
A

3 
A

4
 using the basic matrix multiplica-

tion method is _____ .� [2016]

	24.	 Consider the following table:

Algorithms Design Paradigms

(P) Kruskal (i) Divide and Conquer

(Q) Quicksort (ii) Greedy

(R) Floyd-Warshall (iii) Dynamic Programming

		  Match the algorithms to the design paradigms they 
are based on.� [2017]

	 (A)	 (P)  ↔ (ii),	 (Q) ↔ (iii),	(R) ↔ (i)
	 (B)	 (P) ↔ (iii),	 (Q) ↔ (i),	 (R) ↔ (ii)
	 (C)	 (P) ↔ (ii),	 (Q) ↔ (i),	 (R) ↔ (iii)
	 (D)	 (P) ↔ (i),	 (Q) ↔ (ii),	(R) ↔ (iii)

	25.	 Assume that multiplying a matrix G
1
 of dimension p × 

q with another matrix G
2 
of dimension q × r requires 

pqr scalar multiplications. Computing the product of 
n matrices G

1
G

2
G

3
, ..., G

n
 can be done by parenthesiz-

ing in different ways. Define G
i
 G

i+1 
as an explicitly 

computed pair for a given paranthesization if they are 
directly multiplied. For example, in the matrix multi-
plication chain G

1
G

2
G

3
G

4
G

5
G

6
 using parenthesization 

(G
1
(G

2
G

3
))(G

4
(G

5
G

6
)), G

2
G

3
 and G

5
G

6
 are the only 

explicitly computed pairs.

		  Consider a matrix multiplication chain 
F

1
F

2
F

3
F

4
F

5
, where matrices F

1
, F

2
,
 

F
3
,
 

F
4
,
 

and F
5
 are of dimensions 2 × 25,  

25 × 3, 3 × 16, 16 × 1 and 1 × 1000, respectively. In 
the parenthesization of F

1
F

2
F

3
F

4
F

5 
that minimizes the 

total number of scalar multiplications, the explicitly 
computed pairs is/are:� [2018]

	 (A)	 F
1
F

2
 and F

3
F

4
 only

	 (B)	 F
2
F

3
 only

	 (C)	 F
3
F

4
 only

	 (D)	 F
1
F

2
 and F

4
F

5 
only

	26.	 Consider the weights and values of items listed below. 
Note that there is only one unit of each item.

Item no. Weight  
(in Kgs)

Value  
(in Rupees)

1 10 60

2 7 28

3 4 20

4 2 24

		  The task is to pick a subset of these items such that 
their total weight is no more than 11 kgs and their 
total value is maximized. Moreover, no item may be 
split. The total value of items picked by an optimal 
algorithm is denoted by V

opt
. A greedy algorithm sorts 

the items by their value-to-weight ratios in descend-
ing order and packs them greedily, starting from the 
first item in the ordered list. The total value of items 
picked by the greedy algorithm is denoted by V

greedy
.

		  The value of V
opt

 – V
greedy

 is ______.� [2018]
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Answer Keys

Exercises

Practice Problems 1
	 1.  B	 2.  A	 3.  B	 4.  D	 5.  A	 6.  C	 7.  C	 8.  A	 9.  B	 10.  B
	11.  C	 12.  B	 13.  C	 14.  A	 15.  A

Practice Problems 2
	 1.  B	 2.  C	 3.  B	 4.  D	 5.  B	 6.  C	 7.  A	 8.  B	 9.  D	 10.  C
	11.  A	 12.  B	 13.  B	 14.  B	 15.  A

Previous Years’ Questions
	 1.  B	 2.  A	 3.  D	 4.  B	 5.  C	 6.  C	 7.  C	 8.  B	 9.  C	 10.  B
	11.  B	 12.  A	 13.  D	 14.  A	 15.  34	 16.  150	 17.  B	 18.  A	 19.  C	 20.  80
	21.  C	 22.  C	 23.  1500	 24.  C	 25.  C	 26.  16
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