Graphical Solution of Linear Equation

Equation of a straight line: General equation of a straight line in xy plane is given by ax + by + c = 0. In various situations its graph is drawn as follows:

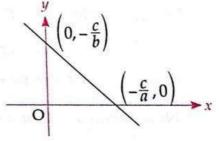
Case (i): When $a \neq 0$, $b \neq 0$, $c \neq 0$

This straight line intersects x-axis at $\left(-\frac{c}{a},0\right)$ and y-axis at $\left(0,-\frac{c}{b}\right)$

Explanation & Putting y = 0 in the equation ax + by + c = 0 we get ax + c = 0

or,
$$x = -\frac{c}{a}$$
 i.e. straight line $ax + by + c = 0$ cuts x -axis at $\left(-\frac{c}{a}, 0\right)$

Again, putting x = 0 in the equation ax + by + c = 0, we get by + c = 0 or $y = -\frac{c}{b}$ i.e. y-axis intersects straight line


$$ax + by + c = 0$$
 at $\left(0, -\frac{c}{b}\right)$

It can be learned as follows, ax + by + c = 0

or,
$$ax + by = -c$$

or,
$$\frac{ax}{-c} + \frac{by}{-c} = 1$$

or,
$$\frac{x}{\left(-\frac{c}{a}\right)} + \frac{y}{\left(-\frac{c}{b}\right)} = 1$$

This is known as intercept forms of a straight line. The terms in denominator are respectively known as x-intercept and y-intercept Clearly,

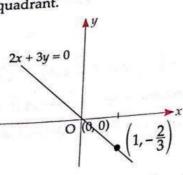
Length intercepted by the straight line ax + by + c = 0 between the axes

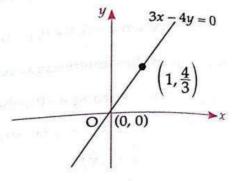
is
$$\sqrt{\left(\frac{-c}{a}\right)^2 + \left(-\frac{c}{b}\right)^2}$$
. Here $\left(-\frac{c}{a}\right)$ and $\left(-\frac{c}{b}\right)$ are intercepts made by the

line respectively on the *x*-axis and *y*-axis.

Case (ii): When $a \ne 0$, $b \ne 0$, c = 0 i.e. equation of the straight line is ax + by = 0

This straight line always passes through origin. If a and b are of opposite sign, it passes through first and third quadrant while when a and b are of same sign, it passes through second and fourth quadrant.


Lucent's SSC Higher Mathematics


For example, Draw the graph of straight lines 86

Draw the graph of Succession
$$(a) 2x + 3y = 0$$
 (b) $4x - 3y = 0$

When x=0, y=0 and when x=1, $y=-\frac{2}{3}$, thus the line passes through origin Soln: For the straight line 2x + 3y = 0

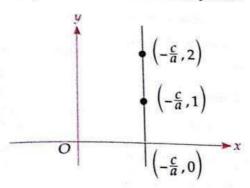
when x=0, y=0 and y=0. Clearly it lies in second and fourth (0, 0) and another point $(1, -\frac{2}{3})$. Clearly it lies in second and fourth

For the straight line 4x - 3y = 0

When x = 0, y = 0 and when x = 1, $y = \frac{4}{3}$ i.e. the straight line goes through origin (0, 0) and another point $\left(1,\frac{4}{3}\right)$. Clearly it lies in the first and third juadrant.

Case (iii): When a = 0, $b \ne 0$, $c \ne 0$ i.e. equation of the line is by + c = 0This line is parallel to x-axis and intersects y-axis at $\left(0, -\frac{c}{h}\right)$

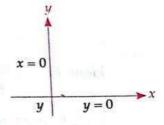
Explanation: From by + c = 0, we have $y = -\frac{c}{h}$

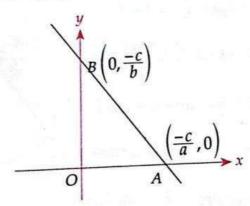

Now, when x = 0, $y = -\frac{c}{b}$, x = 1, $y = -\frac{c}{b}$

 $x = 2, y = -\frac{c}{h}$ etcetera.

Thus this line passes through the points $\left(0, -\frac{c}{b}\right)$, $\left(1, -\frac{c}{b}\right)$, $\left(2, -\frac{c}{b}\right)$ etcetera. Clearly it is parallel to x-axis

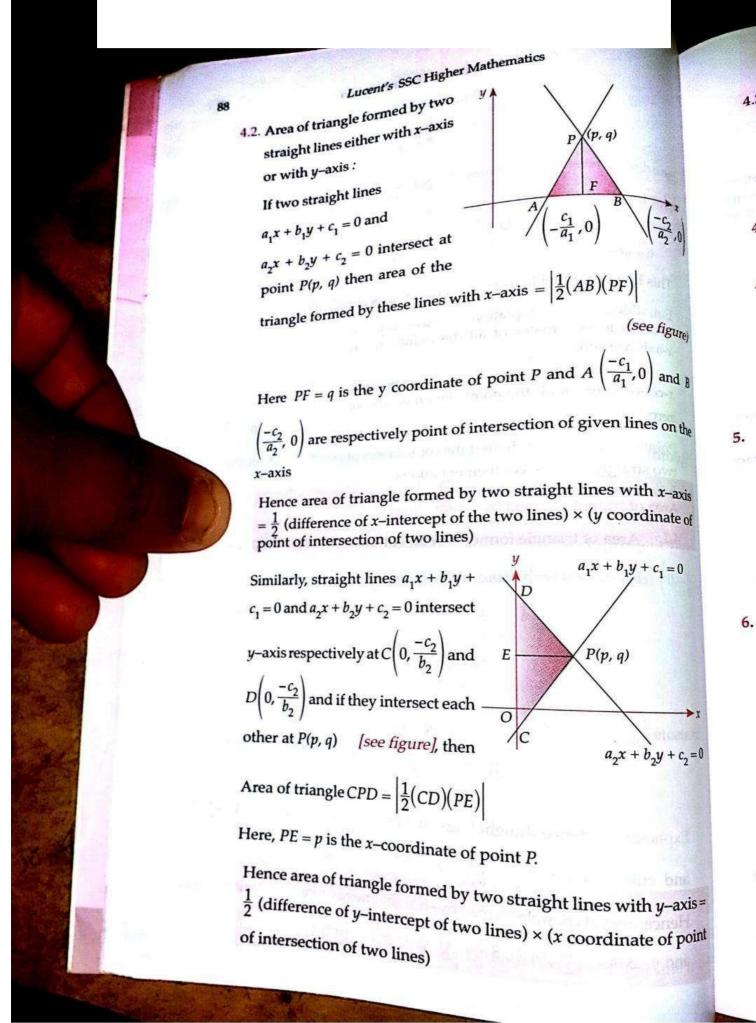
$$\left(0, -\frac{c}{b}\right) \xrightarrow{y} \left(1, -\frac{c}{b}\right) \quad \left(2, -\frac{c}{b}\right) \quad by + c = 0$$


Case (iv): When $a \neq 0$, b = 0 and $c \neq 0$ i.e. equation of straight line is of

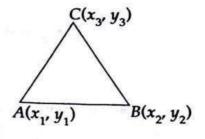

This line is parallel to y-axis and cuts x-axis at $\left(-\frac{c}{a},0\right)$.

Equation of axes: Equation of x-axis is y = 0 because y-coordinates of all the points lie on x-axis are zero.

Equation of y-axis is x = 0 because x-coordinates of all the points lie on y-axis are zero.

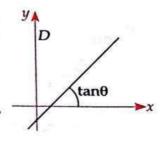


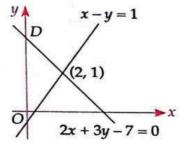
- Point of intersection: To find the coordinates of point of intersection of two straight lines, solve their equations.
- 4. Area of triangle formed by straight lines
 - 4.1. Area of triangle formed by straight lines ax + by + c = 0, $a \ne 0$, $b \ne 0$, $c \ne 0$ with coordinate axes is $\left| \frac{1}{2} \frac{c^2}{ab} \right|$.



Explanation: Since straight lines ax + by + c = 0 cuts x-axis at $A\left(-\frac{c}{a}, 0\right)$ and cuts y-axis at $B\left(0, -\frac{c}{b}\right)$, then $OA = -\frac{c}{a}$ and $OB = -\frac{c}{b}$.

Hence, area of triangle formed by straight lines ax + by + c = 0 with x-axis and y-axis = $\left| \frac{1}{2} (OA)(OB) \right| = \left| \frac{1}{2} \left(\frac{-c}{a} \right) \left(\frac{-c}{b} \right) \right| = \left| \frac{1}{2} \frac{c^2}{ab} \right|$


4.3. If three straight lines intersect each other at the points A (x₁, y₁), B(x₂, y₂) and C(x₃, y₃) then from coordinate Geometry.


Area of $\triangle ABC$,

$$= \frac{1}{2} \left| x_1 (y_2 - y_3) + x_2 (y_3 - y_1) + x_3 (y_1 - y_2) \right|$$

- 4.4. If $x_1(y_2-y_3) + x_2(y_3-y_1) + x_3(y_1-y_2) = 0$ then three points $(x_1, y_1), (x_2, y_2)$ and (x_3, y_3) are collinear.
- 4.5. Slope of the line: If a straight line makes angle θ with x-axis in positive direction (anti-clockwise direction) then slope of the line is $\tan \theta$. Slope of the straight line ax + by + c = 0 is $\frac{-a}{b}$ [For more details see exercise on coordinate Geometry]

 Solution of corresponding equation of straight lines: If two straight lines intersect at a point then x-coordinate and y-coordinate of the point are called solution of equation of the straight lines.

For example, solving 2x + 3y - 7 = 0 and x - y = 1, we get x = 2, y = 1. Hence two straight lines intersect at (2, 1).

- 6. Consistent and Inconsistent system of equations : A system of equation $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ has
 - (i) a unique solution if $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$
 - (ii) Infinitely many solution if $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$
 - (iii) no solution if $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$

to understand it clearly, consider the following examples:

6.1. Consider the system of equations 2x + 3y = 7 and 3x - y = 5

here,
$$a_1 = 2$$
, $b_1 = 3$, $c_1 = -7$

and
$$a_2 = 3$$
, $b_2 = -1$, $c_2 = -5$

90

$$\frac{a_1}{a_2} = \frac{2}{3}$$
 and $\frac{b_1}{b_2} = -3$

 $\therefore \quad \frac{a_1}{a_2} \neq \frac{b_1}{b_2}.$

So we can conclude that the system of equation has unique solution solve get x = 2, y = 1 (do yourself). Geometrically get x = 2, y = 1 (do yourself). So we can conclude that the system of a solution y = 1 (do yourself). Geometrically Solving these equations we get x = 2, y = 1 (do yourself). Geometrically solving unique solution) intersect each y = 1. Solving these equations we get x = 2, y the two lines of the system (having unique solution) intersect each other

6.2. Consider the system of equation 2x + y = 10 and 4x + 2y = 20

here,
$$a_1 = 2$$
, $b_1 = 1$, $c_1 = -10$

and,
$$a_2 = 4$$
, $b_2 = 2$, $c_2 = -20$

and,
$$a_2 = 4$$
, $c_2 = -7$

$$\therefore \frac{a_1}{a_2} = \frac{2}{4} = \frac{1}{2}$$
, $\frac{b_1}{b_2} = \frac{1}{2}$ and $\frac{c_1}{c_2} = \frac{-10}{-20} = \frac{1}{2}$

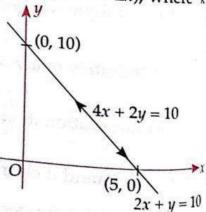
$$\therefore \quad \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

From this we can conclude that the system of equations has infinitely many solutions.

To solve the equation, multiply first equation by 2 and subtract second equation from it

$$\begin{bmatrix}
 2x + y = 10 \\
 4x + 2y = 20 \\
 \hline
 0 = 0
 \end{bmatrix}$$

here 0 = 0 indicates that system of equations has infinitely many solutions. To find its solution, proceed as follows-


From first equation y = 10 - 2x when x = k, y = 10 - 2k

Clearly x = k, y = 10 - 2k also satisfy the second equation.

Hence, solution of the system of equation is (k, 10 - 2k), where kis a real number. For each real value

of k, the system has a solution. Putting $k = 1, 2, 3, 4, \dots$ we get the solution as (1, 8), (2, 6), (3, 4), (4, 2)... etcetera, which are infinitely many is counting

Geometrically, these two lines are coincident. Both lines cut x-axis at (5,0)and y-axis at (0, 10).

6.3. Consider the system of equations 2x + y = 6 and 4x + 2y = 16.

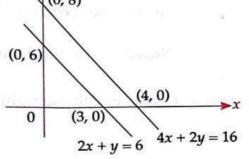
Here,
$$a_1 = 2$$
, $b_1 = 1$, $c_1 = -6$
 $a_2 = 4$, $b_2 = 2$, $c_2 = -16$

$$\frac{a_1}{a_2} = \frac{2}{4} = \frac{1}{2}, \frac{b_1}{b_2} = \frac{1}{2}, \frac{c_1}{c_2} = \frac{-6}{-16} = \frac{3}{8}$$

$$\therefore \quad \frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$

From this, we can conclude the system of equation has no solution. Solving,

$$2x + y = 6] \times 2$$


$$4x + 2y = 16$$

$$0 = -2$$

0 = -2 indicates that solution is not possible. Geometrically, these two straight lines are parallel

[see figure]

The system of equations having solution is called consistent . It is (0, 6) of two types-

- (i) Unique solution
- (ii) Infinitely many solution

The system of equations having no solution is called inconsistent

Conclusion: For the system of equations $a_1x + b_1y + c_1 = 0$

and
$$a_2 x + b_2 y + c_2 = 0$$

Unique Consistent (independent) Solution

Intersecting lines

 $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ Infinitely many Consistent (dependent) Solution

Coincident lines

 $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ No Solution Inconsistent

Parallel lines

Area of trapezium between two parallel lines and axes :

Suppose ax + by + c = 0

and ax + by + d = 0 are two parallel lines.

First line cuts x-axis at A, y-axis at B while second line cuts x-axis at C and y-axis at D.

[see figure]

Hence, Area of trapezium ACBD

= area of $\triangle OCD$ – area of $\triangle OAB$

$$= \frac{1}{2} \left| \frac{d^2}{ab} \right| - \frac{1}{2} \left| \frac{c^2}{ab} \right| = \frac{1}{2} \left(\left| \frac{d^2}{ab} \right| - \left| \frac{c^2}{ab} \right| \right)$$

Note: Donot write it as $\frac{1}{2} \left| \frac{d^2 - c^2}{ab} \right|$. In the above figure, above f_{act} also be used if *AB* and *CD* are not parallel.

- 8. Some important points about coordinate Geometry regarding straightimes:
 - 8.1. Distance between two points (x_1, y_1) and (x_2, y_2)

$$= \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

- 8.2. Distance between origin and $(x, y) = \sqrt{x^2 + y^2}$
- 8.3. Distance of the straight line ax + by + c = 0 from origin $= \left| \frac{c}{\sqrt{a^2 + b^2}} \right|$
- 8.4. Distance of the straight line ax + by + c = 0 from the point (x_1, y_1) $= \left| \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right|$
- 8.5. If point P divides the line segment joining the points $(x_{1/2}, y_2)$ and $(x_{2/2}, y_2)$ in the ratio m:n internally then coordinates of P: $\left(\frac{mx_2 + nx_1}{m n}, \frac{my_2 + ny_1}{m n}\right)$
- 8.6. If point Q divides the line joining the points (x_1, y_1) and (x_2, y_2) the ratio m:n externally then coordinates of Q are $\left(\frac{mx_2 nx_1}{m+n}, \frac{my_2 ny_1}{m+n}\right)$
- 8.7. If *P* be the midpoint of line segment joining the points (x_1, y_1) at (x_2, y_2) then coordinates of *P* are $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$
- 8.8. If points (x_1, y_1) , (x_2, y_2) , (x_3, y_3) , (x_4, y_4) ... are collinear $\frac{y_2 y_1}{x_2 x_1} = \frac{y_3 y_2}{x_3 x_2} = \frac{y_4 y_3}{x_4 x_3}$ Here each term is slope of the straightener.
- 8.9. To find the point of intersection of two straight lines, solve the equations.

- Equation of x-axis is y = 0 and Equation y-axis is x = 0. g.10. Equation of a straight line parallel to x-axis is y = c. It cuts y-axis $\frac{1}{2}$.
- Equation of a straight line parallel to y-axis is x = k. It cuts x-axis at (k. 0).
- 8.13. Distance between two parallel lines ax + by + c = 0 and ax + by + c = 0d = 0 is equal to $= \left| \frac{d - c}{\sqrt{a^2 + b^2}} \right|$

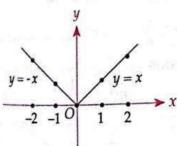
8.14. If point (α, β) lies on the line ax + by + c = 0 then $a\alpha + b\beta + c = 0$

8.14. Equation of a straight line passing through points (x_1, y_1) and $y_2 - y_1$ (x_2, y_2) is $y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$

where, $m = \frac{y_2 - y_1}{x_2 - x_1}$ = slope of the line.

9. Definition of Modulus and its graph:

|x|shows the absolute value of x, it is therefore |4| = 4 and |-4| = 4. But it is incorrect to write $|x| = \pm x$. |x| is defined as follows


$$|x| = \begin{cases} x \text{ when } x \ge 0 \\ -x \text{ when } x < 0 \end{cases}$$

Hence, |4| = 4 and |-4| = -(-4)

Similarly
$$|x-1| = \begin{cases} x-1 & \text{when } x-1 \ge 0 \\ -(x-1) & \text{when } x-1 < 0 \end{cases}$$

or,
$$|x-1| = \begin{cases} x-1 \text{ when } x \ge 1 \\ 1-x \text{ when } x < 1 \end{cases}$$

Graph of y = |x| is as follows:

r	-2	-1	0	1	2
v	2	1	0	1	2

This graph contains two different lines (in fact rays). For $x \ge 0$, it shows y = x and for x < 0 it shows y = -x

Lucent's SSC Higher Mathematics Solved Examples 1. Find the distance of point (3, 4) from (i) x-axis (ii) y-axis (iii) y-axis (iii) y-axis (iii) y-axis and at a y-axis and at y-axis and y-axis 1. Find the distance of point (3, 4) is at a distance of 4 unit from x-axis and at a distance (3, 4) is at a distance of 4 unit from y-axis. Its distance from origin = $\sqrt{3^2 + 4^2} = 5$. What is the distance between points (-2, 5) and (6, -1). Solution: From coordinate Geometry, distance between points (x_1, y_1) and $(x_2, y_2) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ (Note it : Required distance = $\sqrt{(-2-6)^2 + (5-(-1))^2} = \sqrt{64+36} = \sqrt{100} = 10$ Find the point where the straight line 2x-3y=12 cuts x-axis and y-axis Also find the length intercepted by the line between the axes. Solution: 2x - 3y = 12or, $\frac{2x}{12} - \frac{3y}{12} = 1$ or, $\frac{x}{6} + \frac{y}{(-4)} = 1$ Thus straight line cuts x-axis at (6, 0) and y-axis at (0, -4)Length intercepted between axes = $\sqrt{6^2 + (-4)^2} = \sqrt{36 + 16} = \sqrt{52} = 2\sqrt{13}$ Second method: In the equation of line 2x - 3y = 12putting y = 0, $2x = 12 \Rightarrow x = 6$ putting x = 0 $-3y = 12 \Rightarrow x = -4$ i.e. line cuts x-axis at (6,0) and y-axis at (0,-4)Find the area of triangle formed by lines x-2y=5 and 2x + 3y = 10 with y-axis. **Solution**: Solving equation x - 2y = 5and 2x + 3y = 10, (x, y) = (5, 0)Let C = (5, 0)

putting
$$x = 0$$
 in $x - 2y = 5$ we get $y = \frac{-5}{2}$ i.e.

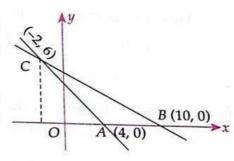
putting
$$x = 0$$
 at $A\left(0, \frac{-5}{2}\right)$ first line cuts y -axis at $A\left(0, \frac{-5}{2}\right)$

first line cuts y=axis
$$x = 0$$
 in $2x + 3y = 10$ we get $y = \frac{10}{3}$ i.e.

putting
$$x = 0$$

second line cuts y -axis at $B\left(0, \frac{10}{3}\right)$

second line
$$\Delta ABC = \frac{1}{2} \cdot AB \cdot OC$$
Hence, Area of $\Delta ABC = \frac{1}{2} \cdot AB \cdot OC$


$$= \frac{1}{2} \left(\frac{10}{3} - \left(\frac{-5}{2} \right) \right) \times 5 = \frac{1}{2} \left(\frac{20 + 15}{6} \right) \times 5 = \frac{175}{12}$$

Find the area of triangle formed by straight lines x+y-4=0, x+2y-10=0 and y=0

and
$$y = 0$$

Solution: $y = 0$ represents x-axis.

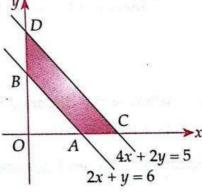
Solving
$$x + y - 4 = 0$$
 and $x + 2y - 10$ we get $(x, y) = (-2, 6)$ i.e. two lines intersect at $C = (-2, 6)$

putting
$$y = 0$$
 in $x + y - 4 = 0$ we get $x = 4$ i.e. first line cuts x -axis at $A(4,0)$

putting y = 0 in x + 2y - 10 = 0 we get x = 10 i.e. second line cuts x-axis at B(10, 0)

Required area = $\frac{1}{2}$ × (difference of *x*-intercept of the two lines) × (*y* coordinate of point of intersection of two lines)

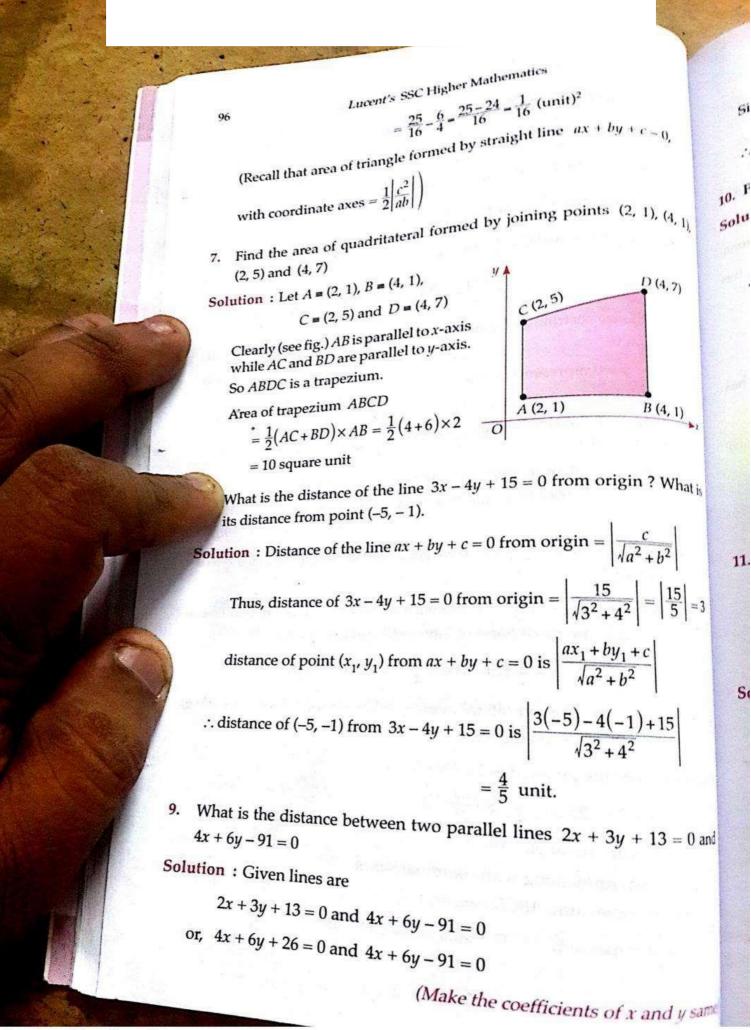
$$=\frac{1}{2}(10-4)6=\frac{1}{2}\times 6\times 6=18 \text{ (unit)}^2$$


6. Find the area of quadrilateral intercepted by straight lines 2x + y = 6, 4x + 2y = 25 between the axes.

Solution: For the given lines 2x + y - 6 = 0

and
$$4x + 2y - 25 = 0$$
, $\frac{2}{4} = \frac{1}{2} \neq \frac{-6}{25}$, thus

two lines are parallel.


These two lines along with coordinate axes formed trapezium ABCD (see fig.)

Area of trapezium ABCD = area of $\triangle OCD$ - area of $\triangle OAB$

$$= \frac{1}{2} \left| \frac{c_2^2}{a_2 b_2} \right| - \frac{1}{2} \left| \frac{c_1^2}{a_1 b_1} \right| = \left| \frac{1}{2} \left(\frac{-25}{4 \times 2} \right) \right| - \frac{1}{2} \left| \frac{(-6)}{2 \times 1} \right|$$

X

Since, distance between
$$ax + by + c = 0$$
 and $ax + by + d = 0$ is $\left| \frac{d - c}{\sqrt{a^2 + b^2}} \right|$

Required distance $= \left| \frac{-91 - 26}{\sqrt{4^2 + 6^2}} \right| = \left| \frac{-117}{\sqrt{52}} \right| = \frac{13 \times 9}{2\sqrt{13}} = \frac{9\sqrt{13}}{2}$ unit

For what values of a and b points (1, 1), (2, 3), (3, a) and (b, 7) are collinear.

Points (x_1, y_1) , (x_2, y_2) , (x_3, y_3) and (x_1, y_1) are solved. 10. For white Points (x_1, y_1) , (x_2, y_2) , (x_3, y_3) and (x_4, y_4) are collinear i.e. lie on Solution $\frac{y_2 - y_1}{x_1 - x_2} = \frac{y_3 - y_2}{x_1 - x_2} = \frac{y_4 - y_3}{x_1 - x_2}$ a straight line if $\frac{y_2 - y_1}{x_2 - x_1} = \frac{y_3 - y_2}{x_3 - x_2} = \frac{y_4 - y_3}{x_4 - x_2}$

points (1, 1), (2, 3), (3, a) and (b, 7) are on a straight line if a - 3 a - 3 a - 3 $\frac{3-1}{2-1} = \frac{a-3}{3-2} = \frac{7-a}{b-3}$

from first two relations $a-3=2 \implies a=5$ from first and third relations $\frac{7-a}{b-3} = 2$

or,
$$\frac{7-5}{b-3} = 2$$
 (:: $a = 5$)

or
$$2 = 2(b-3)$$

or
$$1 = b - 3$$

or,
$$b=4$$

11. For what value of k given system of equations has infinitely many

or, For what value of k following equations show coincident lines?

or, For what value of k given system of equation is dependent?

$$kx + 3y = k - 3$$
, $12x + ky = k$

Solution: Given equations are

$$kx + 3y - (k - 3) = 0$$
 and $12x + ky - k = 0$

here,
$$a_1 = k$$
, $b_1 = 3$, $c_1 = -(k-3)$ and $a_2 = 12$, $b_2 = k$, $c_2 = -k$

$$\therefore$$
 from, $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$

$$\frac{k}{12} = \frac{3}{k} = \frac{-(k-3)}{-k}$$

or,
$$\frac{k}{12} = \frac{3}{k} = \frac{k-3}{k}$$

from first two ratios, $\frac{k}{12} = \frac{3}{k}$

or,
$$k^2 = 36$$

or,
$$k = \pm 6$$

from last two ratios,
$$\frac{3}{k} = \frac{k-3}{k}$$

or, $3k = k^2 - 3k$
or, $k^2 - 6k = 0$
or, $k = 0, 6$

from (i) and (ii) we get that common value of k is 6.

from (i) and (ii) we get.

Thus for k = 6, given system of equation has infinitely many solution that following system of a solution of a system of Thus for k = 0, given b.

12. Find the value of a and b so that following system of equation b.

$$2x - (a - 4) y = 2b + 1$$
$$4x - (a - 1) y = 5b - 1$$

Solution: System of equations $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

Given equations are 2x - (a-4)y - (2b+1) = 0

and
$$4x - (a-1)y - (5b-1) = 0$$

here
$$a_1 = 2$$
, $b_1 = -(a-4)$, $c_1 = -(2b+1)$

and
$$a_2 = 4$$
, $b_2 = -(a-1)$, $c_2 = -(5b-1)$

Hence from (i), $\frac{2}{4} = \frac{-(a-4)}{-(a-1)} = \frac{-(2b+1)}{-(5b-1)}$

or,
$$\frac{1}{2} = \frac{a-4}{a-1} = \frac{2b+1}{5b-1}$$

from first two ratio, $\frac{1}{2} = \frac{a-4}{a-1}$

or,
$$a-1=2a-8$$

or,
$$8-1=2a-a$$

or,
$$7 = a$$

or,
$$a=7$$

from first and third ratio, $\frac{1}{2} = \frac{2b+1}{5b-1}$ or, 5b-1=4b+2

or,
$$5b - 4b = 1 + 2$$

or,
$$b = 3$$

Hence,
$$a = 7$$
, $b = 3$

Graphical Solution of Linear Equation

- 13. For what value of k given pair of equation has no solution?
 - or, For what value of k given lines are parallel?
 - or, For what value of k given system of equation is inconsistent?

$$kx + 3y = 3$$
, $12x + ky = 6$

Solution: Pair of equations $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ does not have a solution if

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$
. In this situation lines are parallel

Given equations are kx + 3y - 3 = 0 and 12x + ky - 6 = 0

here,
$$a_1 = k$$
, $b_1 = 3$, $c_1 = -3$ and $a_2 = 12$, $b_2 = k$, $c_2 = -6$

$$\therefore \text{ from, } \frac{a_1}{a_2} = \frac{b_1}{b_2} \text{ we get } \frac{k}{12} = \frac{3}{k}$$

or,
$$k^2 = 12 \times 3 = 36$$

or,
$$k = \pm 6$$

taking
$$k = 6$$
, $\frac{a_1}{a_2} = \frac{6}{12} = \frac{1}{2} = \frac{b_1}{b_2}$

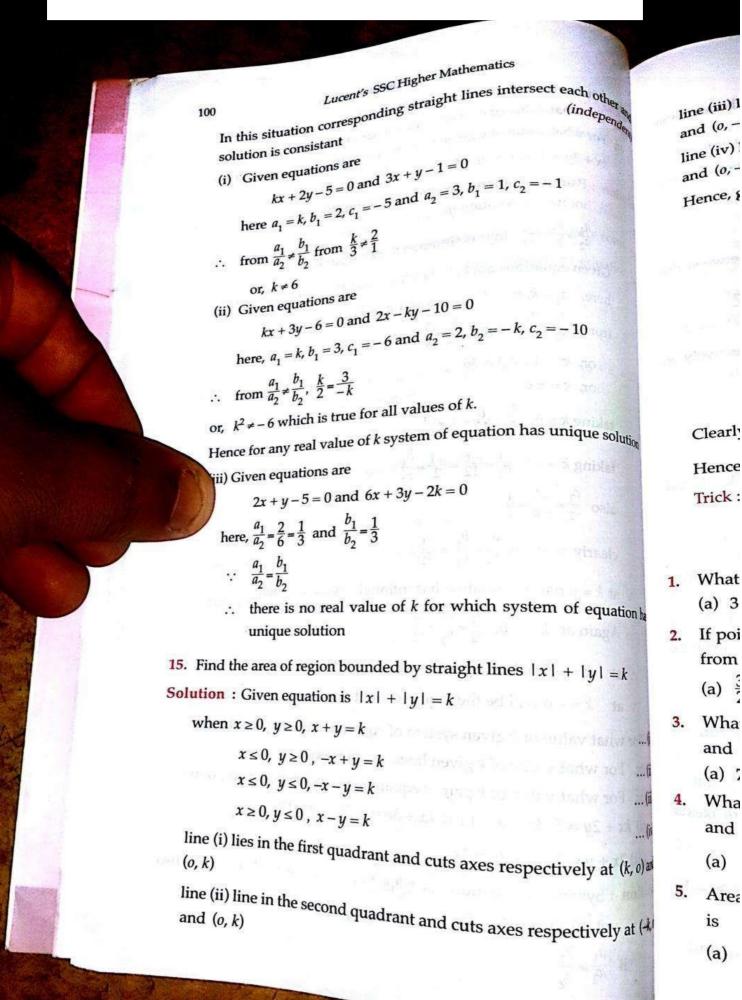
taking
$$k = -6$$
, $\frac{a_1}{a_2} = \frac{-6}{12} = \frac{-1}{2} = \frac{b_1}{b_2}$

also
$$\frac{c_1}{c_2} = \frac{-3}{-6} = \frac{1}{2}$$

clearly at
$$k = 6$$
, $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$

 \therefore at k = 6 pair of equation has infinitely many solution.

Again at
$$k = -6$$
, $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$


- \therefore at k = -6 pair of equation has no solution
- \therefore at k = -6 will be the required solution.
- 14. For what value of k given system of equation has unique solution.
 - or, For what value of k given lines are intersecting.
 - or, For what value of k pair of equation has independent solution?

(i)
$$kx + 2y = 5$$
, $3x + y = 1$ (ii) $kx + 3y = 6$, $2x - ky = 10$

(iii)
$$2x + y = 5$$
, $6x + 3y = 2k$

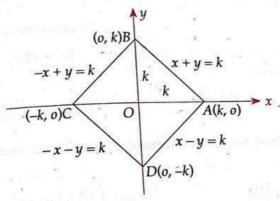
Solution: System of equation $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ has a unique solution

if
$$\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$$
.

line (iii) l and (0, line (iv) and (0,-

Clearly

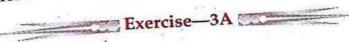
Hence


Trick:

- What (a) 3
 - If poi
- from
 - (a) ;
- 3. Wha and
 - (a) ;
- Wha and
 - (a)
- 5. Area is

line (iii) line in the third quadrant and cuts axes respectively at (-k, o) and (0, -k)

line (iv) line in the fourth quadrant and cuts axes respectively at (k, o)and (o, -k)


Hence, graph of area enclosed by these lines are as follows

Clearly it is a square with each side = $\sqrt{k^2 + k^2} = \sqrt{2} k$

Hence, Required Area = $(\sqrt{2} k)^2 = 2k^2$

Trick: Area enclosed by |x| + |y| = k is $2k^2$.

What is the distance of point (3, 4) from the x-axis?

- (d) 15

If point (a, a + 2) lies on the line y = 3x + 5, then distance of the point from y-axis is

- (a) $\frac{3}{2}$
- (b) 3
- (c) $\frac{1}{2}$
- (d) $\frac{7}{2}$

What is the distance of point of intersection of straight lines 2x + 3y = 6and y = x + 7 from origin? (d) 5

- (b) 3
- (c) 4

4. What is the difference between distances of mid point of points (-3, 5) and (7, -6) from x-axis and y-axis?

- (a) $\frac{5}{2}$
- (b) $\frac{3}{2}$
- (c) $\frac{5}{4}$

5. Area of triangle formed by coordinate axes and straight line y = 3x - 14(a) $\frac{196}{3}$ (b) $\frac{49}{3}$ (c) $\frac{98}{3}$ (d) $\frac{3}{98}$

Luca		No. of the least o	
102 anted by	the straight	line $12x - 9y =$	108 h
6. The length intercepted by	O Merce 1		netwee 1
(a) 12 unit (b) 16 7. The length intercepted be coordinate axes is	the straigh	It line $y = mr$	unit
length intercepted t	y the same	<i>v</i>	C between
7. The length are is coordinate axes is	(b)	$\frac{c}{m}$	Ca) 6"
(a) $\frac{c}{m}\sqrt{1+m^2}$	(5)	m.	
		None of these	
(c) $\sqrt{c^2 + m^2}$ 8. Length intercepted by the state axes is	he straight li	ne $8x - 15y$	= 60 .
a Langth intercepted by	ile str		between .
8. Length into accordinate axes is	•	17	06
	<u>3</u> (c)	2	(d) $\frac{17}{4}$
(a) 2			(d) 17 ISSC Tier-I 2014 (es respons
9. Straight line $2x + 3y + 10$	0 = 0 intersect	s coordinate a	kes respons
9. Straight line 2x + 59			Pectively
the points			
(a) $(-5,0)(0,\frac{-10}{3})$	(b	$(0, \frac{10}{3}, 0)$ $(0, 5)$	(3
(a) (-5,5)(-5)	Total side	. (-10 -) (E) (
(c) $(-5, 0), \left(0, \frac{10}{3}\right)$	(c	$\left(\frac{-10}{3},0\right),\left(0,\frac{-10}{3},0\right)$	$\frac{-3}{3}$
(e) (), (3)		1000 St. 10.40	4
10. Equation of the straig	in mics pus	avis are	points (4, 3) and
respectively parallel to	x-axis area y	unio urc	55.00
(a) $x = 4, y = 3$		b) $x = 3, y = 4$	
(c) $x + 4 = 0, y + 3 = 0$		d) $x + 3 = 0, y$	
11. Equation of straight lin	e passing thre	ough the point	s (2, 0) and (0, 1)
	y x 1 (x y 1	V ~ (0,-3)5
(a) $\frac{x}{2} - \frac{y}{3} = 1$ (b)	$\frac{1}{3} - \frac{1}{2} = 1$	(c) $\frac{1}{3} - \frac{1}{2} = 1$	(d) $\frac{y}{2} - \frac{x}{3} = 1$
12. Area of triangle between	en the straigh	t line $3x + 2y -$	6 = 0 and $cond$:
axes is square unit.	0	-3	o — o and coordinate
	3	- Th	0
	4	(c) 6	(d) $\frac{9}{2}$
13. Area of triangle formed	by the straig	ht line $8x - 3y +$	-24=0 and coordinate
axes is		-3	
(a) 24 sq. unit (b)	12 sq unit	(c) 6 sq. unit	(1) 10
14. Area of triangle forme	d by straight !	$\lim y = mx + cy$	with coordinate axesi
26			
	c^2	(c) $\frac{c^2}{2m}$	(d) $\frac{1}{c^2}$
15. Area of triangle form	ed by straigl	nt lines 2x + 2	$y = 5$ and $y = 3x^{-1}$
with x-axis is	Jonangi	it mies ZX + 3	y – Jana y
	. 22	a College	11 3
3 sq. unit (b	$\frac{22}{3}$ sq. unit	(c) $\frac{11}{6}$ sq. u	nit (d) $\frac{11}{12}$ sq. unit

6.	Area of triangle formed by straight lines $4x - 3y + 4 = 0$, $4x + 3y - 20 = 0$ and x -axis is				
		c) 12 sq. unit (d) 24 sq. unit			
	Area of triangle formed by straight	(d) 24 sq. unit			
7.	Area of triangle formed by straight $y = 0$ is	3x - y = 3, x - 2y + 4 = 0 and			
	BO	. 15			
		b) $\frac{15}{2}$ sq. unit			
		d) Cannot be determined			
8.	Area of triangle formed by straight	lines $4x - y = 4$, $3x + 2y = 14$ and			
	y-axis is				
	(a) $\frac{11}{2}$ sq. unit (b) $\frac{11}{4}$ sq. unit (c) 22 sq. unit (d) 11 sq. unit			
9.	Ratio of area of triangle formed by s	traight lines $2x + 3y = 4$ and $3x - y$			
	+5 = 0 with <i>x</i> -axis and <i>y</i> -axis is	Littleage of arts			
	(a) 1:2				
	(c) 4:1	d) None of these			
0.	What is the height of triangle form	ned by straight lines $3x + y = 10$,			
	2x - 3y = 6 and x -axis when x -axis i	s the base of the triangle?			
	(a) 3 (b) 1 ((c) $\frac{5}{2}$ (d) $\frac{7}{2}$			
1.	Area of triangle formed by str	aight lines 2x - 3y + 6 = 0,			
	2x + 3y - 18 = 0 and $y - 1 = 0$ is	27			
	(a) 27 sq. unit	(b) $\frac{27}{2}$ sq. unit			
	(c) 9 sq. unit	(d) None of these			
2.	Area of triangle formed by straight	lines $x + y = 4$, $2x - y = 2$ and $x - 2$			
	= 0 is				
	(a) 4 sq. unit	(b) 9 sq. unit			
		(d) None of these			
772	Area of quadrilateral formed by straight lines $x + y = 2$, $3x + 4y = 24$				
3.	(i) ★i.	3 3 4 5 5			
	and coordinate axes is	(c) 44 sq. unit (d) 11 sq. unit			
	(a) 22 sq. unit (b) 26 sq. unit	to a pais and the axis respectively			
1.	A linear equation $3x + 4y = 24$, inter	sects x-axis and y-axis respectively			
	at points A and B. If $P(2, 0)$ and $Q(0)$	$(0,\frac{3}{2})$ respectively lies on the straight			
	and an of the at	adrilateral PABQ IS			
	line OA and OB , then area of the quality (a) $\frac{5}{2}$ sq. unit (b) $\frac{15}{2}$ sq. unit	(c) $\frac{35}{2}$ sq. unit (d) $\frac{45}{2}$ sq. unit			

			lines 3x - 4		
	104 ctriangle f	ormed by straight	(c) 12 sq. unit		
	25. Area of cunit	(b) b sq	5, 3) to the coort		
	25. Area of triangle formed by straight lines $3x - 4y = 0$, $x = 4$ and $x =$				
	of quadrilateral f	ornice ,	(c) 30		
	(a) 15	(b) 15	(c) 30 (d) $\frac{25}{2}$ teral formed by straight $\lim_{b \to a} \frac{1}{2} (b-a)(d-c)$		
.*	a > c ther	area of quadrila	teral formed by straight.		
- 1	27. If $b > u$, $u = c$ and y	=d is	(b) 1 (1		
1	(a) (b-a)(d-c)		$(b) \frac{1}{2} (b-a) (d-c)$		
	(d+c)		(b) $\frac{1}{2} (b-a) (d-c)$ (d) $\frac{1}{2} (b+a) (d+c)$		
٠	(c) $(b+a)$ (c)	aral formed by s	traight lines $2x = -5, 2y = 3, x + 1$		
1	28. Area of quadrilat	erai formed by	2x = -5, 2y = 3		
1	28. Area $y + 2 = 0$ is	21	(2) 21		
1	$\frac{21}{2}$ sq. unit	(b) $\frac{2}{4}$ sq. unit	(c) $\frac{21}{8}$ sq. unit (d) $\frac{21}{16}$ sq. unit ht lines $3x + 4y = 24$		
1	of triangle f	ormed by straig	ht lines $3x + 4y = 24$, $x = 8$ and $y = 6$		
1	(a) 12 sq. unit		(b) 24 sq. unit $^{-1, \chi = 8 \text{ and } y = 6}$		
1	(c) 48 sq. unit		(d) None of these		
1	(c) 40 sq	eral formed by	straight lines		
1	30. Area of quadrilat	erur romana - y	straight lines $x = 1$, $x = 3$, $y = 2a_{ij}$		
1	$y = x \cdot z$				
1	(a) 6 sq. unit		(b) 12 sq. unit	-	
1	(c) 3 sq. unit	TAY	(d) None of these		
	31. Area of triangle fo	ormed by straig	ht lines $x - y = 0$, $x + 2y = 0$ and $y = 0$		
	(a) 27 sq. unit	(b) 54 sq. unit	t (c) 9 sq. unit (d) 135 sq. un		
		ormed by straig	tht lines $x-y=0$, $x+y=0$ and $2x=\frac{1}{2}$	-	
	32. Area of thangle it	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	25		
	(a) 25		(b) $\frac{25}{2}$		
	(c) $\frac{25}{4}$		(d) None of these		
	NA 104 AND	500	COMMANDE TO COMMAND SAFED SHOW BROWN AS TO CARD ASSOCIATE		
	33. Area enclosed by	equation $y = 1$	$x \mid -5$ with x-axis is		
1	(a) 25 sq. unit		(b) 12.5 sq. unit		
	(c) 50 sq. unit		(d) None of these		
		18 100 N			
	34. Area enclosed by	the equation	x + y = 4 is		
	(a) 16	(b) 32	(c) 24 (d) 48		
1			1 and $y = 1 - x $ is		
- 1	35. Area enclosed by	equation $y =$	(a) 8 (d) 16		
	(a) 2	(b) 4	(c) 8		
	ac tarled colors	72	(c) 8 of equations has unique solutions (b) $x + 2y = 3$, $2x + 4y = 7$		
	36. Which of the follo	wing system	of equations $2u = 3.2x + 4y = 7$		
7	(a) $3x + 4y = 11, 6$	6x + 8y = 15	of equations has $a_1 a_2 a_3 a_4 a_5$ (b) $x + 2y = 3$, $2x + 4y = 7$ (d) $4x + 3y = 5$, $4x - 3y = 5$		
	1000 to 1000 1000 1000 1000 1000 1000 10	Section Property	(1) 12 + 31 = 31	V	
A 100	by CamScanner	4 0	141 42 1 09	Ü	

	Giapin	-quadion	105
	Which of the following system 12. $4x + 6y = 12$	of equations has	s infinitely many
is	Which solutions? solutions? (a) $2x + 3y = 12$, $4x + 6y = 12$	(b) $x = 3y = 10.2$	GIZ A AND AND MOTOR
	3y + 3y = 12	(d) 2 4 0 =	y = 20
a	(a) $2x + 3y$ (c) $x = 4$, $y = 3$ (d) $x = 4$, $y = 3$ Which of the following system of $2x = 3y$, $4x = 5y$	equations doors	x + 4y = 0
-	which of the	(b) $2x + y = 7$	r have a solution?
	$a_{1} = a_{2} = a_{1} = a_{2} = a_{2$	(4) 41 + 1/ - / //	
•]	(a) $2x = 3y$, $4x = 5y$ (a) $2x = 3y$, $4x = 5y$ (c) $3x - 4y = 8$, $3x - 4y = 12$ (c) $3x - 4y = 6$ k system of equ	lations $3x + 4y = 3$	19
Merchan		-11 -1y -	y - x = 3 and 2x
1	$+3y^{-1}$ (b) -11	(c) 14	(d) -14
1	(a) 11 Which of the following pair repressure $40 \cdot 40 \cdot 40 = 9$	sent equation of pa	rallel straight lines
1	Which of the following part of (a) $2x + 3y = 4$, $4x + 6y = 9$	(b) $x + 2y = 4, 2$	2x + y = 4
	(a) $2x + 3y + 5$	(d) None of the	200
	(c) $y = 3x + 5$, $x = 3y + 5$ 41. Which of the following pair of stra	ight lines donot re	present intersecting
	41. Which of the following 1	0	present intersecting
1	tinos !		
1	131 4 4 4	(b) $3x - 4y = 0$,	
	(x) Ax + 3y = 1, y = 0	(d) $2x + 3y = 7$	THE PROPERTY OF SHAPE OF STREET
	12. The value of K for which system of	equation $5x + 2y =$	= Kand $10x + 4y - 3 = 0$
	has infinitely many solution is	a the book of the	
		(c) 6	(d) $\frac{1}{6}$
	(a) 7		U
4	3. For what value of K system of equ	uation $x + 3y = K$	and $2x + 6y = 2K$ has
	infinitely many solution?	e ar l'Etc) ma	
	(a) $K = 1$	(b) $K = 2$	<i>¥</i>
	(c) for all real values of K	(d) for no rea	l value of K
11	. Values of a and b so that system	of equations 2	2x + 3y = 7 and 2ax +
77	(a+b) $y=28$ has infinitely many		grandsom mit
		(b) $a = 8$, $b = 6$	= 4
	Anna I	(d) $a = -8, b = -8$	
45.	For what values of k straight line	s 2x - ky + 3 = 0	and $3x + 2y - 1 = 0$ are
	parallel ?		
		2	$(4) = \frac{2}{}$
	(a) $\frac{4}{3}$ (b) $\frac{-4}{3}$	(c) $\frac{2}{3}$	(a) 3
46.	Value of k for which system of	equations kx +	2y = 5, $3x + y = 1$ has
	unique solution is	The state of the s	Description of the second
	(a) 1.	() 1 2	(d) all are true
	(a) $k=1$ (b) $k=2$	(c) $k = 3$	(ω)

(c) k = 3

(b) k = 2

Graphical Solution of Linear Equation:

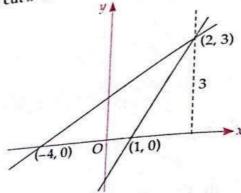
(c) Length of Intercept triade by little
$$0 \neq 1$$
 by $1 \neq 2$ by between axes = $\left| \frac{e^2}{u^2} + \frac{e^2}{h^2} \right|$

gequired length =
$$\sqrt{\left(\frac{60}{8}\right)^{2} + \left(\frac{60}{15}\right)^{2}}$$

= $60\sqrt{\left(\frac{1}{8^{2}} + \frac{1}{15^{2}}\right)}$
= $60\sqrt{\left(\frac{15^{2} + 8^{2}}{8^{2} \times 15^{2}}\right)} - 60 \times 8^{\frac{17}{2} 15} = \frac{17}{2}$ eq. 1104

10. (b) See the figure, solution is obvious

- 11. (a) If a line cuts x -axis at (a,0) and cuts y-axis at (0,b) then its equation is $\frac{x}{a} + \frac{y}{b} = 1$ here a = 2 and b = -3
- 12. (a) Required Area = $\frac{1}{2} \left| \frac{c^2}{ab} \right| = \frac{1}{2} \left| \frac{6^2}{3 \times 2} \right| = \frac{36}{2 \times 3 \times 2} = 3$ square unit
- 13. (b) Required Area = $\frac{1}{2} \left| \frac{c^2}{ab} \right| = \frac{1}{2} \left| \frac{24 \times 24}{8(-3)} \right| = 12$ square unit
- 14. (c) Required Area = $\frac{1}{2} \left| \frac{c^2}{1 \times m} \right| = \frac{c^2}{2m}$
- 15. (d) Intercept made by 2x + 3y = 5 on $x=axis = \frac{5}{2}$ (put y = 0) (put y = 0) Intercept made by 3x - y = 13 on x-axis = $\frac{13}{3}$


(Solving both equations, point of intersection is (4, -1)

Required Area = $\frac{1}{2}$ (difference between x-intercept) imes (y-coordinate of point of intersection)

$$= \frac{1}{2} \left| \left(\frac{13}{3} - \frac{5}{2} \right) (-1) \right| - \frac{11}{12}$$

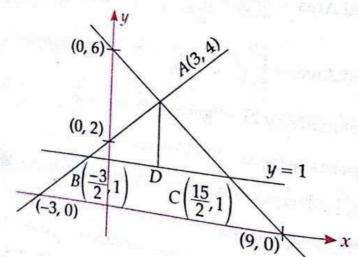
$$1 = (-1) \times 4 = 12$$
 square unit

- 16. (c) Required Area = $\frac{1}{2}$ |5-(-1)| × 4 = 12 square unit
- 17. (b) Solving two given lines x = 2, y = 3Both lines cut x-intercept respectively at (-4, 0) and (1, 0)

 \therefore Required Area = $\frac{1}{2}$ (difference between x-intercept)

× (y-coordinate of point of intersection)

22. (d

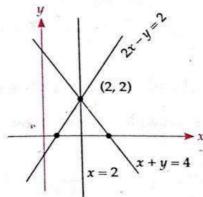

24.

$$=\frac{1}{2}\left|\left(1-\left(-4\right)\right)\times 3\right|=\frac{15}{2}$$
 square unit

18. (d) Required Area = $\frac{1}{2} |-4-7| \times 2 = 11$ square unit

(b) Required ratio =
$$\frac{\frac{1}{2} \left| \left(2 - \left(\frac{-5}{3} \right) \right) 2 \right|}{\frac{1}{2} \left| \left(5 - \frac{4}{3} \right) (-1) \right|} = \frac{\frac{22}{3}}{\frac{11}{3}} = \frac{22}{11} = \frac{2}{1}$$

21. (b) Lines 2x - 3y + 6 = 0 and 2x + 3y - 18 = 0intersect at A (3, 4)



Lines y - 1 = 0 and 2x - 3y + 6 = 0 cuts at $B\left(-\frac{3}{2}, 1\right)$

Lines
$$y - 1 = 0$$
 and $2x + 3y = 18$ cuts at $C\left(\frac{15}{2}, 1\right)$
Area of $\triangle ABC = \frac{1}{2} \times BC \times AD$

$$= \frac{1}{2} \left| \frac{15}{2} - \left(\frac{-3}{2}\right) \right| \times \left| 4 - 1 \right| = \frac{1}{2} \times 9 \times 3 = \frac{27}{2} \text{ square unit}$$

22. (d) Solve the equations taking two at a time.

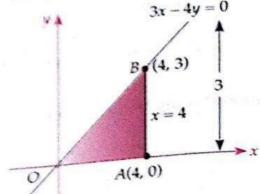
In each case x = 2, y = 2 i.e. lines are concurrent, so do not make a triangle.

23. (a) Required Area = Area of = $\triangle OCD$ ~ area of $\triangle OAB$ (see figure)

 $=\frac{1}{2} \times 8 \times 6 - \frac{1}{2} \times 2 \times 2 = 24 - 2 = 22$ square unit

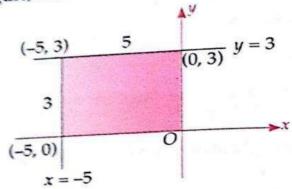
24. (d) Area of quadrilateral $PABQ = \text{Area of } \Delta OAB - \text{area of } \Delta OPQ$ $= \frac{1}{2} \cdot \left| \frac{c^2}{ab} \right| - \frac{1}{2} \cdot OP \cdot OQ$

$$= \frac{1}{2} \cdot \left| \frac{24^2}{3 \times 4} \right| - \frac{1}{2} \cdot 2 \cdot \frac{3}{2}$$


$$= 24 - \frac{3}{2} = \frac{45}{2}$$
 square unit

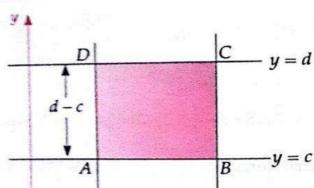
LHO

Lucent's SSC Higher Mathematics

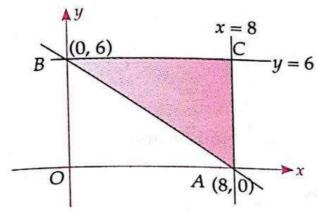

Lucent's Soc. 19

Lucent's Soc and 3x - 4y = 0 is (4, 3)

Required Area = $\frac{1}{2} \times OA \times AB = \frac{1}{2} \times 4 \times 3 = 6$ square unit


26. (b) See the figure, Area enclosed is a rectangle

Required Area = |(-5)3| = 15 square unit

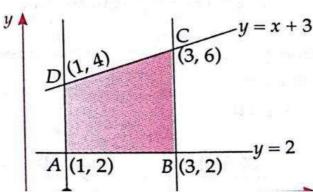

27. (a) x = a and x = b, y are straight lines parallel to y-axis.

y = c and y = d, x are straight lines parallel to x-axis. Point of intersection of these lines form a rectangle (see figure)

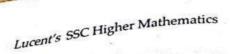
Given lines are $x = \frac{-5}{2}$, $y = \frac{3}{2}$, x = -1 and y = -2According to above question Required Area = $\frac{1}{2}(b-a)(c-d)$ $=\frac{1}{2}\left|\left(-1+\frac{5}{2}\right)\left(\frac{3}{2}+2\right)\right| = \frac{1}{2}\times\frac{3}{2}\times\frac{7}{2} = \frac{21}{8}$ square unit

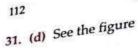
29. (c) Line is 3x + 4y = 24

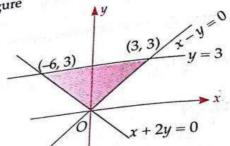
or,
$$\frac{3x}{24} + \frac{4y}{24} = 1$$


or,
$$\frac{x}{8} + \frac{y}{6} = 1$$

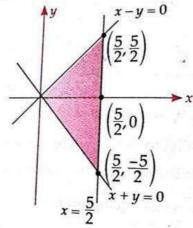
cuts x-axis at (8, 0) and y-axis at (0, 6)

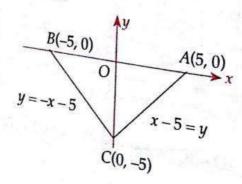

line x = 8 is parallel to y-axis while line y = 6 is parallal to x-axis. These three lines formed a right angled $\triangle ABC$ (see figure) Its area = $\frac{1}{2} \times 8 \times 6 = 24$ square unit


30. (a) Point of intersection of given lines are A(1,2), B(3, 2), C(3, 6) and D(1, 4)(see figure)


It is a trapezium.

Scanned by CamScanner



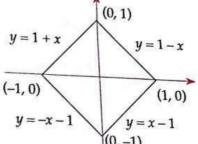

Required Area =
$$\frac{1}{2} |3 - (-6)| \times 3$$

= $\frac{1}{2} \times 9 \times 3$
= $\frac{27}{2}$ square unit

32. (c) See the figure,

Required Area
$$= \frac{1}{2} \times \left(\frac{5}{2} - \left(-\frac{5}{2}\right)\right) \times \frac{5}{2}$$

 $= \frac{1}{2} \times 5 \times \frac{5}{2} = \frac{25}{4}$ square unit.


33. (a) In the equation
$$y = |x| - 5$$
, there are two lines $y = x - 5$, $x > 0$ and $y = -x - 5$, $x < 0$

these lines intersect each other at (0, -5) and respectively cut x-axis at (5, 0) and (-5, 0)Required Area $= \frac{1}{2} \times AB \times OC$ $= \frac{1}{2} \times 10 \times 5$ = 25 square unit.

- y4. (b) From solved example 15

 Required Area = $2k^2 = 2 \times 4^2 = 32$ square unit.
- 35. (a) Here four lines are $y=x-1, x \ge 0$ $y=-x-1, x \le 0$ $y=1-x, x \ge 0$ $y=1+x, x \le 0$

These lines cut axes respectively at (1, 0), (0, 1), (-1, 0) and (0, -1) It is a square with each side = $\sqrt{1^2 + 1^2} = \sqrt{2}$

- Required Area = $(\sqrt{2})^2 = 2$ square unit
- 36. (d) Checking each option one by one, in options (d)

$$\frac{a_1}{a_2} = 1$$
 and $\frac{b_1}{b_2} = -1$ i.e. $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$

So system of equation given in option (d) has unique solution.

- 37. (b) Option (b) follows (b) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} = \frac{1}{2}$; rest are not.
- 38. (c) In option (c) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = 1$ but $\frac{c_1}{c_2} = \frac{8}{12} = \frac{2}{3}$
 - $\therefore \frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ i.e. this system of equation has no solution.
- 39. (c) Solving 3x + 4y = 19 and y x = 3we get x = 1, y = 4putting (x, y) = (1, 4) in 2x + 3y = kwe have $2 \times 1 + 3 \times 4 = k \Rightarrow k = 14$
- 40. (a) In option (a) $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$. Hence lines given in alternative (a) shows parallel lines.

Lucent's SSC Higher Mathematics 41. (d) In option (d) $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$, which is condition for parallel lines 43. (c) Here $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ is always true. It does not depend upon k44. (a) Required condition is $\frac{2a}{2} + \frac{a+b}{3} = \frac{28}{7}$ or, $a = \frac{a+b}{3} = 4$ $\therefore \quad a=4, a+b=12$ or, a = 4, b = 8**46.** (d) System has unique solution if $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ $\Rightarrow \frac{k}{3} \neq \frac{2}{1}$ so options (a), (b), (c) are correct. Exercise—3B In the xy-coordinate system, if (a, b) and (a + 3, b + k) are two points on he line defined by the equation x = 3y - 7, then k =a) 9 (c) $\frac{7}{3}$ (d) 1 [SSC Tier-I 2012] 2. The x-intercept of the graph of 5x - 4y = 20 is (a) 4 units (b) 5 units (c) 9 units (d) 1 units 3. A triangle is formed by the x-axis and the lines 2x + y = 4 and x-y+1=0as three sides. Taking the side along x-axis as its base, the corresponding altitude of the triangle is (a) 2 unit (b) 3 unit (c) √5 unit 4. The length of the portion of the straight line 8x + 15y = 120 intercepted (d) 1 unit [SSC Tier-I 2012] (b) 15 units (c) 16 units

5. The area of the triangle formed by the lines (d) 17 units [SSC Tier-I 2012] 4x + 3y = 12 and x-axis is 5x + 7y = 35 and

(a) $\frac{160}{13}$ sq. units(b) $\frac{150}{13}$ sq. units(c) $\frac{140}{13}$ sq. units (d) 10 sq. units [SSC Tier-I 2012]

Area of the triangle formed by the graph of the line 2x - 3y + 6 = 0 along Area of the coordinate axes is with the country (b) 3 sq. units (c) 6 sq. units (d) $\frac{1}{2}$ sq. units (a) $\frac{3}{2}$ sq. units

Area of the trapezium formed by x-axis, y-axis and the lines 3x + 4y = 46x + 8y = 60 is $\frac{12 \text{ and } 6x + 6y}{12 \text{ sq. units}}$ (c) 36.5 sq. units(d) 37.5 sq. units

 $\frac{12}{12}$ and 6x + 8y = 60 is

For what value of k system of equation x + 2y = 5, 3x + ky + 15 = 0 does not any solution?

- have any solution? (b) -2(a) 2
- (c) 6
- [SSC CPO 2012]

Answers—3B

1. (d) 2. (a) 3. (a)

- 4. (d)
- 5. (a)
- 6. (b) 7. (a)
- 8. (c)

Explanation

1. (d) : (a, b) lies on straight line x = 3y - 7

$$\therefore a = 3b - 7$$

(a+3, b+k) lies on straight line x = 3y-7

$$a + 3 = 3(b + k) - 7$$

Subtracting (ii) from, (i) a + 3 - a = 3(b + k) - 7 - (3b - 7)

or,
$$3 = 3k$$

$$k=1$$

Second Method

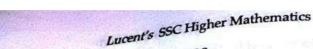
Slope of line joining the points (a, b) and $(a + 3, b + k) = \frac{b + k - b}{a + 3 - a} = \frac{k}{3}$

For the line x = 3y - 7

or,
$$y = \frac{x}{3} + \frac{7}{3}$$

slope =
$$\frac{1}{3}$$

- $\therefore \frac{k}{3} = \frac{1}{3}$
- 2. (a) Putting y = 0 in 5x 4y = 20


$$5x = 20$$

$$5x = 20$$
 \therefore $x = 4$

3. (a) Solving 2x + y = 4 and x - y + 1 = 0, we get

x = 1, y = 2 i.e. Vertex of triangle is (1, 2)

It is at a height of 2 unit from the x-axis

116 4. (d) In the equation 8x + 15y = 120

Putting
$$x = 0$$
, $y = 8$

$$x = 15$$

Putting
$$y = 0$$
, $x = 15$
Thus line cuts x-axis at A (15, 0) and -

y-axis at
$$B(0, 8)$$

length intercepted between $=AB = \sqrt{15^2 + 8^2} = \sqrt{289} = 17$

(0, 8)

 $\left(\frac{-21}{13},\frac{80}{13}\right)$

5. (a) In
$$5x + 7y = 35$$
 putting $y = 0$, $x = 7$
This line cuts x -axis at $(7, 0)$
Similarly $4x + 3y = 12$, cuts x - axis at

Solving
$$5x + 7y = 35$$
 and $4x + 3y = 12$
 $(x, y) = \left(\frac{-21}{13}, \frac{80}{13}\right)$

From figure it is clear that base of triangle =
$$7 - 3 = 4$$
 and height = $\frac{80}{13}$

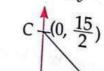
$$\therefore \text{ Area } = \frac{1}{2} \times 4 \times \frac{80}{13} = \frac{160}{13} \text{ square unit}$$

Required Area =
$$\frac{1}{2} \left| \frac{c^2}{ab} \right| = \frac{1}{2} \left| \frac{6^2}{2(-3)} \right| = \frac{36}{12} = 3 \text{ square unit}$$

$$x + 4y = 12 \Rightarrow \frac{3x + 4y}{12} \Rightarrow \frac{x}{4} + \frac{y}{3} = 1$$

$$6x + 8y = 60 \implies \frac{6x + 8y}{60} = 1$$

$$\Rightarrow \frac{x}{10} + \frac{y}{\frac{15}{2}} = 1$$


see figure, Area of trapezium ABCD = area of $\triangle OCD$ – area of $\triangle OAB$ $= \frac{1}{2} \times 10 \times \frac{15}{2} - \frac{1}{2} \times 3 \times 4 = \frac{150}{4} - 6 = 37.5 - 6 = 31.5 \text{ square unit}$

8. (c) System of equation x + 2y - 5 = 0 and 3x + ky + 15 = 0 does not have

Solution if
$$\frac{1}{3} = \frac{2}{k} \neq \frac{-5}{15}$$

$$\Rightarrow \frac{1}{3} = \frac{2}{k} \text{ and } \frac{2}{k} \neq \frac{-5}{11}$$

$$k = 6 \text{ and } k \neq -6$$
Hence, $k = 6$

