
2.1 IntroductIon to Python LIbrarIes

Python libraries contain a collection of built-
in modules that allow us to perform many 
actions without writing detailed programs 
for it. Each library in Python contains a large 
number of modules that one can import and 
use.  

NumPy, Pandas and Matplotlib are three 
well-established Python libraries for scientific 
and analytical use. These libraries allow us 
to manipulate, transform and visualise data 
easily and efficiently.  

NumPy, which stands for ‘Numerical 
Python’, is a library we discussed in class 
XI. Recall that, it is a package that can 
be used for numerical data analysis and 

“If you don't think carefully, you 
might believe that programming 
is just typing statements in a 
programming language.”

—  W. Cunningham

C h a p t e r

 2
Data Handling Using 
Pandas - I

In this chapter
 » Introduction to 

Python Libraries
 » Series
 » DataFrame
 » Importing and 

Exporting Data 
between CSV Files 
and DataFrames

 » Pandas Series Vs 
NumPy ndarray

Chapter 2.indd   27 11/26/2020   12:32:46 PM

2021–22



InformatIcs PractIces28

 

scientific computing. NumPy uses a multidimensional 
array object and has functions and tools for working 
with these arrays.  Elements of an array stay together in 
memory, hence, they can be quickly accessed.

PANDAS (PANel DAta) is a high-level data manipulation 
tool used for analysing data. It is very easy to import 
and export data using Pandas library which has a very 
rich set of functions. It is built on packages like NumPy 
and Matplotlib and gives us a single, convenient place 
to do most of our data analysis and visualisation work. 
Pandas has three important data structures, namely –  
Series, DataFrame and Panel to make the process of 
analysing data organised, effective and efficient.

The Matplotlib library in Python is used for plotting 
graphs and visualisation. Using Matplotlib, with just a 
few lines of code we can generate publication quality 
plots, histograms, bar charts, scatterplots, etc. It is 
also built on Numpy, and is designed to work well with 
Numpy and Pandas. 

You may think what the need for Pandas is when 
NumPy can be used for data analysis. Following are 
some of the differences between Pandas and Numpy:
1. A Numpy array requires homogeneous data, while 

a Pandas DataFrame can have different data types 
(float, int, string, datetime, etc.). 

2. Pandas have a simpler interface for operations like 
file loading, plotting, selection, joining, GROUP 
BY, which come very handy in data-processing 
applications.

3. Pandas DataFrames (with column names) make it 
very easy to keep track of data. 

4. Pandas is used when data is in Tabular Format, 
whereas Numpy is used for numeric array based 
data manipulation.

2.1.1. Installing Pandas
Installing Pandas is very similar to installing NumPy. To 
install Pandas from command line, we need to type in:

pip install pandas

Note that both NumPy and Pandas can be installed 
only when Python is already installed on that system. 
The same is true for other libraries of Python.

notes

Chapter 2.indd   28 11/26/2020   12:32:46 PM

2021–22



Data HanDling Using PanDas - i 29

2.1.2. Data Structure in Pandas
A data structure is a collection of data values and 
operations that can be applied to that data. It enables 
efficient storage, retrieval and modification to the data. 
For example, we have already worked with a data 
structure ndarray in NumPy in Class XI. Recall the ease 
with which we can store, access and update data using 
a NumPy array. Two commonly used data structures in 
Pandas that we will cover in this book are: 
• Series 
• DataFrame

2.2 serIes

A Series is a one-dimensional array containing a 
sequence of values of any data type (int, float, list, 
string, etc) which by default have numeric data labels 
starting from zero. The data label associated with a 
particular value is called its index. We can also assign 
values of other data types as index. We can imagine a 
Pandas Series as a column in a spreadsheet. Example 
of a series containing names of students is given below:
Index Value
0  Arnab
1  Samridhi
2  Ramit
3  Divyam
4  Kritika

2.2.1 Creation of Series
There are different ways in which a series can be created 
in Pandas. To create or use series, we first need to import 
the Pandas library.
(A) Creation of Series from Scalar Values
A Series can be created using scalar values as shown in 
the example below:
>>> import pandas as pd   #import Pandas with alias pd

>>> series1 = pd.Series([10,20,30])  #create a Series

>>> print(series1)  #Display the series

Output:
0    10
1    20
2    30
dtype: int64

Chapter 2.indd   29 11/26/2020   12:32:46 PM

2021–22



InformatIcs PractIces30

Observe that output is shown in two columns -  the 
index is on the left and the data value is on the right. If 
we do not explicitly specify an index for the data values 
while creating a series, then by default indices range 
from 0 through N –  1. Here N is the number of data 
elements.

We can also assign user-defined labels to the index 
and use them to access elements of a Series. The 
following example has a numeric index in random order. 
>>> series2 = pd.Series(["Kavi","Shyam","Ra
vi"], index=[3,5,1])
>>> print(series2)  #Display the series

Output:
3     Kavi
5    Shyam
1     Ravi
dtype: object

Here, data values Kavi, Shyam and Ravi have index 
values 3, 5 and 1, respectively. We can also use letters 
or strings as indices, for example:
>>> series2 = pd.Series([2,3,4],index=["Feb","M
ar","Apr"])
>>> print(series2) #Display the series

Output:
Feb    2
Mar    3
Apr    4
dtype: int64
  

Here, data values 2,3,4 have index values Feb, Mar 
and Apr, respectively.
(B) Creation of Series from NumPy Arrays
We can create a series from a one-dimensional (1D) 
NumPy array, as shown below: 

Activity 2.1

Create a series having 
names of any five 
famous monuments of 
India and assign their 
States as index values.

While importing 
Pandas, is it 
mandatory to always 
use pd as an alias 
name? What would 
happen if we give any 
other name?

Think and Reflect

>>> import numpy as np  # import NumPy with alias np
>>> import pandas as pd
>>> array1 = np.array([1,2,3,4])
>>> series3 = pd.Series(array1)
>>> print(series3)

Output:
0    1
1    2
2    3
3    4
dtype: int32

Chapter 2.indd   30 11/26/2020   12:32:47 PM

2021–22



Data HanDling Using PanDas - i 31

The following example shows that we can use letters 
or strings as indices:

>>> series4 = pd.Series(array1, index = ["Jan", 
"Feb", "Mar", "Apr"])
>>> print(series4)
Jan    1
Feb    2
Mar    3
Apr    4
dtype: int32

When index labels are passed with the array, then 
the length of the index and array must be of the same 
size, else it will result in a ValueError. In the example 
shown below, array1 contains 4 values whereas there 
are only 3 indices, hence ValueError is displayed.
>>> series5 = pd.Series(array1, index = ["Jan", 
"Feb", "Mar"])
ValueError: Length of passed values is 4, index 
implies 3

(C) Creation of Series from Dictionary
Recall that Python dictionary has key: value pairs and 
a value can be quickly retrieved when its key is known. 
Dictionary keys can be used to construct an index for a 
Series, as shown in the following example. Here, keys of 
the dictionary dict1 become indices in the series. 
>>> dict1 = {'India': 'NewDelhi', 'UK': 
'London', 'Japan': 'Tokyo'}
>>> print(dict1)  #Display the dictionary
{'India': 'NewDelhi', 'UK': 'London', 'Japan': 
'Tokyo'}
>>> series8 = pd.Series(dict1) 
>>> print(series8)  #Display the series
India    NewDelhi
UK         London
Japan       Tokyo
dtype: object

2.2.2 Accessing Elements of a Series
There are two common ways for accessing the elements 
of a series: Indexing and Slicing.
(A) Indexing
Indexing in Series is similar to that for NumPy arrays, 
and is used to access elements in a series. Indexes 
are of two types: positional index and labelled index. 
Positional index takes an integer value that corresponds 
to its position in the series starting from 0, whereas 
labelled index takes any user-defined label as index.

notes

Chapter 2.indd   31 11/26/2020   12:32:47 PM

2021–22



InformatIcs PractIces32

• Following example shows usage of the positional 
index for accessing a value from a Series.
>>> seriesNum = pd.Series([10,20,30])
>>> seriesNum[2]
30

Here, the value 30 is displayed for the positional 
index 2.

When labels are specified, we can use labels as 
indices while selecting values from a Series, as shown 
below. Here, the value 3 is displayed for the labelled 
index Mar.

>>> seriesMnths = pd.Series([2,3,4],index=["Feb
","Mar","Apr"])
>>> seriesMnths["Mar"]
3

In the following example, value NewDelhi is 
displayed for the labelled index India. 
>>> seriesCapCntry = pd.Series(['NewDelhi',   
     'WashingtonDC', 'London', 'Paris'], 
index=['India', 'USA', 'UK', 'France'])
>>> seriesCapCntry['India']
'NewDelhi'

We can also access an element of the series using 
the positional index:
>>> seriesCapCntry[1]
'WashingtonDC'

More than one element of a series can be accessed 
using a list of positional integers or a list of index 
labels as shown in the following examples:

>>> seriesCapCntry[[3,2]]
France     Paris
UK        London
dtype: object

>>> seriesCapCntry[['UK','USA']]
UK           London
USA    WashingtonDC
dtype: object

The index values associated with the series can be 
altered by assigning new index values as shown in 
the following example:
>>> seriesCapCntry.index=[10,20,30,40]
>>> seriesCapCntry

Activity 2.2

Write the statement to 
get NewDelhi as output 
using positional index.

Chapter 2.indd   32 11/26/2020   12:32:47 PM

2021–22



Data HanDling Using PanDas - i 33

10        NewDelhi
20    WashingtonDC
30          London
40           Paris
dtype: object

(B) Slicing
Sometimes, we may need to extract a part of a series. 
This can be done through slicing. This is similar to 
slicing used with NumPy arrays. We can define which 
part of the series is to be sliced by specifying the start 
and end parameters [start :end] with the series name. 
When we use positional indices for slicing, the value 
at the endindex position is excluded, i.e., only (end - 
start) number of data values of the series are extracted. 
Consider the following series seriesCapCntry: 

>>> seriesCapCntry = pd.Series(['NewDelhi', 'WashingtonDC', 'London', 
'Paris'], index=['India', 'USA', 'UK', 'France'])

 >>> seriesCapCntry[1:3] #excludes the value at index position 3

USA    WashingtonDC
UK           London         
dtype: object

As we can see that in the above output, only data 
values  at indices 1 and 2 are displayed. If labelled 
indexes are used for slicing, then value at the end index 
label is also included in the output, for example: 
>>> seriesCapCntry['USA' : 'France'] 

USA       WashingtonDC
UK              London    
France           Paris
dtype: object

We can also get the series in reverse order, for 
example: 
>>> seriesCapCntry[ : : -1]
France           Paris
UK              London
USA       WashingtonDC
India         NewDelhi
dtype: object

Chapter 2.indd   33 11/26/2020   12:32:47 PM

2021–22



InformatIcs PractIces34

We can also use slicing to modify the values of series 
elements as shown in the following example: 

>>> import numpy as np
>>> seriesAlph = pd.Series(np.arange(10,16,1), 
index = ['a', 'b', 'c', 'd', 'e', 'f'])
>>> seriesAlph
a    10
b    11
c    12
d    13
e    14
f    15
dtype: int32

>>> seriesAlph[1:3] = 50 
>>> seriesAlph
a    10
b    50
c    50
d    13
e    14
f    15
dtype: int32

Observe that updating the values in a series using 
slicing also excludes the value at the end index position. 
But, it changes the value at the end index label when 
slicing is done using labels.

>>> seriesAlph['c':'e'] = 500
>>> seriesAlph
a     10
b     50
c    500
d    500
e    500
f     15
dtype: int32

2.2.3 Attributes of Series
We can access certain properties called attributes of 
a series by using that property with the series name. 
Table 2.1 lists some attributes of Pandas series 
usingseriesCapCntry as an example:
 
>>> seriesCapCntry
India         NewDelhi
USA       WashingtonDC
UK              London
France           Paris
dtype: object

notes

Chapter 2.indd   34 11/26/2020   12:32:47 PM

2021–22



Data HanDling Using PanDas - i 35

Table 2.1 Attributes of Pandas Series
Attribute Name Purpose Example
name assigns a name to the Series >>> seriesCapCntry.name = ‘Capitals’

>>> print(seriesCapCntry)
India         NewDelhi
USA       WashingtonDC
UK              London
France           Paris
Name: Capitals, dtype: object

index.name assigns a name to the index 
of the series

>>>seriesCapCntry.index.name = 
‘Countries’   
>>> print(seriesCapCntry)
Countries
India         NewDelhi
USA       WashingtonDC
UK              London
France           Paris
Name: Capitals, dtype: object

values prints a list of the values in 
the series

>>> print(seriesCapCntry.values)
[‘NewDelhi’ ‘WashingtonDC’ ‘London’ 
‘Paris’]

size prints the number of values 
in the Series object

>>> print(seriesCapCntry.size)
4

empty prints True if the series is 
empty, and False otherwise

>>> seriesCapCntry.empty
False 

# Create an empty series 
seriesEmpt=pd.Series()  
>>> seriesEmpt.empty
True

Activity 2.3

Consider the following 
code:
>>>import pandas as pd
>>>import numpy as np
>>>s2=pd.
Series([12,np.nan,10])
>>>print(s2)

Find output of the 
above code and write 
a Python statement to 
count and display only 
non null values in the 
above series.

2.2.4 Methods of Series
In this section, we are going to discuss some of the 
methods that are available for Pandas Series. Let us 
consider the following series:
>>> seriesTenTwenty=pd.Series(np.arange( 10, 
20, 1 ))
>>> print(seriesTenTwenty)
0    10
1    11
2    12
3    13
4    14
5    15
6    16
7    17
8    18
9    19
dtype: int32

Chapter 2.indd   35 11/26/2020   12:32:47 PM

2021–22



InformatIcs PractIces36

Method Explanation Example
head(n) Returns the first n members of the series.  If 

the value for n is not passed, then by default 
n takes 5 and the first five members are 
displayed.

>>> seriesTenTwenty.head(2)
0    10
1    11
dtype: int32

>>> seriesTenTwenty.head()
0    10
1    11
2    12
3    13
4    14
dtype: int32

count() Returns the number of non-NaN values in 
the Series

>>> seriesTenTwenty.count()
10

tail(n) Returns the last n members of the series. If 
the value for n is not passed, then by default 
n takes 5 and the last five members are 
displayed.

>>> seriesTenTwenty.tail(2)
8    18
9    19
dtype: int32

>>> seriesTenTwenty.tail()
5    15
6    16
7    17
8    18
9    19
dtype: int32

2.2.5 Mathematical Operations on Series
We have learnt in Class XI that if we perform basic 
mathematical operations like addition, subtraction, 
multiplication, division, etc., on two NumPy arrays, 
the operation is done on each corresponding pair of 
elements. Similarly, we can perform mathematical 
operations on two series in Pandas.

While performing mathematical operations on series, 
index matching is implemented and all missing values 
are filled in with NaN by default. 

Consider the following series: seriesA and seriesB 
for understanding mathematical operations on series in 
Pandas.
>>> seriesA = pd.Series([1,2,3,4,5], index = 
['a', 'b', 'c', 'd', 'e'])

>>> seriesA
a    1
b    2
c    3
d    4
e    5
dtype: int64

Chapter 2.indd   36 11/26/2020   12:32:47 PM

2021–22



Data HanDling Using PanDas - i 37

>>> seriesB = pd.Series([10,20,-10,-50,100], 
index = ['z', 'y', 'a', 'c', 'e'])

>>> seriesB
z     10
y     20
a    -10
c    -50
e    100
dtype: int64

(A) Addition of two Series
It can be done in two ways. In the first method, two 
series are simply added together, as shown in the 
following code. Table 2.2 shows the detailed values that 
were matched while performing the addition. Note here 
that the output of addition is NaN if one of the elements 
or both elements have no value.
>>> seriesA + seriesB 
a     -9.0
b      NaN
c    -47.0
d      NaN
e    105.0
y      NaN
z      NaN
dtype: float64

Table 2.2 Details of addition of two series
index value from 

seriesA
value from 

seriesB
seriesA + seriesB

a 1 -10 -9.0

b 2 NaN

c 3 -50 -47.0

d 4 NaN

e 5 100 105.00

y 20 NaN

z 10 NaN

The second method is applied when we do not 
want to have NaN values in the output. We can use 
the series method add() and a parameter fill_value to 
replace missing value with a specified value. That is, 
calling seriesA.add(seriesB) is equivalent to calling 
seriesA+seriesB, but add() allows explicit specification 
of the fill value for any element in seriesA or seriesB 
that might be missing, as shown in Table 2.3.

notes

Chapter 2.indd   37 11/26/2020   12:32:47 PM

2021–22



InformatIcs PractIces38

Activity 2.5

Draw two tables for 
multiplication similar 
to Tables 2.2 and 2.3 
showing the changes 
in the series elements 
and corresponding 
output without 
replacing the missing 
values, and after 
replacing the missing 
values with 0.

 >>> seriesA.add(seriesB, fill_value=0)

a     -9.0
b      2.0
c    -47.0
d      4.0
e    105.0
y     20.0
z     10.0
dtype: float64

Table 2.3 Details of addition of two series using add() method 
index value from 

seriesA
value from 

seriesB
seriesA + seriesB

a 1 -10 -9.0

b 2 0 2.0

c 3 -50 -47.0

d 4 0 4.0

e 5 100 105.00

y 0 20 20.0

z 0 10 10.0
Note that Table 2.2 shows the changes in the series 

elements and corresponding output without replacing 
the missing values, while Table 2.3 shows the changes 
in the series elements and corresponding output after 
replacing missing values by 0. Just like addition, 
subtraction, multiplication and division can also be 
done using corresponding mathematical operators or 
explicitly calling of the appropriate method. 
(B) Subtraction of two Series
Again, it can be done in two different ways, as shown in 
the following examples:

Activity 2.4

Draw two tables for 
subtraction similar 
to tables 2.2 and 2.3 
showing the changes in 
the series elements and 
corresponding output 
without replacing the 
missing values, and 
after replacing the 
missing values with 
1000.

>>> seriesA – seriesB #using subtraction operator   
a     11.0
b     NaN
c     53.0
d     NaN
e     -95.0
y     NaN
z     NaN
dtype: float64

Let us now replace the missing values with 1000 
before subtracting seriesB from seriesA using explicit 
subtraction method sub(). 

Chapter 2.indd   38 11/26/2020   12:32:47 PM

2021–22



Data HanDling Using PanDas - i 39

>>> seriesA.sub(seriesB, fill_value=1000) 
# using fill value 1000 while making explicit
# call of the method”

a     11.0                     
b     -998.0
c     53.0
d     -996.0
e     -95.0
y     980.0
z     990.0
dtype: float64

(C) Multiplication of two Series
Again, it can be done in two different ways, as shown in 
the following examples:

>>>seriesA * seriesB #using multiplication operator
a    -10.0                                
b      NaN
c   -150.0
d      NaN
e    500.0
y      NaN
z      NaN
dtype: float64

Activity 2.6

Draw two tables for 
division similar to 
tables 2.2 and 2.3 
showing the changes 
in the series elements 
and corresponding 
output without 
replacing the missing 
values, and after 
replacing the missing 
values with 0.

Explicit call to 
a mathematical 

operation is preferred 
when series may have 
missing values and we 
want to replace it by a 
specific value to have 
a concrete output in 

place of NaN.

Let us now replace the missing values with 0 before 
multiplication of seriesB with seriesA using explicit 
multiplication method mul(). 

>>> seriesA.mul(seriesB, fill_value=0) 
# using fill value 0 while making 
#explicit call of the method
a    -10.0
b      0.0
c   -150.0
d      0.0
e    500.0
y      0.0
z      0.0
dtype: float64

(D) Division of two Series
Again, it can be done in two different ways, as shown in 
the following examples:

>>> seriesA/seriesB  # using division operator
a    -0.10
b     NaN
c     -0.06
d     NaN

Chapter 2.indd   39 11/26/2020   12:32:47 PM

2021–22



InformatIcs PractIces40

e     0.05
y     NaN
z     NaN
dtype: float64

Let us now replace the missing values with 0 before 
dividing seriesA by seriesB using explicit division 
method div(). 

# using fill value 0 while making explicit 
# call of the method

a    -0.10
b     inf
c    -0.06
d     inf
e     0.05
y     0.00
z     0.00
dtype: float64

2.3 dataFrame

Sometimes we need to work on multiple columns at 
a time, i.e., we need to process the tabular data. For 
example, the result of a class, items in a restaurant’s 
menu, reservation chart of a train, etc. Pandas store 
such tabular data using a DataFrame. A DataFrame is 
a two-dimensional labelled data structure like a table 
of MySQL. It contains rows and columns, and therefore 
has both a row and column index. Each column can 
have a different type of value such as numeric, string, 
boolean, etc., as in tables of a database.

R
ow

 I
nd

ex
es

State Geographical Area 
(sq Km)

Area under Very 
Dense Forests (sq 

Km)
1 Assam 78438 2797

2 Delhi 1483 6.72

3 Kerala 38852 1663

Column Indexes

2.3.1 Creation of DataFrame
There are a number of ways to create a DataFrame. 
Some of them are listed in this section.
(A) Creation of an empty DataFrame 
An empty DataFrame can be created as follows:

Chapter 2.indd   40 11/26/2020   12:32:47 PM

2021–22



Data HanDling Using PanDas - i 41

>>> import pandas as pd
>>> dFrameEmt = pd.DataFrame()
>>> dFrameEmt
      
Empty DataFrame
Columns: []
Index: []

(B) Creation of DataFrame from NumPy ndarrays
Consider the following three NumPy ndarrays. Let us 
create a simple DataFrame without any column labels, 
using a single ndarray:
>>> import numpy as np
>>> array1 = np.array([10,20,30])
>>> array2 = np.array([100,200,300])
>>> array3 = np.array([-10,-20,-30, -40])

>>> dFrame4 = pd.DataFrame(array1)
>>> dFrame4
    0
0  10
1  20
2  30

We can create a DataFrame using more than one 
ndarrays, as shown in the following example:
>>> dFrame5 = pd.DataFrame([array1, array3, 
array2], columns=[ 'A', 'B', 'C', 'D'])
>>> dFrame5
     A    B    C     D
0   10   20   30   NaN
1  -10  -20  -30 -40.0
2  100  200  300   NaN

(C) Creation of DataFrame from List of Dictionaries
We can create DataFrame from a list of Dictionaries, for 
example:
# Create list of dictionaries
>>> listDict = [{'a':10, 'b':20}, {'a':5, 
'b':10, 'c':20}]

>>> dFrameListDict = pd.DataFrame(listDict)
>>> dFrameListDict
    a   b     c
0  10  20   NaN
1   5  10  20.0

Here, the dictionary keys are taken as column 
labels, and the values corresponding to each key are 
taken as rows. There will be as many rows as the 
number of dictionaries present in the list. In the above 
example there are two dictionaries in the list. So, the 
DataFrame consists of two rows. Number of columns 

What would happen if 
we pass 3 columns or 
5 columns instead of 
4 in the above code? 
What is the reason?

Think and Reflect

Chapter 2.indd   41 11/26/2020   12:32:47 PM

2021–22



InformatIcs PractIces42

>>> dictForest = {'State': ['Assam', 'Delhi', 
'Kerala'],
  'GArea': [78438, 1483, 38852] ,
  'VDF' : [2797, 6.72,1663]}
>>> dFrameForest= pd.DataFrame(dictForest)
>>> dFrameForest
    State   GArea    VDF
0   Assam   78438  2797.00
1   Delhi   1483     6.72
2   Kerala  38852  1663.00

in a DataFrame is equal to the maximum number of 
keys in any dictionary of the list. Hence, there are three 
columns as the second dictionary has three elements. 
Also, note that NaN (Not a Number) is inserted if a 
corresponding value for a column is missing.
(D) Creation of DataFrame from Dictionary of Lists
DataFrames can also be created from a dictionary of 
lists. Consider the following dictionary consisting of the 
keys ‘State’, ‘GArea’ (geographical area) and ‘VDF’ (very 
dense forest) and the corresponding values as list.

Note that dictionary keys become column labels by 
default in a DataFrame, and the lists become the rows. 
Thus, a DataFrame can be thought of as a dictionary of 
lists or a dictionary of series.

We can change the sequence of columns in a 
DataFrame. This can be done by assigning a particular 
sequence of the dictionary keys as columns parameter, 
for example: 
>>> dFrameForest1 = pd.DataFrame(dictForest, 
columns = ['State','VDF', 'GArea'])
>>> dFrameForest1
    State      VDF   GArea
0   Assam   2797.00  78438
1   Delhi     6.72   1483
2   Kerala  1663.00  38852

In the output, VDF is now displayed as the middle 
column instead of last.
(E) Creation of DataFrame from Series
Consider the following three Series:

seriesA = pd.Series([1,2,3,4,5],
  index = ['a', 'b', 'c', 'd', 'e'])

seriesB = pd.Series ([1000,2000,-1000,-5000,1000],
  index = ['a', 'b', 'c', 'd', 'e'])

Chapter 2.indd   42 11/26/2020   12:32:47 PM

2021–22



Data HanDling Using PanDas - i 43

seriesC = pd.Series([10,20,-10,-50,100],
  index = ['z', 'y', 'a', 'c', 'e'])

We can create a DataFrame using a single series as 
shown below:
>>> dFrame6 = pd.DataFrame(seriesA)
>>> dFrame6
   0
a  1
b  2
c  3
d  4
e  5

Here, the DataFrame dFrame6 has as many numbers 
of rows as the numbers of elements in the series, but 
has only one column. To create a DataFrame using  
more than one series, we need to pass multiple series in 
the list as shown below:

>>> dFrame7 = pd.DataFrame([seriesA, seriesB])
>>> dFrame7
a     b     c     d     e
0     1     2     3     4     5
1  1000  2000 -1000 -5000  1000

Observe that the labels in the series object become 
the column names in the DataFrame object and each 
series becomes a row in the DataFrame. Now look at the 
following example:

>>> dFrame8 = pd.DataFrame([seriesA, seriesC])
>>> dFrame8
a    b     c    d      e     z     y
0   1.0  2.0   3.0  4.0    5.0   NaN   NaN
1 -10.0  NaN -50.0  NaN  100.0  10.0  20.0

Here, different series do not have the same set of 
labels. But, the number of columns in a DataFrame 
equals to distinct labels in all the series. So, if a particular 
series does not have a corresponding value for a label, 
NaN is inserted in the DataFrame column.
(F) Creation of DataFrame from Dictionary of Series
A dictionary of series can also be used to create a 
DataFrame. For example, ResultSheet is a dictionary of 
series containing marks of 5 students in three subjects. 
The names of the students are the keys to the dictionary, 
and the index values of the series are the subject names 
as shown below:

notes

Chapter 2.indd   43 11/26/2020   12:32:47 PM

2021–22



InformatIcs PractIces44

>>> ResultSheet={
'Arnab': pd.Series([90, 91, 97],
  index=['Maths','Science','Hindi']),
'Ramit': pd.Series([92, 81, 96],
  index=['Maths','Science','Hindi']),
'Samridhi': pd.Series([89, 91, 88],
  index=['Maths','Science','Hindi']),
'Riya': pd.Series([81, 71, 67],
  index=['Maths','Science','Hindi']),
'Mallika': pd.Series([94, 95, 99],
  index=['Maths','Science','Hindi'])}

>>> ResultDF = pd.DataFrame(ResultSheet)
>>> ResultDF
         Arnab  Ramit  Samridhi  Riya  Mallika
Maths       90     92        89    81       94
Science     91     81        91    71       95
Hindi       97     96        88    67       99

The following output shows that every column in the 
DataFrame is a Series:
>>> type(ResultDF.Arnab) 
<class 'pandas.core.series.Series'>

When a DataFrame is created from a Dictionary of 
Series, the resulting index or row labels are a union of all 
series indexes used to create the DataFrame. For example: 
dictForUnion = { 'Series1' : 
pd.Series([1,2,3,4,5],
  index = ['a', 'b', 'c', 'd', 'e']) ,
       'Series2' : 
pd.Series([10,20,-10,-50,100],
  index = ['z', 'y', 'a', 'c', 'e']),
       'Series3' : 
pd.Series([10,20,-10,-50,100],
  index = ['z', 'y', 'a', 'c', 'e']) }

>>> dFrameUnion = pd.DataFrame(dictForUnion)
>>> dFrameUnion
      
   Series1  Series2  Series3
a      1.0    -10.0    -10.0
b      2.0      NaN      NaN
c      3.0    -50.0    -50.0
d      4.0      NaN      NaN
e      5.0    100.0    100.0
y      NaN     20.0     20.0
z      NaN     10.0     10.0

2.3.2 Operations on rows and columns in DataFrames
We can perform some basic operations on rows and 
columns of a DataFrame like selection, deletion, 
addition, and renaming, as discussed in this section.

Activity 2.7

Use the type function 
to check the datatypes 
of ResultSheet and 
ResultDF. Are they the 
same? 

Chapter 2.indd   44 11/26/2020   12:32:47 PM

2021–22



Data HanDling Using PanDas - i 45

(A) Adding a New Column to a DataFrame
We can easily add a new column to a DataFrame. Let 
us consider the DataFrame ResultDF defined earlier. In 
order to add a new column for another student ‘Preeti’, 
we can write the following statement: 
>>> ResultDF['Preeti']=[89,78,76]
>>> ResultDF
                
         Arnab  Ramit  Samridhi  Riya  Mallika Preeti
Maths       90     92        89    81       94     89
Science     91     81        91    71       95     78
Hindi       97     96        88    67       99     76

Assigning values to a new column label that does not 
exist will create a new column at the end. If the column 
already exists in the DataFrame then the assignment 
statement will update the values of the already existing 
column, for example:
>>> ResultDF['Ramit']=[99, 98, 78]
>>> ResultDF
         Arnab  Ramit  Samridhi  Riya  Mallika Preeti
Maths       90     99        89    81       94     89
Science     91     98        91    71       95     78
Hindi       97     78        88    67       99     76

We can also change data of an entire column to a 
particular value in a DataFrame. For example, the 
following statement sets marks=90 for all subjects for 
the column name 'Arnab':

>>> ResultDF['Arnab']=90
>>> ResultDF

         Arnab  Ramit  Samridhi  Riya  Mallika Preeti
Maths       90     99        89    81       94     89
Science     90     98        91    71       95     78
Hindi       90     78        88    67       99     76

(B)  Adding a New Row to a DataFrame
We can add a new row to a DataFrame using the 
DataFrame.loc[ ] method. Consider the DataFrame 
ResultDF that has three rows for the three subjects –  
Maths, Science and Hindi. Suppose, we need to add the 
marks for English subject in ResultDF, we can use the 
following statement:

>>> ResultDF
         Arnab  Ramit  Samridhi  Riya  Mallika  Preeti
Maths       90     92        89    81       94  89
Science     91     81        91    71       95      78
Hindi       97     96        88    67       99      76

Chapter 2.indd   45 11/26/2020   12:32:47 PM

2021–22



InformatIcs PractIces46

We cannot use this method to add a row of data with 
already existing (duplicate) index value (label). In such 
case, a row with this index label will be updated, for 
example:

>>> ResultDF.loc['English'] = [95, 86, 95, 80, 95,99]
>>> ResultDF

         Arnab  Ramit  Samridhi  Riya  Mallika  Preeti
Maths       90     92        89    81       94  89
Science     91     81        91    71       95      78
Hindi       97     96        88    67       99      76
English     95     86        95    80       95      99

DataFRame.loc[] method can also be used to change 
the data values of a row to a particular value. For 
example, the following statement sets marks in 'Maths' 
for all columns to 0:

Can you write a 
program to count 
the number of rows 
and columns in a 
DataFrame?

Think and Reflect

>>> ResultDF.loc['English'] = [85, 86, 83, 80, 90, 89]
>>> ResultDF
         Arnab  Ramit  Samridhi  Riya  Mallika  Preeti
Maths       90     92        89    81       94  89
Science     91     81        91    71       95      78
Hindi       97     96        88    67       99      76
English     85     86        83    80       90      89

>>> ResultDF.loc['Maths']=0
>>> ResultDF
         Arnab  Ramit  Samridhi  Riya  Mallika  Preeti
Maths        0      0         0     0        0   0
Science     91     81        91    71       95      78
Hindi       97     96        88    67       99      76
English     95     86        95    80       95      99

If we try to add a row with lesser values than the 
number of columns in the DataFrame, it results in a 
ValueError, with the error message:   ValueError: 
Cannot set a row with mismatched columns.

Similarly, if we try to add a column with lesser values 
than the number of rows in the DataFrame, it results 
in a ValueError, with the error message: ValueError: 
Length of values does not match length of index.

Further, we can set all values of a DataFrame to a 
particular value, for example: 

>>> ResultDF[: ] = 0 # Set all values in ResultDF to 0
>>> ResultDF
         Arnab  Ramit  Samridhi  Riya  Mallika  Preeti
Maths        0      0         0     0        0   0
Science      0      0         0     0        0   0
Hindi        0      0         0     0        0   0
English      0      0         0     0        0   0

Chapter 2.indd   46 11/26/2020   12:32:47 PM

2021–22



Data HanDling Using PanDas - i 47

 The following example shows how to delete the row 
with label 'Science':
>>> ResultDF = ResultDF.drop('Science', axis=0)
>>> ResultDF
         Arnab  Ramit  Samridhi  Riya Mallika
Maths       90     92        89    81      94
Hindi       97     96        88    67      99
English     95     86        95    80      95 

The following example shows how to delete the 
columns having labels 'Samridhi', 'Ramit' and 'Riya':
 >>> ResultDF = ResultDF.drop(['Samridhi','Rami
t','Riya'], axis=1)
 >>> ResultDF
         Arnab  Mallika
Maths       90       94
Hindi       97       99
English     95       95

 If the DataFrame has more than one row with the 
same label, the DataFrame.drop() method will delete all 
the matching rows from it. For example, consider the 
following DataFrame:  
 
>>> ResultDF

  Arnab  Ramit  Samridhi  Riya  Mallika
Maths     90     92        89    81       94
Science   91     81        91    71       95
Hindi     97     96        88    67       99
Hindi     97     89        78    60       45

To remove the duplicate rows labelled ‘Hindi’, we 
need to write the following statement:
 >>> ResultDF= ResultDF.drop('Hindi', axis=0)
>>> ResultDF

(C) Deleting Rows or Columns from a DataFrame
We can use the DataFrame.drop() method to delete rows 
and columns from a DataFrame. We need to specify the 
names of the labels to be dropped and the axis from 
which they need to be dropped. To delete a row, the 
parameter axis is assigned the value 0 and for deleting 
a column,the parameter axis is assigned the value 1. 
Consider the following DataFrame: 

 >>> ResultDF
         Arnab  Ramit  Samridhi  Riya Mallika
Maths       90     92        89    81      94
Science     91     81        91    71      95
Hindi       97     96        88    67      99
English     95     86        95    80      95

notes

Chapter 2.indd   47 11/26/2020   12:32:47 PM

2021–22



InformatIcs PractIces48

  Arnab  Ramit  Samridhi  Riya  Mallika
Maths     90     92        89    81       94
Science   91     81        91    71       95

(D) Renaming Row Labels of a DataFrame
We can change the labels of rows and columns in a 
DataFrame using the DataFrame.rename() method. 
Consider the following DataFrame. To rename the row 
indices Maths to sub1, Science to sub2, Hindi to sub3 
and English to sub4 we can write the following statement: 

>>> ResultDF  
  Arnab  Ramit  Samridhi  Riya  Mallika
Maths     90     92        89    81       94
Science   91     81        91    71       95
English   97     96        88    67       99
Hindi     97     89        78    60       45

>>> ResultDF=ResultDF.rename({'Maths':'Sub1', 
‘Science':'Sub2','English':'Sub3', 
'Hindi':'Sub4'}, axis='index')
>>> print(ResultDF)

  Arnab  Ramit  Samridhi  Riya  Mallika
Sub1     90     92        89    81       94
Sub2     91     81        91    71       95
Sub3     97     96        88    67       99
Sub4     97     89        78    60       45

  The parameter axis='index' is used to specify that 
the row label is to be changed. If no new label is passed 
corresponding to an existing label, the existing row label 
is left as it is, for example: 
>>> ResultDF=ResultDF.rename({'Maths':'Sub1',‘S
cience':'Sub2','Hindi':'Sub4'}, axis='index')
>>> print(ResultDF)

  Arnab  Ramit  Samridhi  Riya  Mallika
Sub1     90     92        89    81       94
Sub2     91     81        91    71       95
English  97     96        88    67       99
Sub4     97     89        78    60       45

(E) Renaming Column Labels of a DataFrame
To alter the column names of ResultDF we can again use 
the rename() method, as shown below. The parameter 
axis='columns' implies we want to change the column 
labels:

What if in the rename 
function we pass a 
value for a row label 
that does not exist?

Think and Reflect

 >>> ResultDF=ResultDF.rename({'Arnab':'Student1','Ramit':'Student2','

Samridhi':'Student3','Mallika':'Student4'},axis='columns')

>>> print(RsultDF)

Chapter 2.indd   48 11/26/2020   12:32:47 PM

2021–22



Data HanDling Using PanDas - i 49

         Student1  Student2  Student3  Riya  Student4
Maths          90        92        89    81        94
Science        91        81        91    71        95
English        97        96        88    67        99
Hindi          97        89        78    60        45

What would happen if 
the label or row index 
passed is not present 
in the DataFrame?

Think and Reflect

Note that the column Riya remains unchanged since 
we did not pass any new label.

2.3.3 Accessing DataFrames Element through  
        Indexing
Data elements in a DataFrame can be accessed using 
indexing.There are two ways of indexing Dataframes : 
Label based indexing and Boolean Indexing.
(A) Label Based Indexing
There are several methods in Pandas to implement label 
based indexing. DataFrame.loc[ ] is an important method 
that is used for label based indexing with DataFrames. 
Let us continue to use the ResultDF created earlier. 
As shown in the following example, a single row label 
returns the row as a Series.
>>> ResultDF
          Arnab  Ramit  Samridhi  Riya  Mallika 
Maths       90     92        89    81       94     
Science     91     81        91    71       95     
Hindi       97     96        88    67       99     

>>> ResultDF.loc['Science']

Arnab     91
Ramit     81
Samridhi  91
Riya      71
Mallika   95
Name: Science, dtype: int64

Also, note that when the row label is passed as an 
integer value, it is interpreted as a label of the index and 
not as an integer position along the index, for example:

>>> dFrame10Multiples = pd.DataFrame([10,20,30,40,50])

>>> dFrame10Multiples.loc[2]
0    30
Name: 2, dtype: int64

When a single column label is passed, it returns the column 
as a Series.
>>> ResultDF.loc[:,'Arnab']

Chapter 2.indd   49 11/26/2020   12:32:47 PM

2021–22



InformatIcs PractIces50

Maths 90
Science 91
Hindi 97
Name: Arnab, dtype: int64

Also, we can obtain the same result that is the marks 
of ‘Arnab’ in all the subjects by using the command:
>>> print(df['Arnab'])

Maths 56
Science 91
English 97 Hindi 97
Name: Arnab, dtype: int64

To read more than one row from a DataFrame, a list 
of row labels is used as shown below. Note that using [[]] 
returns a DataFrame.
>>> ResultDF.loc[['Science', 'Hindi']]

        Arnab  Ramit  Samridhi  Riya  Mallika 
Science    91     81        91    71       95     
Hindi      97     96        88    67       99     

(B) Boolean Indexing
Boolean means a binary variable that can represent 
either of the two states -  True (indicated by 1) or False 
(indicated by 0). In Boolean indexing, we can select 
the subsets of data based on the actual values in the 
DataFrame rather than their row/column labels. Thus, 
we can use conditions on column names to filter data 
values. Consider the DataFrame ResultDF, the following 
statement displays True or False depending on whether 
the data value satisfies the given condition or not.   
>>> ResultDF.loc['Maths'] > 90
Arnab       False
Ramit        True
Samridhi    False
Riya        False
Mallika      True
Name: Maths, dtype: bool

To check in which subjects ‘Arnab’ has scored more 
than 90, we can write:
>>> ResultDF.loc[:,‘Arnab’]>90
Maths      False
Science     True
Hindi       True
Name: Arnab, dtype: bool

2.3.4 Accessing DataFrames Element through Slicing
We can use slicing to select a subset of rows and/or 
columns from a DataFrame. To retrieve a set of rows, 

notes

Chapter 2.indd   50 11/26/2020   12:32:47 PM

2021–22



Data HanDling Using PanDas - i 51

slicing can be used with row labels. For example:
>>> ResultDF.loc['Maths': 'Science']
        Arnab  Ramit  Samridhi  Riya  Mallika 
Maths      90     92        89    81       94     
Science    91     81        91    71       95     

Here, the rows with labels Maths and Science are 
displayed. Note that in DataFrames slicing is inclusive 
of the end values. We may use a slice of labels with 
a column name to access values of those rows in that 
column only. For example, the following statement 
displays the rows with label Maths and Science, and 
column with label Arnab:
>>> ResultDF.loc['Maths': 'Science', ‘Arnab’]

Maths          90
Science        91
Name: Arnab, dtype: int64

We may use a slice of labels with a slice of column 
names to access values of those rows and columns:

Activity 2.8

a) Using the DataFrame 
ResultDF, write the 
statement to access 
Marks of Arnab in 
Maths.

b) Create a DataFrame 
having 5 rows and 
write the statement 
to get the first 4 rows 
of it.

>>> ResultDF.loc['Maths': 'Science', ‘Arnab’:’Samridhi’]

       Arnab   Ramit Samridhi
Maths             90      92         89
Science           91      81         91

Alternatively, we may use a slice of labels with a list 
of column names to access values of those rows and 
columns:
>>> ResultDF.loc['Maths': 'Science',[‘Arnab’,’Samridhi’]] 

             Arnab     Samridhi
Maths           90           89
Science         91           91

Filtering Rows in DataFrames
In DataFrames, Boolean values like True (1) and False 
(0) can be associated with indices. They can also be used 
to filter the records using the DataFrmae.loc[] method. 

In order to select or omit particular row(s), we can use 
a Boolean list specifying ‘True’ for the rows to be shown 
and ‘False’ for the ones to be omitted in the output. For 
example, in the following statement, row having index 
as Science is omitted: 
>>> ResultDF.loc[[True, False, True]]

         Arnab  Ramit  Samridhi  Riya  Mallika 
Maths       90     92        89    81       94     
Hindi       97     96        88    67       99 

Chapter 2.indd   51 11/26/2020   12:32:47 PM

2021–22



InformatIcs PractIces52

2.3.5 Joining, Merging and Concatenation of  
        DataFrames
(A) Joining
We can use the pandas.DataFrame.append() method to 
merge two DataFrames.  It appends rowsof the second 
DataFrame at the end of the first DataFrame. Columns 
not present in the first DataFrame are added as new 
columns. For example, consider the two DataFrames—
dFrame1 and dFrame2described below. Let us use 
theappend() method to append dFrame2 to dFrame1:

>>> dFrame1=pd.DataFrame([[1, 2, 3], [4, 5], 
[6]], columns=['C1', 'C2', 'C3'], index=['R1', 
'R2', 'R3'])
>>> dFrame1
    C1   C2   C3
R1   1  2.0  3.0
R2   4  5.0  NaN
R3   6  NaN  NaN

>>> dFrame2=pd.DataFrame([[10, 20], [30], [40, 
50]], columns=['C2', 'C5'], index=['R4', 'R2', 
'R5'])
>>> dFrame2
    C2    C5
R4  10  20.0
R2  30   NaN
R5  40  50.0

>>> dFrame1=dFrame1.append(dFrame2)
>>> dFrame1
     C1    C2   C3    C5
R1  1.0   2.0  3.0   NaN
R2  4.0   5.0  NaN   NaN
R3  6.0   NaN  NaN   NaN
R4  NaN  10.0  NaN  20.0
R2  NaN  30.0  NaN   NaN
R5  NaN  40.0  NaN  50.0

 Alternatively, if we append dFrame1 to dFrame2, the 
rows of dFrame2 precede the rows of dFrame1. To get 
the column labels appear in sorted order we can set the 
parameter sort=True. The column labels shall appear in 
unsorted order when the parameter sort = False.
# append dFrame1 to dFrame2  
>>> dFrame2 =dFrame2.append(dFrame1, 
sort=’True’)
>>> dFrame2
     C1    C2   C3    C5
R4  NaN  10.0  NaN  20.0
R2  NaN  30.0  NaN   NaN

notes

Chapter 2.indd   52 11/26/2020   12:32:47 PM

2021–22



Data HanDling Using PanDas - i 53

R5  NaN  40.0  NaN  50.0
R1  1.0   2.0  3.0   NaN
R2  4.0   5.0  NaN   NaN
R3  6.0   NaN  NaN   NaN
# append dFrame1 to dFrame2 with sort=False 
>>> dFrame2 = dFrame2.append(dFrame1, 
sort=’False’)
>>> dFrame2
      C2    C5   C1   C3
R4  10.0  20.0  NaN  NaN
R2  30.0   NaN  NaN  NaN
R5  40.0  50.0  NaN  NaN
R1   2.0   NaN  1.0  3.0
R2   5.0   NaN  4.0  NaN
R3   NaN   NaN  6.0  NaN

The parameter verify_integrity of append()method 
may be set to True when we want to raise an error if the 
row labels are duplicate. By default, verify_integrity = 
False. That is why we could append the duplicate row 
with label R2 when appending the two DataFrames, as 
shown above.

The parameter ignore_index of append()method may 
be set to True, when we do not want to use row index 
labels. By default, ignore_index = False.
>>> dFrame1 = dFrame1.append(dFrame2, ignore_
index=True)
>>> dFrame1
    C1    C2   C3    C5
0  1.0   2.0  3.0   NaN
1  4.0   5.0  NaN   NaN
2  6.0   NaN  NaN   NaN
3  NaN  10.0  NaN  20.0
4  NaN  30.0  NaN   NaN
5  NaN  40.0  NaN  50.0

 The append()method can also be used to append a 
series or a dictionary to a DataFrame.

2.3.6 Attributes of DataFrames
Like Series, we can access certain properties called 
attributes of a DataFrame by using that property with 
the DataFrame name. Table 2.4 lists some attributes of 
Pandas DataFrame. We are going to use a part of the 
data from a report called “STATE OF FOREST REPORT 
2017”, Published by Forest Survey of India, accessible 
at http://fsi.nic.in/forest-report-2017, as our example 
data in this section.

As per this report, the geographical area, the area 
under very dense forests, the area under moderately 

How can you check 
whether a given 
DataFrame has any 
missing value or not?

Think and Reflect

Chapter 2.indd   53 11/26/2020   12:32:47 PM

2021–22



InformatIcs PractIces54

dense forests, and the area under open forests (all in sq 
km), in three States of India -  Assam, Delhi and Kerala 
are as shown in the following DataFrame ForestAreaDF:
 
>>> ForestArea = {
  'Assam' :pd.Series([78438, 2797, 
10192, 15116], index = ['GeoArea', 'VeryDense', 
'ModeratelyDense', 'OpenForest']),
  'Kerala' :pd.Series([ 38852, 1663, 
9407, 9251], index = ['GeoArea' ,'VeryDense', 
'ModeratelyDense', 'OpenForest']),
  'Delhi' :pd.Series([1483, 6.72, 56.24, 
129.45], index = ['GeoArea', 'VeryDense', 
'ModeratelyDense', 'OpenForest'])}

>>> ForestAreaDF = pd.DataFrame(ForestArea)
>>> ForestAreaDF
                 Assam  Kerala    Delhi
GeoArea          78438   38852  1483.00
VeryDense         2797    1663     6.72
ModeratelyDense  10192    9407    56.24
OpenForest       15116    9251   129.45

Table 2.4 Some Attributes of Pandas DataFrame
Attribute Name Purpose Example

DataFrame.index to display row 
labels

>>> ForestAreaDF.index
Index([‘GeoArea’, ‘VeryDense’, 
‘ModeratelyDense’, ‘OpenForest’], dtype 
=’object’)

DataFrame.columns to display column 
labels

>>> ForestAreaDF.columns
Index([‘Assam’, ‘Kerala’, ‘Delhi’], 
dtype=’object’)

DataFrame.dtypes to display data 
type of each 
column in the 
DataFrame

>>> ForestAreaDF.dtypes
Assam       int64
Kerala      int64
Delhi     float64
dtype: object

DataFrame.values to display a NumPy 
ndarray having 
all the values in 
the DataFrame, 
without the axes 
labels

>>> ForestAreaDF.values
array([[7.8438e+04, 3.8852e+04, 1.4830e+03],
       [2.7970e+03, 1.6630e+03, 6.7200e+00],
       [1.0192e+04, 9.4070e+03, 5.6240e+01],
       [1.5116e+04, 9.2510e+03, 
1.2945e+02]])

DataFrame.shape to display a tuple 
representing the 
dimensionality of 
the DataFrame

>>> ForestAreaDF.shape
(4, 3)
It means ForestAreaDF has 4 rows and 3 
columns.

DataFrame.size to display a tuple 
representing the 
dimensionality of 
the DataFrame

>>> ForestAreaDF.size
12
This means the ForestAreaDF has 12 values in 
it.

Chapter 2.indd   54 11/26/2020   12:32:47 PM

2021–22



Data HanDling Using PanDas - i 55

DataFrame.T to transpose 
the DataFrame. 
Means, row indices 
and column labels 
of the DataFrame 
replace each 
other’s position

>>> ForestAreaDF.T
      GeoArea  VeryDense  ModeratelyDense OpenForest
Assam 78438.0  2797.00      10192.00    15116.00
Kerala38852.0  1663.00       9407.00     9251.00
Delhi  1483.0     6.72         56.24      129.45

DataFrame.head(n) to display the 
first n rows in the 
DataFrame

>>> ForestAreaDF.head(2)
              Assam  Kerala    Delhi
GeoArea       78438   38852  1483.00
VeryDense      2797    1663     6.72

displays the first 2 rows of the DataFrame 
ForestAreaDF.If the parameter n is not 
specified by default it gives the first 5 rows 
of the DataFrame.

DataFrame.tail(n) to display the 
last n rows in the 
DataFrame

>>> ForestAreaDF.tail(2)
                 Assam  Kerala   Delhi
ModeratelyDense  10192    9407   56.24
OpenForest       15116    9251  129.45

displays the last 2 rows of the DataFrame 
ForestAreaDF.If the parameter n is not 
specified by default it gives the last 5 rows 
of the DataFrame.

 to returns the 
value True if 
DataFrame is 
empty and False 
otherwise

>>> ForestAreaDF.empty
False
>>> df=pd.DataFrame() #Create an empty dataFrame
>>> df.empty
True

2.4  ImPortIng and exPortIng data between csV 
FILes and dataFrames

We can create a DataFrame by importing data from CSV 
files where values are separated by commas. Similarly, 
we can also store or export data in a DataFrame as a 
.csv file.

2.4.1 Importing a CSV file to a DataFrame
Let us assume that we have the following data in a csv file 
named ResultData.csv stored in the folder C:/NCERT. 
In order to practice the code while we progress, you are 
suggested to create this csv file using a spreadsheet and 
save in your computer.
RollNo Name  Eco Maths
1  Arnab  18 57
2  Kritika 23 45
3  Divyam 51 37
4  Vivaan 40 60
5  Aaroosh 18 27

Chapter 2.indd   55 11/26/2020   12:32:48 PM

2021–22



InformatIcs PractIces56

We can load the data from the ResultData.csv file 
into a DataFrame, say marks using Pandas read_csv() 
function as shown below:
>>> marks = pd.read_csv("C:/NCERT/ResultData.
csv",sep =",", header=0)
>>> marks
   RollNo      Name   Eco      Maths  
0       1     Arnab    18        57
1       2   Kritika    23        45
2       3    Divyam    51        37
3       4    Vivaan    40        60
4       5   Aaroosh    18        27

• The first parameter to the read_csv() is the name of 
the comma separated data file along with its path. 

• The parameter sep specifies whether the values are 
separated by comma, semicolon, tab, or any other 
character. The default value for sepis a space. 

• The parameter header specifies the number of the row 
whose values are to be used as the column names. It 
also marks the start of the data to be fetched. header=0 
implies that column names are inferred from the first 
line of the file. By default, header=0.
We can exclusively specify column names using the 

parameter names while creating the DataFrame using 
the read_csv() function. For example, in the following 
statement, names parameter is used to specify the 
labels for columns of the DataFrame marks1: 
>>> marks1 = pd.read_csv("C:/NCERT/ResultData1.
csv",sep=",", 
  names=['RNo','StudentName', 'Sub1', 
'Sub2'])
>>> marks1
   RNo  StudentName  Sub1  Sub2
0    1        Arnab    18    57
1    2      Kritika    23    45
2    3       Divyam    51    37
3    4       Vivaan    40    60
4    5      Aaroosh    18    27

2.4.2 Exporting a DataFrame to a CSV file
We can use the to_csv() function to save a DataFrame 
to a text or csv file. For example, to save the DataFrame 
ResultDF created in the previous section; we can use 
the following statement:

>>> ResultDF

notes

Chapter 2.indd   56 11/26/2020   12:32:48 PM

2021–22



Data HanDling Using PanDas - i 57

         Arnab  Ramit  Samridhi  Riya  Mallika
Maths       90     92        89    81       94
Science     91     81        91    71       95
Hindi       97     96        88    67       99

>>> ResultDF.to_csv(path_or_buf='C:/NCERT/
resultout.csv', sep=',')

This creates a file by the name resultout.csv in the 
folder C:/NCERT on the hard disk. When we open this 
file in any text editor or a spreadsheet, we will find the 
above data along with the row labels and the column 
headers, separated by comma.  

In case we do not want the column names to be saved 
to the file we may use the parameter header=False.  
Another parameter index=False is used when we do not 
want the row labels to be written to the file on disk. For 
example: 
>>> ResultDF.to_csv( 'C:/NCERT/resultonly.txt', 
sep = '@', header = False, index= False)
 
If we open the file resultonly.txt, we will find 
the following contents: 
 
90@92@89@81@94
91@81@91@71@95
97@96@88@67@99

2.5 Pandas serIes Vs numPy ndarray

Pandas supports non-unique index values. If an 
operation that does not support duplicate index values 
is attempted, an exception will be raised at that time. 

A basic difference between Series and ndarray is that 
operations between Series automatically align the data 
based on the label. Thus, we can write computations 
without considering whether all Series involved have 
the same label or not. 

The result of an operation between unaligned Series 
(i.e. where the corresponding labels of the series are not 
the same or are not in the same order) will have the 
union of the indexes involved. If a label is not found 
in one Series or the other, the result will be marked as 
missing NaN. Being able to write code without doing 
any explicit data alignment grants immense freedom 
and flexibility in interactive data analysis and research.

A Comma-
Separated Value 
(CSV) file is a text 
file where values 
are separated by 

comma. Each 
line represents 
a record (row). 

Each row consists 
of one or more 

fields (columns). 
They can be easily 
handled through 

a spreadsheet 
application.

What are the other 
parameters that can 
be used with read_csv() 
function? You may 
explore from https://
pandas.pydata.org. 

Think and Reflect

Besides comma, what 
are the other allowed 
characters that can be 
used as a separator 
while creating a CSV 
file frmo a DataFrame?

Think and Reflect

Chapter 2.indd   57 11/26/2020   12:32:48 PM

2021–22



InformatIcs PractIces58

Summary

• NumPy, Pandas and Matplotlib are Python 
libraries for scientific and analytical use. 

• pip install pandas is the command to install 
Pandas library.

• A data structure is a collection of data values 
and the operations that can be applied to that 
data. It enables efficient storage, retrieval and 
modification to the data. 

• Two main data structures in Pandas library 
are Series and DataFrame. To use these 
data structures, we first need to import the  
Pandas library.

• A Series is a one-dimensional array containing a 
sequence of values. Each value has a data label 
associated with it also called its index. 

• The two common ways of accessing the elements 
of a series are Indexing and Slicing.

• There are two types of indexes: positional index 
and labelled index. Positional index takes an 
integer value that corresponds to its position in 
the series starting from 0, whereas labelled index 
takes any user-defined label as index.

• When positional indices are used for slicing, the 
value at end index position is excluded, i.e., only 
(end -  start) number of data values of the series 
are extracted. However with labelled indexes the 

Table 2.5 Difference between Pandas Series and NumPy Arrays

Pandas Series NumPy Arrays

In series we can define our own labeled index to 
access elements of an array. These can be numbers 
or letters.

NumPy arrays are accessed by their integer 
position using numbers only.

The elements can be indexed in descending order 
also.

The indexing starts with zero for the first 
element and the index is fixed.

If two series are not aligned, NaN or missing values 
are generated.

There is no concept of NaN values and if there 
are no matching values in arrays, alignment 
fails.

Series require more memory. NumPy occupies lesser memory.

Chapter 2.indd   58 11/26/2020   12:32:48 PM

2021–22



Data HanDling Using PanDas - i 59

value at the end index label is also included in  
the output. 

• All basic mathematical operations can be 
performed on Series either by using the 
operator or by using appropriate methods of the  
Series object. 

• While performing mathematical operations index 
matching is implemented and if no matching 
indexes are found during alignment, Pandas 
returns NaN so that the operation does not fail.

• A DataFrame is a two-dimensional labeled data 
structure like a spreadsheet. It contains rows 
and columns and therefore has both a row and 
column index.

• When using a dictionary to create a DataFrame, 
keys of the Dictionary become the column labels 
of the DataFrame. A DataFrame can be thought of 
as a dictionary of lists/ Series (all Series/columns 
sharing the same index label for a row).

• Data can be loaded in a DataFrame from a file on 
the disk by using Pandas read_csv function.

• Data in a DataFrame can be written to a text  
file on disk by using the pandas.DataFrame.to_
csv()  function.

• DataFrame.T gives the transpose of a DataFrame. 
• Pandas haves a number of methods that support 

label based indexing but every label asked for 
must be in the index, or a KeyError will be raised. 

• DataFrame.loc[ ] is used for label based indexing 
of rows in DataFrames. 

• Pandas.DataFrame.append() method is used to 
merge two DataFrames. 

• Pandas supports non-unique index values. Only 
if a particular operation that does not support 
duplicate index values is attempted, an exception 
is raised at that time.

• The basic difference between Pandas Series and 
NumPy ndarray is that operations between Series 
automatically align the data based on labels. Thus, 
we can write computations without considering 
whether all Series involved have the same label or 
not whereas in case of ndarrays it raises an error.

notes

Chapter 2.indd   59 11/26/2020   12:32:48 PM

2021–22



InformatIcs PractIces60

1. What is a Series and how is it different from a 1-D 
array, a list and a dictionary? 

2. What is a DataFrame and how is it different from a 
2-D array? 

3. How are DataFrames related to Series?
4. What do you understand by the size of (i) a Series,  

(ii) a DataFrame?
5. Create the following Series and do the specified 

operations:
a) EngAlph, having 26 elements with the alphabets 

as values and default index values. 
b) Vowels, having 5 elements with index labels ‘a’, 

‘e’, ‘i’, ‘o’ and ‘u’ and all the five values set to zero. 
Check if it is an empty series. 

c) Friends, from a dictionary having roll numbers of 
five of your friends as data and their first name 
as keys.

d) MTseries, an empty Series. Check if it is an empty 
series.

e) MonthDays, from a numpy array having the 
number of days in the 12 months of a year. The 
labels should be the month numbers from 1 to 12.

6. Using the Series created in Question 5, write 
commands for the following:
a) Set all the values of Vowels to 10 and display the 

Series. 
b) Divide all values of Vowels by 2 and display the 

Series. 
c) Create another series Vowels1 having 5 elements 

with index labels ‘a’, ‘e’, ‘i’, ‘o’ and ‘u’ having values 
[2,5,6,3,8] respectively.

d) Add Vowels and Vowels1 and assign the result to 
Vowels3.

e) Subtract, Multiply and Divide Vowels by Vowels1. 
f) Alter the labels of Vowels1 to [‘A’, ‘E’, ‘I’, ‘O’, ‘U’].

7. Using the Series created in Question 5, write 
commands for the following:
a) Find the dimensions, size and values of the Series 

EngAlph, Vowels, Friends, MTseries, MonthDays.
b) Rename the Series MTseries as SeriesEmpty.
c) Name the index of the Series MonthDays as 

monthno and that of Series Friends as Fname.

Exercisenotes

Chapter 2.indd   60 11/26/2020   12:32:48 PM

2021–22



Data HanDling Using PanDas - i 61

notesd) Display the 3rd and 2nd value of the Series 
Friends, in that order.

e) Display the alphabets ‘e’ to ‘p’ from the Series 
EngAlph.

f) Display the first 10 values in the Series EngAlph.
g) Display the last 10 values in the Series EngAlph.
h) Display the MTseries.

8. Using the Series created in Question 5, write 
commands for the following:
a) Display the names of the months 3 through 7 

from the Series MonthDays.
b) Display the Series MonthDays in reverse order.

9. Create the following DataFrame Sales containing 
year wise sales figures for five sales persons in INR. 
Use the years as column labels, and sales person 
names as row labels.

2014 2015 2016 2017
Madhu 100.5 12000 20000 50000
Kusum 150.8 18000 50000 60000

Kinshuk 200.9 22000 70000 70000
Ankit 30000 30000 100000 80000
Shruti 40000 45000 125000 90000

10. Use the DataFrame created in Question 9 above to 
do the following: 
a) Display the row labels of Sales.
b) Display the column labels of Sales.
c) Display the data types of each column of Sales.
d) Display the dimensions, shape, size and values 

of Sales.
e) Display the last two rows of Sales.
f) Display the first two columns of Sales.
g) Create a dictionary using the following data. Use 

this dictionary to create a DataFrame Sales2.

2018
Madhu 160000

Kusum 110000

Kinshuk 500000

Ankit 340000

Shruti 900000

h) Check if Sales2 is empty or it contains data.

Chapter 2.indd   61 11/26/2020   12:32:48 PM

2021–22



InformatIcs PractIces62

11. Use the DataFrame created in Question 9 above to 
do the following: 
a) Append the DataFrame Sales2 to the DataFrame 

Sales.
b) Change the DataFrame Sales such that it becomes 

its transpose. 
c) Display the sales made by all sales persons in the 

year 2017.
d) Display the sales made by Madhu and Ankit in 

the year 2017 and 2018.
e) Display the sales made by Shruti 2016.
f) Add data to Sales for salesman Sumeet where 

the sales made are [196.2, 37800, 52000, 78438, 
38852] in the years [2014, 2015, 2016, 2017, 
2018] respectively.

g) Delete the data for the year 2014 from the 
DataFrame Sales.

h) Delete the data for sales man Kinshuk from the 
DataFrame Sales.

i) Change the name of the salesperson Ankit to 
Vivaan and Madhu to Shailesh.

j) Update the sale made by Shailesh in 2018 to 
100000.

k) Write the values of DataFrame Sales to a comma 
separated file SalesFigures.csv on the disk. Do 
not write the row labels and column labels.

l) Read the data in the file SalesFigures.csv into 
a DataFrame SalesRetrieved and Display it. 
Now update the row labels and column labels of 
SalesRetrieved to be the same as that of Sales.

notes

Chapter 2.indd   62 11/26/2020   12:32:48 PM

2021–22


