Measurement of Resistance

Classification of Resistance

- 1. Low resistance: All resistance of the order of 1 Ω and below. Example: Winding coils of electrical motors, generators and transformers
- 2. Medium resistance: Resistances from 1 Ω upwards to about 0.1 $M\Omega$ Example: Resistance of heaters, potentiometers.
- 3. High resistance: All resistances of the order of 0.1 M Ω and above. Example: Insulation of electrical cable and windings, insulation of motors generators and transformers.

Measurement of Medium Resistance

The different methods employed are:

- (i) Ammeter-voltmeter method
- (ii) Wheatstone bridge method
- (iii) Ohmmeter method
- (iv) Substitution method

1. Ammeter Voltmeter Method

where, R_m = measured value of resistance

(a) Circuit for higher resistance

☐ True value of resistance

$$R = R_{m_1} - R_a$$

$$R_{m} = R_{m1} \left(1 - \frac{R_a}{R_{m1}} \right)$$

where.

R_{m1} = Measured value of resistance

R_a = Resistance of ammeter

Relative error

$$\epsilon_r = \frac{R_{m1} - R}{R} = \frac{R_a}{R}$$

 To get minimum error, the test resistance should be more than the ammeter resistance so that this adjustment is suitable for measurement of high resistance.

(b) Circuit for lower resistance

☐ True value of resistance

where,

 R_{m_2} = Measured value of resistance

R_v = Resistance of voltmeter

For $R_v \gg R_{m_p}$

☐ Relative error

[For $R_v \gg R_{m_2}$]

□ Approximate relative error

$$\epsilon = -\frac{R}{R_v}$$

[For
$$R_{m_2} \approx R$$
]

 This circuit is suitable for measurement of low resistance under medium scale range to get minimum error.

Note:

Relative errors for above two cases are equal when true value of resistance

$$R = \sqrt{R_a R_v}$$

2. Wheatstone Bridge

At balance

$$R = S \frac{P}{Q}$$

Sensitivity of Wheatstone bridge

$$S_{B} = \frac{\theta}{\Delta R/R} = \frac{S_{v} ESR}{(R+S)^{2}}; mm$$

$$S_{B} = \frac{S_{V}E}{\frac{P}{Q} + 2 + \frac{Q}{P}}$$

where, S_v = Voltage sensitivity of galvanometer, mm/volt

E = Bridge voltage

P, Q = Branch resistances

 θ = Deflection of galvanometer, mm

p For a bridge with equal arms

$$S_B = \frac{S_v E}{4}$$

te:

· For maximum bridge sensitivity

$$\frac{P}{Q} = \frac{R}{S} = 1$$

 Sensitivity of bridge is most important parameter as compared to accuracy, precision and resolution.

Equivalent circuit of Wheatstone bridge

☐ Galvanometer current

$$l_g = \frac{E_0}{R_0 + G}$$

where

- E₀ = Thevenin's or open circuit voltage appearing between terminals b and d with galvanometer circuit open circuited.
- G = Resistance of the galvanometer circuit

$$E_0 = E \begin{bmatrix} R + \Delta R & 1 \\ 2R + \Delta R & 2 \end{bmatrix} \approx E \begin{pmatrix} \Delta R \\ 4R \end{pmatrix}$$
 as DR << R

ΔR = Change in resistance R

☐ Thevenin equivalent resistance of bridge

$$R_0 = \frac{RS}{R+S} + \frac{PQ}{P+Q}$$

Galvanometer deflection

$$\theta = \frac{S_V ES \Delta R}{(R + S)^2} = \frac{S_1 ES \Delta R}{(R_0 + G)(R + S)^2}$$

where, S_i = Current sensitivity of galvanometer

☐ Bridge sensitivity

$$S_{B} = \frac{\theta}{\Delta R/R} = \frac{S_{i} E SR}{(R_{0} + G)(R + S)^{2}}$$

Current Sensitivity

$$S_i = \frac{\theta}{I_g}$$
; mm/ μ A

 θ = Deflection in galvanometer

 I_{α} = Current in galvanometer

Voltage Sensitivity

$$S_v = \frac{\theta}{V_{Th}}; mm/V$$

V_{Th} = Voltage across galvanometer

Note:

In Wheatstone bridge method, the effect of lead resistance is not eliminated hence it is not suitable for measurement of low resistance.

3. Ohmmeters

(a) Series Type Ohmmeter

n Half scale resistance

$$R_h = R_1 + \frac{R_2 R_m}{R_2 + R_m}$$

☐ Meter current

$$I_{m} = \frac{ER_{2}}{(R_{h} + R_{x})(R_{2} + R_{m})}$$

□ Full scale deflection current

$$I_{1s} = \frac{ER_2}{R_h(R_2 + R_m)}$$

Friction of full scale reading

$$s = \frac{I_m}{I_{fs}} = \frac{R_h}{R_x + R_h}$$

(b) Shunt Type Ohmmeter

☐ Half scale reading of unknown resistance R_v is

$$R_h = R_1 R_m$$

$$R_h = R_1 + R_m$$

□ Half scale reading of the meter

$$I_h = 0.5 I_{ts} = \frac{ER_h}{R_1 R_m + R_h (R_1 + R_m)}$$

where, $R_m = Internal resistance of meter$

 R_1 = Adjustable resistor (as shown in figure)

E = Supply voltage

Measurement of low Resistance

The different methods employed are:

- (i) Kelvin's double bridge method
- (ii) Ammeter voltmeter method
- (iii) Potentiometer method

Kelvin's Double Bridge Method

☐ For zero galvanometer deflection

$$E_{ab} = E_{amo}$$

$$R = \frac{P}{Q} \cdot S + \frac{qr}{p+q+r} \left[\frac{P}{Q} - \frac{p}{q} \right]$$

$$\Box \text{ If } \frac{P}{Q} = \frac{p}{q}$$

then

$$R = \frac{P}{Q} \cdot S$$

Note:

Accuracies by Kelvin double bridge method

(i) From 1000 $\mu\Omega$ to 1.0 Ω : 0.05%

(ii) From 100 $\mu\Omega$ to 1000 $\mu\Omega$: 0.5% to 0.05%

(iii) From 10 $\mu\Omega$ to 100 $\mu\Omega$: 0.5% to 0.2%

Measurement of High Resistance

The differenece methods employed are:

- (i) Loss of charge method
- (ii) Meggar
- (iii) Direct deflection method
- (iv) Megohm bridge

1. Loss of Charge Method

2. Meggar

- Meggar works on the principle of electrodynamometer.
- Meggar is used to measure the insulation resistance of cable, motor and generator, etc.
- Deflecting torque angle is proportional to the resistance of the insulator, which is under test.
- · It is also used to check the continuity of cable.
- · No external control torque provided.
- · Air friction damping is used.
- No need of external power supply.

ote:	
	High resistance have a guard terminal which is used to avoid leakage
	current.

Carry Foster Slide Wire Bridge

From bridge (2)

 $\frac{P}{Q} + 1 = \frac{R + S + Lr}{R + (L - I_2)r} \cdots (ii)$

From bridge (1)

$$\frac{P}{Q} + 1 = \frac{R + S + Lr}{S + (L - L)r} \cdots (i)$$

Equating equation (i) and (ii)

$$R - S = (I_2 - I_1)r$$

Note:

Carry Foster bridge method is used for medium resistance measurement by comparing with standard resistance.