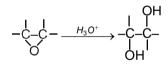

Points to remember in Oxidation Reaction

(1) $KMnO_4$ (in both medium) or $K_2Cr_2O_7$ (in acidic medium) Aldehyde \longrightarrow Acid

(5) Baeyer's reagent and $OsO_4 + NaHSO_3$


(6) Baeyer–Villiger oxidation (m-CPBA or CH₃CO₃H)

 $\begin{array}{c} R-C-R' \xrightarrow{CH_3CO_3H} & R-C-OR' \\ II \\ O \\ Priority of shift (O accepting aptitude) \\ R' = Ph > Ethyl > Methyl \\ \end{array}$

(7) Prilezhaev reaction

Anti hydroxylation :

(8) oxidation by HNO₃

- Aldehyde \longrightarrow Acid
- 1° Alcohol \longrightarrow Acid
- 2° Alcohol \longrightarrow no recation
- 3° Alcohol \longrightarrow No reaction

(9) oxidation by MnO₂

- 1° Alcohol \longrightarrow Aldehyde
- 2° Alcohol \longrightarrow Ketone
- 3° Alcohol \longrightarrow No reaction
- Note : Only allylic and benzylic alcohols are oxidised by MnO₂.

stereospecific syn addition