PHOTOSYNTHESIS

INTRODUCTION

All living organisms require continuous use of energy to carry out their different activities. This energy directly or indirectly comes from sun.

Photosynthesis is the only process on earth by which solar energy is trapped by autotrophic organisms and converted into food for the rest of organisms.

In photosynthesis process, 'energy rich compounds like carbohydrates are synthesized from simple inorganic compounds like carbon dioxide and water in the presence of chlorophyll and sunlight with liberation of oxygen'. The process of photosynthesis can also be defined as "transformation of photonic energy (i.e. light or radiant energy) into chemical energy".

Earlier, photosynthesis was considered to be reverse of respiration, i.e.,

$$6CO_2 + 6H_2O \xrightarrow{\text{Light}} C_6H_{12}O_6 + 6O_2$$

Above reaction gives an idea that O_2 comes from CO_2 . But <u>**Ruben**</u> and <u>**Kamen** (1941) experimentally verified that source of liberated O_2 in photosynthesis is H_2O , not CO_2 .</u>

Thus, overall reaction can be corrected as given below :

$$6CO_2 + 12H_2O \xrightarrow{\text{Sunlight}} C_6H_{12}O_6 + 6O_2 + 6H_2O$$

<u>About 90% of total photosynthesis in world is done by algae</u> in oceans and in freshwater. <u>More</u> than 170 billion tonnes of dry matter are produced annually by this process. Further CO_2 fixed annually through photosynthesis is about $7.0 \times 10^{13} kg$. <u>Photosynthesis is an anabolic and endothermic reaction</u>. Photosynthesis helps to maintain the equilibrium position of O_2 and CO_2 in the atmosphere.

5.1 HISTORICAL BACKGROUND

Before seventeenth century it was considered that plants take their food from the soil.

• Van Helmont (1648) concluded that all food of the plant is derived from water and not from soil.

• **Stephen Hales** (Father of Plant Physiology) (1727) reported that plants obtain a part of their nutrition from air and light may also play a role in this process.

• Joseph Priestley (1772) demonstrated that green plants purify the foul air (*i.e.*, Phlogiston), produced by burning of candle, and convert it into pure air (*i.e.*, Dephlogiston).

• Jan Ingen-Housz (1779) concluded by his experiment that purification of air was done by green parts of plant only and that too in the presence of **sunlight**. Green leaves and stalks liberate dephlogisticated air (Having O_2) during sunlight and phlogisticated air (Having CO_2) during dark.

• Jean Senebier (1782) proved that plants absorb CO_2 and release O_2 in presence of light. He also showed that the rate of O_2 evolution depends upon the rate of CO_2 consumption.

• Lavoisier (1783) identified the pure air (*i.e.*, dephlogiston) as oxygen (O_2) and noxious air (*i.e.*, Phlogiston) produced by the burning of candle as carbon dioxide (CO_2).

• Nicolus de Saussure (1804) showed the importance of water in the process of photosynthesis. He further showed that the amount of CO_2 absorbed is equal to the amount of O_2 released.

• **Pelletier** and **Caventou** (1818) discovered chlorophyll. It could be separated from leaf by boiling in alcohol.

• **Dutrochet** (1837) showed the importance of green pigment chlorophyll in photosynthesis.

• Julius Robert Mayer (1845) proposed that light has radiant energy and this radiant energy is converted to chemical energy by plants, which serves to maintain life of the plants and also animals.

• Liebig (1845) indicated that main source of carbon in plants is CO₂.

• **Bousingault** (1860) reported that the <u>volume of CO_2 absorbed is equal to volume of O_2 evolved and that CO_2 absorption and O_2 evolution get start immediately after the plant was exposed to sunlight.</u>

• Julius Von Sachs (1862) demonstrated that first visible product of photosynthesis is starch. He also showed that chlorophyll is confined to the chloroplasts.

• J.C. Maxwell (1864) developed 'wave model of light', leading to recognition that light is source of energy in photosynthesis.

• **Theodore Engelmann** (1884, 88) showed that chloroplast as the site of photosynthesis in the cell and also discovered the role of different wave lengths of light on photosynthesis and <u>plotted the action spectrum</u>.

• **F.F. Blackmann** (1905) proposed the 'law of limiting factor' and also discovered two steps of photosynthesis *i.e.*, light dependent and temperature independent steps and a light independent and temperature dependent step.

He proved that photosynthesis is a photochemical and biochemical reaction. Photochemical reaction is **light reaction** and biochemical reaction is **dark reaction** or carbon dioxide fixation.

• Willstatter and Stoll (1912) studied structure of photosynthetic pigments.

• **Warburg** (1919) performed flashing light experiment using green alga-*Chlorella* as a suitable material for the study of photosynthesis.

• Van Niel (1931) demonstrated that some bacteria use H_2S instead of H_2O in the process of photosynthesis.

• **Emerson and Arnold** (1932) proved the existance of light and dark reactions by flashing of light experiment in photosynthesis.

• **Robert Hill** (1937) demonstrated photolysis of water by isolated chloroplast in the presence of suitable electron acceptor.

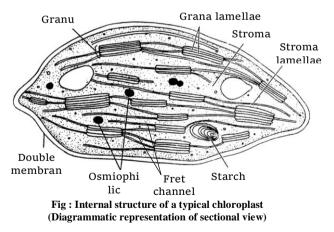
• **S. Ruben** and **M. Kamen** (1941) used heavy isotope ¹⁸O and confirmed that oxygen evolved in photosynthesis comes from water and not from CO_2 .

• Melvin Calvin (1954) traced the path of carbon in photosynthesis (Associated with dark reactions) and gave the C_3 cycle (Now named Calvin cycle). He was awarded Nobel prize in 1961 for the technique to trace metabolic pathway by using radioactive isotope.

• Emerson, Chalmers and Cederstrand (1957) discovered Emerson effect.

• <u>Hill and Bendall (1960) proposed Z scheme</u> and suggested that two photosystems operate in series.

- <u>Arnon (1961)</u> discovered photophosphorylation and <u>gave the term 'assimilatory powers'</u>.
- Peter Mitchell (1961) proposed chemi-osmotic coupling hypothesis.
- Kortschak (1965) discovered the formation of C_4 dicarboxylic acid in sugarcane leaves.
- Hatch and Slack (1966) reported the C_4 pathway for CO_2 fixation in certain tropical grasses.


• <u>Huber, Michel and Deisenhofer (1985)</u> crystallised the photosynthetic reaction center from the purple photosynthetic bacterium, *Rhodopseudomonas viridis*. They analysed its structure by X-ray diffraction technique. In 1988 they were awarded Nobel prize in chemistry for this work.

5.2 PHOTOSYNTHESIS IN HIGHER PLANTS

(1) Chloroplast-The site of photosynthesis : The most active photosynthetic tissue in higher

plants is the mesophyll of leaves. Mesophyll cells have many chloroplast. Chloroplast are present in all the green parts of plants and leaves. There may be over half a million chloroplasts per square millimetre of leaf surface. In higher plants, the chloroplasts are discoid or lens-shaped. They are usually $4-10\mu m$ in diameter and $1-3\mu m$ in thickness.

These are double membrane-bound organelles in the cytoplasm of green plant cells. Chloroplast has two unit membranes made up of lipoprotein. Outer

membrane of chloroplast is permeable and an inner one impermeable to protons. Inside the membranes is the proteinaceous ground substance called **stroma**, which contain a variety of particles, osmiophilic droplets, dissolved salts, small double stranded circular DNA molecules and 70S type ribosomes along with various enzymes. Inside the stroma is found a system of <u>chlorophyll bearing double-membraned</u> <u>sacs thylakoids or lamellae</u>.

Thylakoids are flattened sacs arranged like the stacks of coins. <u>One stack of thylakoids is called</u> **granum**. Different grana are connected with the help of tubular connections called **stroma lamellae** or

frets. <u>Grana are the sites for light reaction of photosynthesis and consist of photosynthetic unit</u> 'quantasomes' (Found in surface of thylakoids). Photosynthetic unit can be defined as number of pigment molecules required to affect a photochemical act, that is the release of a molecule of oxygen. Park and Biggins (1964) gave the term quantasome for photosynthetic units is equivalent to 230 chlorophyll molecules.

(2) **Chloroplast pigments :** Pigments are the organic molecules that absorb light of specific wavelengths in the visible region due to presence of conjugated double bonds in their structures. The chloroplast pigments are fat soluble and are located in the lipid part of the thylakoid membranes. There is a wide range of <u>chloroplastic pigments which constitute more than 5% of the total dry weight of the chloroplast</u>. They are grouped under two main categories : (i) Chlorophylls and (ii) Carotenoids

The other photosynthetic pigments present in some algae and cyanobacteria are phycobilins.

(i) Chlorophylls : The chlorophylls, the green pigments in chloroplast are of seven types *i.e.*,

chlorophyll *a*, *b*, *c*, *d*, *e*, bacteriochlorophyll and bacterioviridin.

Of all, only two types *i.e.*, chlorophyll a and chlorophyll b are widely distributed in green algae and higher plants.

Chlorophyll 'a' is found in all the oxygen evolving photosynthetic plants except photosynthetic bacteria. Reaction centre of photosynthesis is formed of chlorophyll a. It occurs in several spectrally distinct forms which perform distinct roles in photosynthesis (e.g., Chl a_{680} or P_{680} , Chl a_{700} or P_{700} , etc.). It directly takes part in photochemical reaction. Hence, it is termed as primary photosynthetic pigment. Other photosynthetic pigments including chlorophyll b, c, d and e; carotenoids and phycobilins are called accessory pigments because they do not directly take part in photochemical act. They absorb specific wavelengths of light and transfer energy finally chlorophyll through electron spin to a resonance.

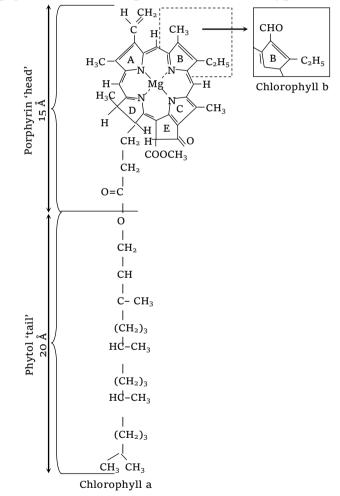


Fig : Chemical structure of chlorophyll a and b molecules

Chlorophyll a is blue black while chlorophyll b is green black. Both are <u>soluble in organic</u> <u>solvents like alcohol</u>, acetone etc. chlorophyll a appears red in reflected light and bright green in transmitted light as compared to chlorophyll b which looks brownish red in reflected light and yellow green in transmitted light. <u>Chlorophyll is a green pigment because it does not absorb green light (but</u>

reflect green light) Chlorophyll *a* possesses — CH_3 (methyl group), which is replaced by — CHO (an aldehyde) group in chlorophyll *b*. Chlorophyll molecule is made up of a squarish tetrapyrrolic ring known as **head** and a phytol alcohol called **tail**. The magnesium atom is present in the central position of tetrapyrrolic ring. The four pyrrole rings of porphyrin head is linked together by **methine** (CH=) groups forming a ring system. Each pyrrole ring is made up of four carbon and one nitrogen. The porphyrin head bears many characteristic side groups at many points. Different side groups are indicative of various types of chlorophylls.

Phytol tail is made up of 20 carbon alcohol attached to carbon 7 position of pyrrole ring IV with a propionic acid ester bond. <u>The basic structure of all chlorophyll comprises of porphyrin system</u>.

When central *Mg* is replaced by *Fe*, the chlorophyll becomes a green pigment called 'cytochrome' which is used in photosynthesis (Photophosphorylation) and respiration both.

<u>Chlorophyll synthesis is a reduction process occurring in light</u>. In gymnosperm seedlings, chlorophyll synthesis takes place in darkness in presence of enzyme called 'chlorophyllase'. <u>The precursor of chlorophyll is chlorophyllide</u>.

Pigments	Chemical Formula	Distribution	
Chlorophyll <i>a</i>	$C_{55}H_{72}O_5N_4Mg$	All photosynthetic	
		organisms except	
		photosynthetic bacteria.	
Chlorophyll b	$C_{55}H_{70}O_6N_4Mg$	Chlorophyta, Euglenophyta	
		and in all higher plants.	
Chlorophyll c	$C_{35}H_{32}O_5N_4Mg$	Brown algae (Phaeophyta),	
		Diatoms and Pyrrophyta.	
Chlorophyll d	$C_{54}H_{70}O_6N_4Mg$	Red algae (Rhodophyta).	
Chlorophyll e	Not fully known	Xanthophyta.	
Bacteriochlorophyll	$C_{55}H_{74}O_6N_4Mg$	Purple photosynthetic	
		bacteria.	
Chlorobiumchlorophyll		Green sulphur bacteria.	
(Bacterioviridin)			

(ii) **Carotenoids :** The carotenoids are unsaturated polyhydrocarbons being composed of eight isoprene (C_5H_8) units. They are made up of two six-membered rings having a hydrocarbon chain in between. They are sometimes called lipochromes due to their fat soluble nature. They are lipids and found in non-green parts of plants. Light is not necessary for their biosynthesis. Carotenoids absorb light energy and transfer it to Chl. *a* and thus act as **accessory pigments**. They protect the chlorophyll molecules from photo-oxidation by picking up nascent oxygen and converting it into harmless molecular stage. Carotenoids can be classified into two groups namely carotenes and xanthophyll.

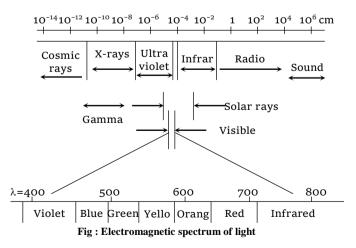
(a) **Carotenes :** They are orange red in colour and have general formula $C_{40}H_{56}$. They are isolated from carrot.

They are found in all groups of plants *i.e.*, from algae to angiosperms. Some of the common carotenes are α , β , γ and δ carotene; phytotene, lycopene, neurosporene etc. The lycopene is a red pigment found in ripe tomato and red pepper fruits. The β -carotene on hydrolysis gives vitamin A, hence the carotenes are also called provitamin A. β -carotene is black yellow pigment of carrot roots.

$$C_{40}H_{56} + 2H_2O \xrightarrow{\text{Carotenase}} 2C_{20}H_{29}OH_{\text{vitamin A}}OH_{\text{vitamin A}}OH_{\text{vitamin A}}OH_{10}OH_$$

(b) **Xanthophylls :** They are yellow coloured carotenoid also called **xanthols** or **carotenols**. They contains oxygen also along with carbon and hydrogen and have general formula $C_{40}H_{56}O_2$.

Lutein a widely distributed xanthophyll which is responsible for yellow colour in autumn foliage. Fucoxanthin is another important xanthophyll present in Phaeophyceae (Brown algae).


(iii) **Phycobilins :** These pigments are mainly found in blue-green algae (Cyanobacteria) and red algae. These pigments have open tetrapyrrolic in structure and do not bear magnesium and phytol chain.

<u>Blue-green algae have more quantity of phycocyanin</u> and red algae have more phycoerythrin. **Phycocyanin** and **phycoerythrin** together form phycobilins. These water soluble pigments are thought to be associated with small granules attached with lamellae. <u>Like carotenoids</u>, <u>phycobilins are</u> <u>accessory pigments *i.e.* they absorb light and transfer it to chlorophyll *a*.</u>

(3) **Nature of light :** Sunlight is a type of energy called radiant energy or electromagnetic energy. This energy, according to electromagnetic wave theory (Proposed by James Clark Maxwell, 1960), travels in space as waves. The distance between the crest of two adjacent waves is called a **wavelength** (λ). Shorter the wavelength greater the energy.

The unit quantity of light energy in the quantum theory is called quantum (hv), whereas the same

of the electromagnetic field is called photon. Solar radiation can be divided on the basis of wavelengths. Radiation of shortest wavelength belongs to cosmic rays whereas that of longest wavelength belong to radio waves. Light represents only one part of electromagnetic radiation. Other parts include cosmic rays, X-rays, UV rays, infrared radiation and radio waves. A visible light has seven separated groups of more or less complete absorption. In a spectrum of sunlight, bands of blending colours are seen *i.e.*, dark red at one end

running through red, orange, yellow, green, blue, indigo, violet and ending in darkest violet. Wavelengths in the violet portion of spectrum are about 400 millimicrons ($m\mu$) in length and at other end of spectrum — the red portion — are much longer about 730 $m\mu$. In other words, visible light lies between

wavelengths of ultra-violet and infra-red. <u>The visible spectrum of solar radiations are primarily absorbed by</u> <u>carotenoids of the higher plants are violet and blue</u>. However, art of blue and red wavelengths, blue light carry more energy.

Shortest wavelength ———— Longest wavelength Maximum energy Minimum energy

Visible light : 390nm (3900\AA) to 760nm (7600\AA). **Violet** (390-430nm), **blue** (430-470nm), **blue green** (470-500nm), **green** (500-580nm), **yellow** (580-600nm), **orange** (600-650nm), **orange-red** (650-660nm) and **red** (660-760nm) **Far-red** (700-760nm). **Infra-red** $760nm - 100\mu m$. **Ultraviolet** 100-390nm. **Solar Radiations** 300nm (ultraviolet) to 2600nm (infra-red). <u>Photosynthetically active</u>

<u>radiation (PAR) is 400–700*nm*</u>. Leaves appear green because chlorophylls do not absorb green light. The same is reflected and transmitted through leaves.

Absorption and action spectra : The curve representing the light absorbed at each wavelength by pigment is called **absorption spectrum**. Curve showing rate of photosynthesis at different wavelengths of light is called **action spectrum**.

Absorption spectrum is studied with the help of **spectrophotometer**. The absorption spectrum of chlorophyll a and chlorophyll b indicate that these pigments mainly

180 - a 160 Specific absorption 140 120 100 80 60 40 20 58 62 66 38 42 46 50 54 Wavelength, m µ Fig : Absorption spectra of chlorophylls a and b

<u>absorb blue and red lights</u>. Action spectrum shows that maximum photosynthesis takes place in blue and red regions of spectrum. The first action spectrum of photosynthesis was studied by <u>T.W.</u> Engelmann (1882) using green alga Spirogyra and oxygen seeking bacteria.

In this case actual rate of photosynthesis in terms of oxygen evolution or carbon dioxide utilisation is measured as a function of wavelength.

5.3 MECHANISM OF PHOTOSYNTHESIS

Before 1930 it was considered by physiologists that one molecule each of CO_2 and H_2O form a molecule of formaldehyde (*HCHO*), of which 6 *mols* are polymerized to one molecule of glucose (a hexose sugar).

 $CO_{2} + H_{2}O \xrightarrow{\text{Light}} HCHO_{\text{(Formaldehy de)}} + O_{2}$ $6CH_{2}O(\text{or } 6HCHO) \xrightarrow{Polymerisation} C_{6}H_{12}O_{6}$ (Formaldehy de) (Hexose sugar)

However formaldehyde is a toxic substance which may kill the plants. Hence, formaldehyde hypothesis could not be accepted.

On the basis of discovery of **Nicolas de Saussure** that "The amount of O_2 released from plants is equal to the amount of CO_2 absorbed by plants", it was considered that O_2 released in photosynthesis comes from CO_2 , but **Ruben** proved that this concept is wrong.

In 1930, <u>C.B. Van Niel proved that, sulphur bacteria use H_2S (in place of water) and CO_2 to synthesize carbohydrates as follows :</u>

 $6CO_2 + 12H_2S \longrightarrow C_6H_{12}O_6 + 6H_2O + 12S$

This led **Van Niel** to the postulation that in **green plants**, water (H_2O) is utilized in place of H_2S and O_2 is evolved in place of sulphur (S). He indicated that water is electron donar in photosynthesis.

 $6CO_2 + 12H_2O \longrightarrow C_6H_{12}O_6 + 6H_2O + 6O_2$

This was confirmed by Ruben and Kamen in 1941 using Chlorella a green alga.

They used isotopes of oxygen in water, *i.e.*, H_2^{18} O instead of H_2O (normal) and noticed that liberated oxygen contains ¹⁸O of water and not of CO_2 . The overall reaction can be given as under :

$$6CO_2 + 12H_2^{18}O \xrightarrow{\text{Light}} C_6H_{12}O_6 + 6^{18}O_2 + 6H_2O$$

The fate of different molecules can be summarised as follows :

 $6CO_{2} + 12H_{2}O \xrightarrow{\text{Light}\\ \text{chlorophyll}} C_{6}H_{12}O_{6} + 6H_{2}O + 6O_{2}$ Fig : Fat of different molecules

5.4 MODERN CONCEPT OF PHOTOSYNTHESIS

Photosynthesis is an oxidation reduction process in which water is oxidised to release O_2 and CO_2 is reduced to form starch and sugars.

Scientist have shown that photosynthesis is completed in two phases.

• Light phase or Photochemical reactions or Light dependent reactions or Hill's reactions : During this stage energy from sunlight is absorbed and converted to chemical energy which is stored in ATP and $NADPH + H^+$.

• Dark phase or Chemical dark reactions or Light independent reactions or Blackman reaction or Biosynthetic phase : During this stage carbohydrates are synthesized from carbon dioxide using the energy stored in the ATP and *NADPH* formed in the light dependent reactions.

• Evidence for light and dark reactions in photosynthesis : Evidences in favour of light and dark phases in photosynthesis are :

Physical separation of chloroplast into grana and stroma fractions : It is now possible to separate grana and stroma fractions of chloroplast. If light is given to grana fraction in presence of suitable H-acceptor and in complete absence of CO_2 , then ATP and $NADPH_2$ are produced (*i.e.*, assimilatory powers). If these assimilatory powers (ATP and $NADPH_2$) are given to stroma fraction in presence of CO_2 and absence of light, then carbohydrates are formed.

Experiments with intermittent light or Discontinuous light : Rate of photosynthesis is faster in intermittent light (Alternate light and dark periods) than in continuous light. It is because light reaction is much faster than dark reaction, so in continuous light, there is accumulation of ATP and $NADPH_2$ and hence reduction in rate of photosynthesis but in discontinuous light, ATP and $NADPH_2$ formed in light are fully consumed during dark in reduction of CO_2 to carbohydrates. Accumulation of $NADPH_2$ and ATP is prevented because they are not produced during dark periods.

Temperature coefficient studies : The temperature coefficient (Q_{10}) is defined as the ratio of the velocity of a reaction at a particular temperature to that at a temperature $10^{\circ}C$ lower. For a physical process the value of Q_{10} is slightly greater than one. In photochemical reaction the energy source is light and any increase in temperature is not sufficient to cause an increase in the rate. Thus here also the value of Q_{10} is one. However, in case of chemical reactions the value of Q_{10} is two or more *i.e.*, with the rise of $10^{\circ}C$ temperature, the rate of chemical reaction is doubled. If the process of photosynthesis includes a hidden chemical reaction in addition to usual photochemical reaction, its value of Q_{10} should be two or more.

Blackman found that Q_{10} was greater than 2 in experiment when photosynthesis was rapid and that Q_{10} dropped from 2 often reaching unity, *i.e.*, 1 when the rate of photosynthesis was low. These results show that in photosynthesis there is a **dark reaction** (Q_{10} more than 2) and a **photochemical** or **light reaction** (with Q_{10} being unity).

$$Q_{10} = \frac{\text{Reaction rate of } (t+10)^{\circ}C}{\text{Reaction at } t^{\circ}C}$$

(1) **Light phase (Photochemical reactions) :** <u>Light reaction occurs in grana fraction</u> of chloroplast and in this reaction are included those activities, which are dependent on light. <u>Assimilatory powers (ATP and NADPH₂)</u> are mainly produced in this light reaction.

Robin Hill (1939) first of all showed that if chloroplasts extracted from leaves of *Stellaria media* and *Lamium album* are suspended in a test tube containing suitable electron acceptors, *e.g.*, Potassium ferroxalate (Some plants require only this chemical) and potassium ferricyanide, oxygen is released due to **photochemical splitting of water**. Under these conditions, no CO_2 was consumed and no carbohydrate was produced, but light-driven reduction of the electron acceptors was accompained, by O_2 evolution.

$$\begin{array}{c} 4Fe^{3+} + 2H_2O \longleftrightarrow 4Fe^{2+} + 4H^+ + O_2 \uparrow \\ \begin{array}{c} \text{Electron} \\ \text{acceptor} \end{array} \\ \begin{array}{c} \text{Electron} \\ \text{onor} \end{array} \\ \begin{array}{c} \text{Reduced} \\ \text{Product} \end{array}$$

<u>The splitting of water during photosynthesis is called **photolysis**</u>. This reaction on the name of its discoverer is known as **Hill reaction**.

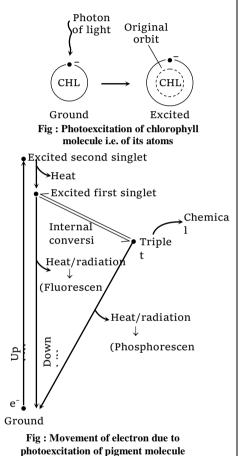
Hill reaction proves that

(i) In photosynthesis oxygen is released from water.

(ii) Electrons for the reduction of CO_2 are obtained from water [*i.e.*, a reduced substance (hydrogen donor) is produced which later reduces CO_2].

Dichlorophenol indophenol is the dye used by Hill for his famous Hill reaction.

According to **Arnon** (1961), in this process light energy is converted to chemical energy. This energy is stored in ATP (<u>this process of ATP formation in chloroplasts is known as</u> **photophosphorylation**) and from electron acceptor NADP⁺, a substance which found in all living beings NADP*H is formed as hydrogen donor. Formation of hydrogen donor NADPH from electron acceptor NADP⁺ is known as **photoreduction** or production of **reducing power** NADPH.


Light phase can be explained under the following headings :

(i) Transfer of energy (ii) Quantum yield (iii) Emerson effect (iv) Two pigment systems

(v) Z-scheme (vi) Cyclic and non-cyclic photophosphorylation

(i) **Transfer of energy :** <u>When photon of light energy falls on</u> <u>chlorophyll molecule, one of the electrons pair from ground or</u> <u>singlet state passes into higher energy level called excited singlet</u> <u>state. It comes back to hole of chlorophyll molecule within 10^{-9} </u> <u>seconds</u>.

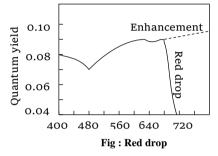
This light energy absorbed by chlorophyll molecule before coming back to **ground state** appears as radiation energy, while that coming back from excited singlet state is called **fluorescence** and is temperature independent. Sometimes the electron at excited singlet state gets its spin reversed because two electrons at the same energy level cannot stay; for some time it fails to return to its partner electron. As a result it gets trapped at a high energy level. Due to little loss of energy, it stays at comparatively lower energy level (**Triplet state**) from **excited singlet state**. Now at this moment, it can change its spin and from this triplet state, it comes back to ground state again losing excess of energy in the form of radiation. This type of loss of energy is called as **phosphorescence**.

When electron is raised to higher energy level, it is called at **second singlet state**. It can lose its energy in the form of heat also. Migration of electron from excited singlet state to ground state along with the release of excess energy into radiation energy is of no importance to this process. Somehow when this excess energy is converted to chemical energy, it plays a definite constructive role in the process.

(ii) Quantum yield

• Rate or yield of photosynthesis is measured in terms of **quantum yield** or O_2 evolution, which may be defined as, "Number of O_2 mols evolved per quantum of light absorbed in photosynthesis."

On the other hand **quantum requirement** is defined as, "Number of quanta of light required for evolution of one mol of O_2 in photosynthesis."


• Quantum requirement in photosynthesis = 8, *i.e.*, 8 quanta of light are required to evolve one mol. of O_2 .

• Hence quantum yield = 1 / 8 = 0.125 (*i.e.*, a fraction of 1) as 12%.

(iii) **Emerson effect and Red drop :** R. Emerson and C.M. Lewis (1943) observed that <u>the</u> <u>quantum yield of photosynthesis decreased towards the far red end of the spectrum (680*nm* or longer).</u> Quantum yield is the number of oxygen molecules evolved per light quantum absorbed. Since this <u>decrease in quantum yield is observed at the far region or beyond red region of spectrum is called red</u> drop.

Emerson et al. (1957) further observed that photosynthetic efficiency of light of 680nm or longer

is increased if light of shorter wavelengths (Less than 680*nm*) is supplied simultaneously. When both short and long wavelengths were given together the quantum-yield of photosynthesis was greater than the total effect when both the wavelengths were given separately. This increase in photosynthetic efficiency (or quantum yield) is known as Emerson effect or Emerson enhancement effect.

 $E = \frac{\text{Quantum yield in combined beam} - \text{Quantum yield in red beam}}{\text{Quantum yield in far red beam}}$

which are believed to be associated with two different specific group of pigments. One group of pigments absorbs light of both shorter and longer wavelengths (More than 680*nm*) and another group of pigments absorbs light of only shorter wavelengths (Less than 680*nm*). These two groups of pigments are known as pigment systems or photosystems.

Pigment system I or Photosystem I : The important <u>pigments of this system</u> <u>are chlorophyll *a* 670, chlorophyll *a* 683, chlorophyll *a* 695, P_{700} . Some physiologist also include <u>carotenes and</u> <u>chlorophyll *b*</u> in pigment system <u>I. P_{700} </u> <u>acts as the reaction centre</u>. Thus, this system absorbs both wavelengths shorter and longer than 680*nm*.</u>

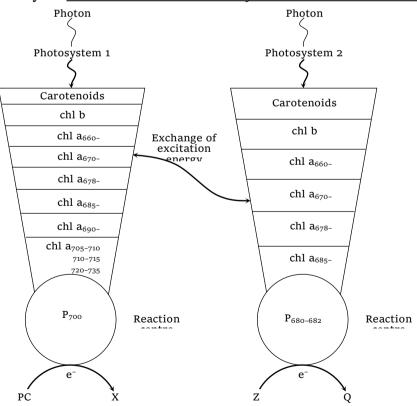


Fig : Distribution of pigments in the two photosystems or pigment systems

Pigment system II or photosystem II : The main pigments of this system are chlorophyll *a* 673, P_{680} , chlorophyll *b* and phycobilins. This pigment system absorbs wavelengths shorter than 680*nm* only. <u>*P*₆₈₀ acts as the reaction centre</u>.

Pigment systems I and II are involved in non-cyclic electron transport, while pigment system I is involved only in cyclic electron transport. <u>Photosystem I generates strong reductant NADPH.</u> <u>Photosystem II produces a strong oxidant that forms oxygen from water</u>.

	Comparison of photosystem I and photosystem II				
S.N	Photosystem I	Photosystem II			
0.					
(1)	PS I lies on the outer surface of the thylakoids	PS II lies on the inner surface of the thylakoid.			
(2)	In this system molecular oxygen is not evolved.	As the result of photolysis of water molecular oxygen is evolved.			
(3)	Its reaction center is P700.	Its reaction center is P680.			
(4)	NADPH is formed in this reaction.	NADPH is not formed in this reaction.			
(5)	It participate both in cyclic and noncyclic photophosphorylation.	It participate only in noncyclic photophosphorylation.			
(6)	It receives electrons from photosystem II.	It receives electrons from photolytic dissociation of water.			
(7)	It is not related with photolysis of water.	It is related with photolysis of water.			

Comparison of photosystem I and photosystem II

(v) **Z-Scheme of light reactions :** When sunlight strikes the thylakoid membrane, the energy is absorbed simultaneously by the antenna pigments of both PS I and PS II and passed on to the reaction centers of both photosystems. Electrons of both reaction center pigments are boosted to an outer orbital and each photoexcited electron is transferred to a **primary electron acceptor**. The transfer of electrons out of the photosystems leaves the two reaction center pigments missing an electron and thus, positively charged.

After losing their electrons, the reaction centers of PS I and PS II can be denoted as P700⁺ and P680⁺ respectively. Positively charged reaction centers act as attractants for electrons, which sets the stage for the flow of electrons between carriers.

In oxygenic photosynthesis, in which two photosystems act in series, electron flow occurs along three legs-between water and PS II, between PS II and PS I and between PS I and NADP⁺ an arrangement which is described as the **Z** scheme. The Z scheme as originally proposed by Hill and Bendall, 1960.

(vi) **Photophosphorylation :** Light phase includes the interaction of two pigment systems. PS I and PS II constitute various type of pigments. **Arnon** showed that during light reaction not only

reduced NADP is formed and oxygen is evolved but ATP is also formed. This formation of high energy phosphates (ATP) is dependent on light hence called **photophosphorylation**.

$$ADP + Pi \xrightarrow{\text{Light}} ATP$$
.

(Where ADP = Adenosine diphosphate, Pi = Inorganic phosphate and ATP = Adenosine triphosphate).

When the light quantum is absorbed by various types of pigments (Like chlorophylls, phycobilins, carotenoids etc.), it is transferred to reaction centre *i.e.* P_{700} in PS I and P_{680} in PS II. Electrons excite from reaction centres due to funneling of energy. P_{700} gets photo excited and comes under first excited singlet state. As a result electron is lost, which is accepted by an electron, acceptor in the way. After absorbing light, excited electron liberated from reaction centre interacts with water.

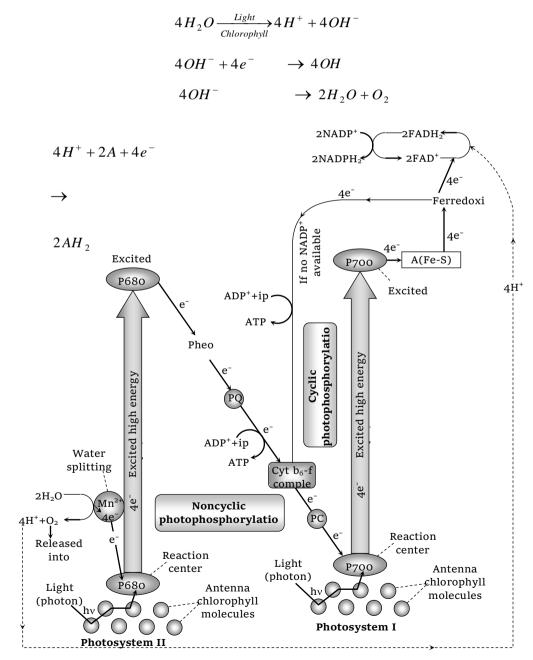


Fig : The Z-scheme of photosynthesis simplified diagram of the electron flow from H_2O to $NADP^{\scriptscriptstyle +}$

Another important aspect of light reactions is the formation of ATP and NADPH₂ (Assimilatory **power**). H⁺ from water and electron from chlorophyll are made available to NADP to form NADPH₂. The electrons are accepted by NADP after passing through electron carriers. The carriers in the way undergo oxidation and reduction and are arranged in accordance with their **redox potential** value.

Photophosphorylation is of two types

(a) **Cyclic photophosphorylation :** It involves only PS I. Flow of electron is cyclic. When NADP is not available then this process will occurs. When the photons activate PS I, a pair of electrons are raised to a higher energy level. <u>They are captured by primary acceptor which passes them on to ferredoxin, plastoquinone, cytochrome complex, plastocyanin and finally back to reaction centre of PS I *i.e. P*₇₀₀.</u>

At each step of electron transfer, the electrons lose potential energy. Their trip down hill is caused by the transport chain to pump H^+ across the thylakoid membrane. The proton gradient, thus established is responsible for forming (2 molecules)

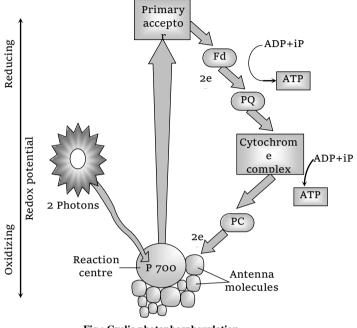
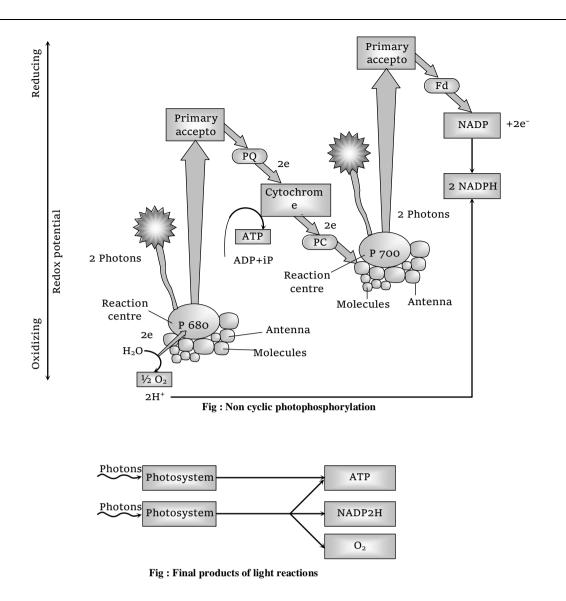



Fig : Cyclic photophosphorylation

ATP. No reduction of NADP to NADPH+ H⁺. ATP is synthesized at two steps.

(b) Non cyclic photophosphorylation : It involves both PS-I and PS-II. Flow of electron is unidirectional. Here electrons are not cycled back and are used in the reduction of NADP to NADPH₂. Here H_2O is utilized and O_2 evolution occurs. In this chain high energy electrons released from 'P-680' do not return to 'P-680' but pass through pheophytin, plastoquinone, cytochrome b_6 -f complex, plastocyanin and then enter P-700. In this transfer of electrons from plastoquinone (PQ) to cytochrome b_6 -f complex, ATP is synthesized.

Because in this process high energy electrons released from 'P-680' do not return to 'P-680' and ATP (1 molecules) is formed, this is called **Noncyclic photophosphorylation**. <u>ATP is synthesized</u> at only one step.

Comparison of cyclic and noncyclic photophosphorylation

S.No	Cyclic photophosphorylation	Noncyclic photophosphorylation	
•			
(1)	No oxygen is given off	Oxygen is given off (Oxygenic).	
	(Anoxygenic).		
(2)	No water is consumed.	Water is used up.	
(3)	Only one light-trapping system	Two light-trapping systems	
	(Photosystem I) is involved.	(Photosystem I and II) are involved.	
(4)	No NADPH synthesized.	NADPH synthesized	
(5)	Last electron acceptor is P_{700}	Last electron acceptor is NADP.	
(6)	The system is found dominantly	The system is dominant in green	
	in bacteria.	plants.	
(7)	The process is not inhibited by	The process is stopped by use of	
	DCMU.	DCMU	

(c) **Pseudocyclic photophosphorylation :** Arnon and his coworker (1954) demonstrated yet another kind of photophosphorylation. They observed that even in absence of CO_2 and NADP, if chlorophyll molecules are illuminated, it can produce ATP from ADP and Pi (Inorganic phosphate) in presence of FMN or vit. K and oxygen. The process is thus very simple and requires no net chemical change but for the formation of ATP and water. Arnon called this <u>oxygen dependent FMN catalysed photophosphorylation or pseudocyclic photophosphorylation</u> which involves the reduction of FMN with the production of oxygen. FMN is an auto-oxidisable hydrogen acceptor with the effect that the reduced FMN is reoxidised by oxygen. Thus the process can continue repeatedly to produce ATP.

Since this process can be continuously self repeated, it appears that a single molecule of water should be sufficient to operate pseudocyclic photophosphorylation to meet the requirement of ATP.

FMN +
$$\underbrace{Illuminated chloroplast}_{ADP+Pi ATP} FMNH_2 + \frac{1}{2} O_2$$

(2) **Dark phase :** The pathway by which all photosynthetic eukaryotic organisms ultimately incorporate CO_2 into carbohydrate is known as **carbon fixation** or **photosynthetic carbon reduction** (PCR) **cycle** or **dark reactions**. The dark reactions are sensitive to temperature changes, but are independent of light hence it is called dark reaction, however it depends upon the products of light reaction of photosynthesis, *i.e.* NADP .2H and ATP. The carbon dioxide fixation takes place in the stroma of chloroplasts because it has enzymes essential for fixation of CO_2 and synthesis of sugar. The techniques used for studying different steps were <u>Radioactive tracer technique using ${}^{14}C$ </u> (Half life – 5720 years), <u>Chromatography</u> and Autoradiography and the <u>material used was *Chlorella*</u> (Cloacal alga) and *Scenedesmus* (these are microscopic, unicellular algae and can be easily maintained in laboratory).

The assimilation and reduction of CO_2 takes place in this reaction by which carbohydrate is synthesized through following three pathways :

(i) Calvin cycle (C_3) (ii) Hatch and Slack cycle (C_4) (iii) Crassulacean acid metabolism (CAM plants)

(i) **Calvin cycle :** Calvin and Benson discovered the path of carbon in this process. This is known as C_3 cycle because CO_2 reduction is cyclic process and <u>first stable product in this cycle is a 3-C</u> compound (*i.e.*, 3-Phosphoglyceric acid or 3-PGA).

Calvin cycle is divided into three distinct phases : Carboxylation, Glycolytic reversal, Regeneration of RuBP.

• **Carboxylation :** CO_2 reduction starts with a 5-carbon sugar, ribulose-5-phosphate. 6 molecules of this sugar react with 6 molecules of ATP (Produced in light reactions) forming 6 molecules of ribulose-1, 5-biphosphate (RuBP) and 6 molecules of ADP. (equation i).

$$\begin{array}{c} \text{Ribulose } -5 - \text{phosphate } + 6\text{ATP} \xrightarrow{\text{Phosphopentokinase}} \text{Ribulose } -1, 5 - \text{biphosphate } +6\text{ADP} & \dots & (i) \\ \xrightarrow{(6 \text{ mols})} \end{array}$$

The reaction is catalysed by the enzyme ribulose biphosphate carboxylase (RUBISCO). Ribulose-1,5-biphosphate (RuBP) (=Ribulose diphosphate) acts as CO_2 acceptor and <u>6 mols of RuBP react with</u> <u>6 mols of CO_2 and 6 mols of water giving rise to 12 mols of 3-phosphoglyceric acid</u> (a 3 carbon compound) (equation ii).

Ribulose -1, 5 – bipho sphate + $6CO_2$ + $6H_2O$ $\xrightarrow{\text{Carboxydis mutase}}$ 3 – phospho glyceric acid (ii) (12 mols) (12 mols)

• **Glycolytic reversal :** Carboxylation is followed by reactions that involve reversal of glycolysis part of respiration.

12 mols of 3-phosphoglyceric acid react with 12 mols of ATP (Produced in light reactions) giving rise to 12 mols each of 1, 3-diphosphoglyceric acid + ADP (equation iii).

3 - phosphogl yceric acid + 12 ATP $\xrightarrow{\text{Phosphoglyceric kinase}}$ 1,3 - diphosph oglyceric acid + 12 ADP (iii) (12 mols)

12 mols of NADP.2H formed in light reactions are used to reduce 12 mols of 1,3-diposphoglyceric acid leading to the formation of 12 mols of 3-phosphoglyceraldehyde, 12 moles of NADP and 12 moles of phosphoric acid (equation iv).

 $1,3 - diphosp hoglyce ric acid + 12 NADP.2H \xrightarrow{Triose phosphate dehydrogen ase} \rightarrow (12 mols)$

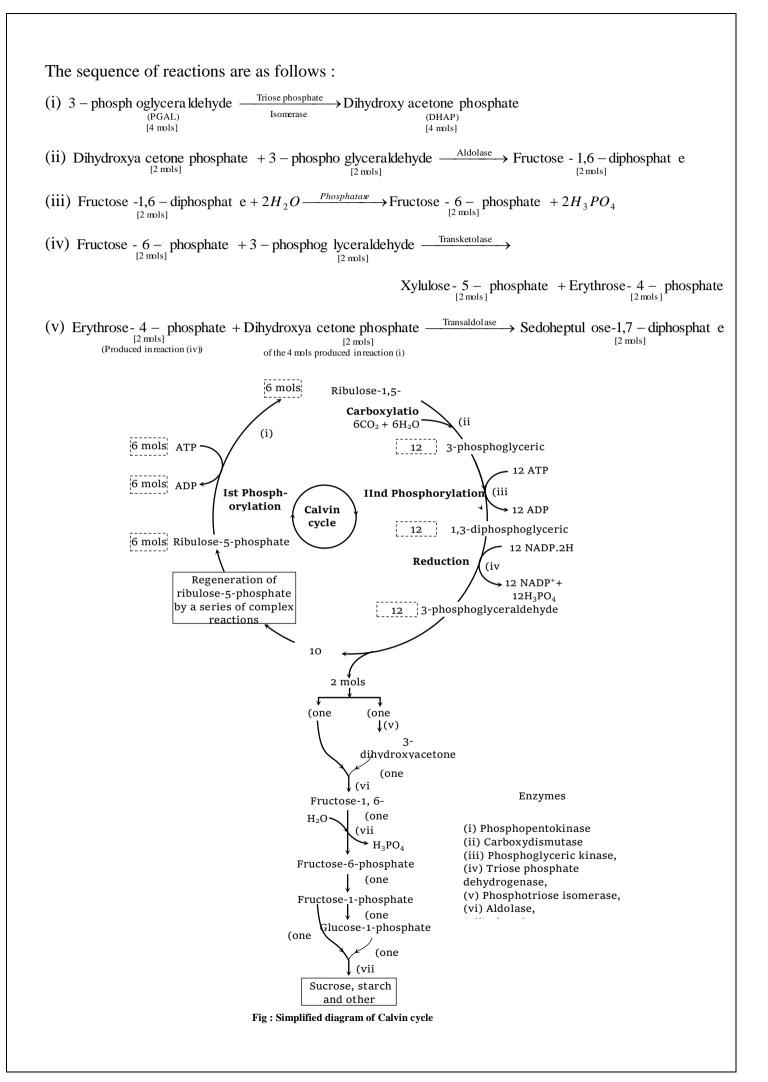
3 - phosph oglyceraldehyde +12NADP⁺ +12
$$H_3PO_4$$
 (iv)

In this way by the reduction of CO_2 , 12 molecules of 3-phosphoglyceraldehyde are formed. Out of these 12 molecules, 2 molecules go to synthesize sugar, starch and other carbohydrates and remaining 10 molecules are recycled to regenerate 6 molecules of ribulose 5 phosphate.

Out of two mols of 3-phosphoglyceraldehyde one mol is converted to its isomer 3dihydroxyacetone phosphate (equation v).

$$3 - \text{phospho glyceraldehyde} \xrightarrow[(1 \text{ mol})]{\text{Phosphotriose}} 3 - \text{dihydroxy acetone phosphate} \qquad \dots (v)$$

One mol of 3-dihydroxyacetone phosphate react with 1 mol of 3-phosphoglyceraldehyde to form one molecule of fructose-1,6-biphosphate (equation vi).


Phosphog lyceraldehyde + Dihydroxya cetone phosphate
$$\xrightarrow{\text{Aldolase}}$$
 Fructose -1,6 - biphosphate (vi)

One mol of fructose-6-phosphate and one mol of phosphoric acid is released from one mol of fructose-1,6-biphosphate with the help of the enzyme phosphatase with utilizations of one mol of H_2O (equation vii).

Fructose -1,6 - biphosphate
$$\xrightarrow{\text{Phosphatase}}_{(1 \text{ mol})}$$
 Fructose -6 - phosphate + H_3PO_4 (vii)

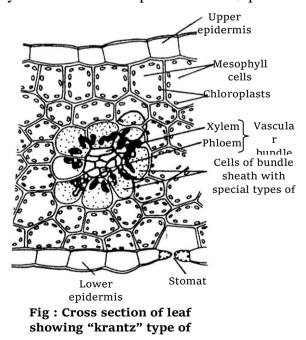
Fructose-6-phosphate can be converted to other sugars (viz., glucose, sucrose, starch, etc.). In this way, the atmospheric CO_2 is used in the synthesis of carbohydrates.

• **Regeneration of RuBP** : Both triose phosphates, *i.e.*, 3-phosphoglyceraldehyde and dihydroxy acetone phosphate, actively participate in the regeneration of CO_2 -acceptor ribulose-1,5-diphosphate.

(vi) Sedoheptul ose-1,7 – diphosphat e
$$\xrightarrow{\text{Phosphatase}}$$
 Sedoheptul ose-7 – phosphate $+ 2H_3PO_4$
(vii) Sedoheptul ose-7 – phosphate $+3$ - phospho glyceralde hyde $\xrightarrow{\text{Transketolase}}$
Ribose-5 – phosphate $+3$ - phosphote $\xrightarrow{[2 \text{ mols}]}$ Phosphote $+ Xylulose - 5$ – phosphate $(2 \text{ mols}]$ phosphate $\xrightarrow{[2 \text{ mols}]}$ Phosphote $\xrightarrow{[4 \text{ mols}]}$ Phosphot

2 + 4 = 6 molecules of Ribulose 5 phosphate are formed during the changes from equation (viii) and (ix) these molecule changed in Ribulose 1, 5 diphosphate (RuDP) by the consumption of 6 ATP. These RuDP again ready for reduction of new molecules of CO_2 . Hence in this way regeneration of RuDP is going on. They are used in next calvin cycle. In the overall reactions 18 ATP molecules and 12 NADPH₂ molecules consumed and one molecule of glucose (Hexose) is obtained (1 NADPH₂ = 3ATP \therefore Total ATP consumed = 54 ATP). The whole photosynthesis can be summarized in terms of equation which is as follows :

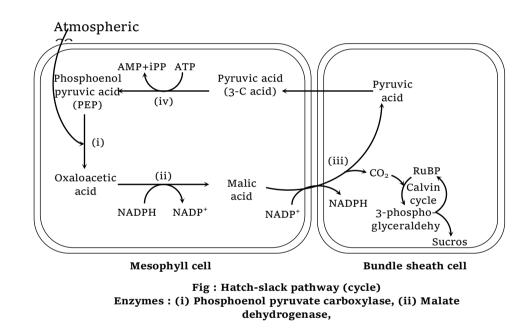
Light reaction : $12H_2O + 12NADP + 18ADP + 18Pi \rightarrow NADPH - H^+ + 18ATP + 6O_2$


Dark reaction : $6CO_2 + 12NADPH - H^+ + 18ATP \rightarrow C_6H_{12}O_6 + 6H_2O + 12NADP + 18ADP + 18Pi$

Final equation : $6CO_2 + 12H_2O \rightarrow C_6H_{12}O_6 + 6H_2O + 6O_2$

(ii) Hatch and Slack cycle (C_4 cycle) : Kortschak and Hart supplied CO_2 to the leaves of sugarcane, they found that the first stable product is a four carbon (C_4) compound oxalo acetic acid instead of 3-carbon atom compound. The detailed study of this cycle has introduced by M.D. Hatch and C.R. Slack (1966). So it is called as "Hatch and Slack cycle". The stable product in C_4 plant is

dicarboxylic group. Hence it is called dicarboxylic acid cycle or DCA-cycle. C_4 plants are true xerophytic plants.


The plants that perform C_4 cycle are found in tropical (Dry and hot regions) and sub-tropical regions. There are more than 900 known species in which C_4 cycle occurs. Among them, more than 300 species <u>belong to dicots and the rest belong to monocots</u>. The important among them are <u>sugarcane, maize, Sorghum</u>, *Cyperus rotundus, Digitaria brownii, Amaranthus*, etc. These plants have "Kranz" (German term meaning halo or wreath) <u>type of leaf anatomy</u>. The vascular bundles, in C_4 leaves are surrounded by a layer of bundle sheath cells that contain large number of chloroplasts. The chloroplasts in C_4 leaves are **dimorphic** (Two morphologically distinct types). The chloroplasts of

bundle sheath cells are larger in size and arranged centripetally. They contain starch grains but lack grana.

The mesophyll cells, on the other hand, contain normal types of chloroplasts. The mesophyll cells perform C_4 cycle and the cells of bundle sheath perform C_3 cycle.

 CO_2 taken from the atmosphere is accepted by phosphoenolpyruvic acid (PEP) present in the chloroplasts of mesophyll cells of these leaves, leading to the formation of a 4-C compound, oxaloacetic acid (OAA). This acid is converted to another 4-C acid, the malic acid which enters into the chloroplasts of bundle sheath cells and there undergoes oxidative decarboxylation yielding pyruvic acid (a 3-C compound) and CO_2 . CO_2 released in bundle sheath cells reacts with Ribulose-1,5-biphosphate (RuBP) already present in the chloroplasts of bundle sheath cells and thus Calvin cycle starts from here. Pyruvic acid re-enters mesophyll cells and regenerates phosphoenol pyruvic acid. CO_2 after reacting with RuBP gives rise to sugars and other carbohydrates. Mesophyll cells have PEP carboxylase and pyruvate orthophosphate dikinase enzyme while the bundle sheath cells have decarboxylase and complete enzymes of Calvin cycle. In C_4 plants, there are 2 carboxylation reactions, first in mesophyll chloroplast and second in bundle sheath chloroplast.

 C_4 plants are better photosynthesizers. There is no photorespiration in these plants. In C_4 plants, for formation of one mole of hexose (glucose) 30 ATP and 12 NADPH₂ are required. There is difference in different C_4 plants in mechanism of C_4 mode of photosynthesis. The main difference is in the way the 4C dicarboxylic acid is decarboxylated in the bundle sheath cells. The three categories of C_4 pathways in C_4 plants are recognised such as :

(a) Some C_4 plants *e.g.*, Zea mays, Saccharum officinarum, Sorghum utilise NADP⁺ specific malic enzyme for decarboxylation. This mechanism of C_4 pathway in these C_4 plants is said to be of NADP⁺ -Me Type.

(b) Some C_4 plants *e.g.*, *Atriplex, Portulaca, Amaranthus* utilise NAD⁺ specific malic enzyme for decarboxylation. This mechanism of C_4 pathways in these C_4 plants is said to be of **NAD⁺** –**Me Type**.

(c) Some C_4 plants *e.g.*, *Panicum*, *Chloris* utilise PEP-carboxykinase enzyme. The mechanism of C_4 pathway in these plants is called as **PCK-me-Type**.

Characteristics of C₄ cycle

(1) <u> C_4 species have greater rate of CO_2 assimilation than C_3 species.</u> This is on account of the fact that

(a) PEP carboxylase has great affinity for CO_2 .

(b) $\underline{C_4}$ plants show little photorespiration as compared to $\underline{C_3}$ plants, resulting in higher production of dry matter.

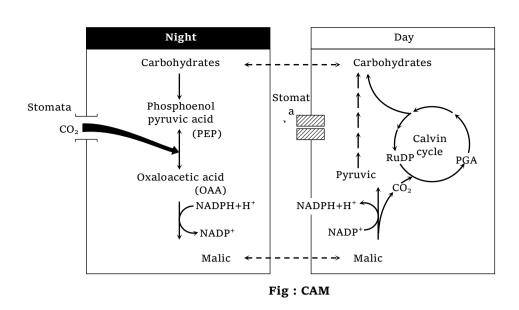
(2) C_4 plants are more adapted to environmental stresses than C_3 plants.

(3) CO_2 fixation by C_4 plants require more ATP than that by C_3 plants. This additional ATP is needed for conversion of pyruvic acid to phosphoenol pyruvic acid and its transport.

(4) CO_2 acceptor molecule in C_4 plants is PEP. Further, PEP-carboxylase (PEPCO) is the key enzyme (RuBP-carboxylase enzyme is negligible or absent in mesophyll chloroplast, but is present in bundle sheath chloroplast).

S.N	Characters	C ₃ plants	C ₄ plants	
0.				
(1)	CO_2 acceptor	The CO_2 acceptor is Ribulose 1,5	The CO_2 acceptor is phosphoenol-	
		diphosphate.	pyruvate.	
(2)	First stable	The first stable product is	Oxaloacetate is the first stable	
	product	phosphoglyceric acid.	product.	
(3)	Type of	All cells participating in	The chloroplast of parenchymatous	
	chloroplast	photosynthesis have one type of	bundle sheath is different from that	
		chloroplast.	of mesophyll cells. Leaves have	
			'Kranz' type of anatomy. The bundle	
			sheath chloroplasts lack grana.	
			Mesophyll cells have normal	
			chloroplasts.	
(4)	Cycles	Only reductive pentose phosphate	Both C ₄ -dicarboxylic acid and	
		cycle is found.	reductive pentose phosphate cycles	
			are found.	
(5)	Optimum	The optimum temperature for the	In C ₄ plants, it is 30-45°C.	
	temperature	process is 10-25°C.		
(6)	Oxygen	Oxygen present in air $(=21\% O_2)$ The process of photosynthesis is n		
	inhibition	markedly inhibit the photosynthetic inhibited in air as compa		
		process as compared to an external	external atmosphere containing no	
		atmosphere containing no oxygen.	oxygen.	

Differences between C₃ and C₄ plants


(7)	PS I and PS II	In each chloroplast, photosystems I	In the chloroplasts of bundle sheath	
		and II are present. Thus, the Calvin	cells, the photosystem II is absent.	
		cycle occurs.	Therefore, these are dependent to	
			mesophyll chloroplast for the	
			supply of NADPH + H^+	
(8)	Enzymes	The Calvin cycle enzymes are present	Calvin cycle enzymes are absent in	
		in mesophyll chloroplast.	mesophyll chloroplasts. The cycle	
			occurs only in the chloroplasts of	
			sheath cells.	
(9)	Compensatio	The CO_2 compensation point is 50-	CO ₂ compensation point is 0-	
	n point	150ppm.	10ppm.	
(10)	Photorespirati	Photorespiration is present and easily	Photorespiration is present only to a	
	on	detectable.	slight degree and difficult to detect.	
(11)	Net rate	Net rate of photosynthesis in full	It is 40-80mg. of CO_2 per dm ² of	
		sunlight (10,000-12,000 ft.c) is 15-	leaf area per h. That is	
		35mg. of CO_2 per dm ² of leaf area per	photosynthetic rate is quite high.	
		h.	The plants are efficient.	
(12)	Saturation	The saturation intensity reached in the	It is difficult to reach saturation	
	intensity	range of 100-4000 ft.c.	even in full sunlight.	

(iii) Crassulacean acid metabolism plants (CAM plants) : This dark *CO*₂ fixation pathway proposed by Ting (1971). It operates in succulent or fleshy plants *e.g. Cactus*, *Sedum, Kalanchose, Opuntia, Agave,* orchid, pine apple and *Bryophyllum* helping them to continue photosynthesis under extremely dry condition.

The stomata of succulent plants remain closed during day and open during night to avoid water loss (Scotactive stomata). They store CO_2 during night in the form of malic acid in presence of enzyme <u>PEP carboxylase</u>. The CO_2 stored during night is used in Calvin cycle during day time. Succulents refix CO_2 released during respiration and use it during photosynthesis.

This diurnal change in acidity was first discovered in crassulacean plants *e.g. Bryophyllum*. So it is called as crassulacean acid metabolism. The metabolic pathways are –

• Acidification : In dark, stored carbohydrates are converted to phosphoenol pyruvic acid (PEP) by the process of glycolysis. The opening of stomata in CAM plants in dark causes entry of CO_2 in leaf. So, phosphoenol pyruvic acid in presence of PEP carboxylase is converted to oxaloacetic acid (OAA). OAA is then reduced to malic acid in presence of enzyme malic dehydrogenase with the help of *NADH*₂. This malic acid (Produced by acidification) is stored in vacuole.

• **Deacidification :** In light the malic acid is decarboxylated to produce pyruvic acid and evolve *CO*₂. This process is called <u>deacidification</u>.

The malate may be decarboxylated in two ways -

(a) In some CAM plants the malate is directly decarboxylated in the presence of NADP⁺ malic enzyme into CO_2 and pyruvate (ME-CAM plants).

(b) In other CAM plants, the malate is first oxidised to oxaloacetic acid by enzyme malate dehydrogenase which is then converted into CO_2 and phosphoenol pyruvate with the utilization of ATP by enzyme PEP carboxykinase (PEPCK-CAM plants).

The CO_2 produced by any above process is then consumed in normal photosynthetic process to produce carbohydrate.

Characteristics of CAM pathway

(1) CO_2 assimilation and malic acid assimilation take place during the night.

(2) There is decrease in pH during the night and increase in pH during the day.

(3) Malic acid is stored in the vacuoles during the night which is decarboxylated to release CO_2 during the day.

(4) CAM plants have enzymes of both C_3 and C_4 cycle in mesophyll cells. This metabolism enable CAM plants to survive under xeric habitats. These plants have also the capability of fixing the CO_2 lost in respiration.

5.5 PHOTORESPIRATION (PHOTOSYNTHETIC CARBON OXIDATION CYCLE)

Decker and **Tio** (1959) reported that light induces oxidation of photosynthetic intermediates with the help of oxygen in tobacco. It is called as photorespiration. The photorespiration is defined by **Krotkov** (1963) as an extra input of O_2 and extra release of CO_2 by green plants is light.

Photorespiration is the uptake of O_2 and release of CO_2 in light and results from the biosynthesis of glycolate in chloroplasts and subsequent metabolism of glycolate acid in the same leaf cell. Biochemical mechanism for photorespiration is also called glycolate metabolism. Loss of energy occurs during this process. The process of photorespiration involves the involvement of chloroplasts, peroxisomes and mitochondria. **RuBP** carboxylase also catalyses another reaction which interferes with the successful functioning of Calvin cycle.

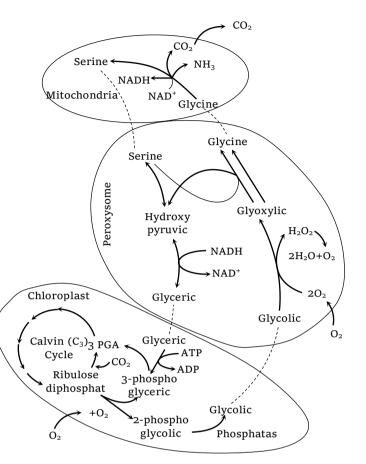


Fig : The biochemical pathway of

Biochemical mechanism

(1) Ribulose bisphosphate carboxylase (RUBISCO), the main enzyme of Calvin cycle that fixes CO_2 , acts as ribulose bisphosphate oxygenase under low atmospheric concentration of CO_2 (*i.e.*, below 1%) and increased concentration of O_2 . In presence of high concentration of O_2 the enzyme RuBP oxygenase splits a molecule of Ribulose-1, 5-bisphosphate into one molecule each of 3-phosphoglyceric acid and 2-phosphoglycolic acid.

Ribulose-1, 5- bisphosphate $\xrightarrow{o_2}$ 2 Phosphoglycolic acid +3 Phosphoglyceric acid

(2) The 2-phosphoglycolic acid loses its phosphate group in presence of enzyme phosphatase and converted into glycolic acid –

2 Phosphoglycolic acid + $H_2O \longrightarrow$ Glycolic acid + Phosphoric acid.

(3) The glycolic acid, synthesized in chloroplast as an early product of photosynthesis, is then transported to the peroxisome. The glycolic acid reacts with O_2 and oxidizes to glyoxylic acid and hydrogen peroxide with the help of enzyme glycolic acid oxidase.

Glycolic acid + $O_2 \longrightarrow$ Glyoxylic acid + H_2O_2

The hydrogen peroxide is destroyed by enzyme catalase as follows :

$$2H_2O_2 \longrightarrow 2H_2O + O_2$$

(4) The glyoxylic acid is then converted to an amino acid-glycine by transamination reaction catalyzed by enzyme glutamate-glyoxylate transaminase.

Glyoxylic acid + Glutamic acid \longrightarrow Glycine + α -keto glutaric acid

(5) The glycine is transported out of peroxisomes into mitochondria, where two molecules of glycine interact to form one molecule each of serine, CO_2 and NH_3 –

2 Glycine + H_2O + NAD^+ \longrightarrow Serine + CO_2 + NH_3 + NADH

The CO_2 is then released in photorespiration from mitochondria. The NH_3 released during glycine decarboxylation is transported to cytoplasm or chloroplast, where it is incorporated into synthesis of glutamic acid.

(6) The amino acid serine returns to peroxisome where it is deaminated and reduced to hydroxypyruvic acid and finally to glyceric acid –

Serine + Glyoxylic acid \longrightarrow Hydroxypyruvic acid + Glycine Hydroxypyruvic acid \longrightarrow Glyceric acid

(7) The glyceric acid finally enters the chloroplast where it is phosphorylated to 3-phosphoglyceric acid, which enters into C_3 cycle –

Glyceric acid + ATP \longrightarrow 3-Phosphoglyceric acid + ADP + Phosphate.

Importance of photorespiration : The process of photorespiration interferes with the successful functioning of Calvin cycle. Photorespiration is quite different from respiration as no ATP or NADH are produced. Moreover, the process is harmful to plants because as much as half the photosynthetically fixed carbon dioxide (in the form of RuBP) may be lost into the atmosphere through this process.

Any increase in O_2 concentration would favour the uptake of O_2 rather than CO_2 and thus, inhibit photosynthesis for this rubisco functions as RuBP oxygenase. Photorespiration is closely related to CO_2 compensation point and occurs only in those plants which have high CO_2 compensation point such as C_3 plants.

It is absent in plants which have very low CO_2 compensation point such as maize, sugarcane (C_4 plants). Photorespiration generally occurs in **temperate** plants. Few photorespiring plants are : Rice, bean, wheat, barley, rice etc. Inhibitors of glycolic acid oxidase such as hydroxy sulphonates inhibit the process of photorespiration. Unlike usual mitochondria respiration neither reduced coenzymes are generated in photorespiration nor the oxidation of glycolate is coupled with the formation of ATP molecules.

Photorespiration (C_2 cycle) is enhanced by bright light, high temperature, high oxygen and low CO_2 concentration.

S.N	Photorespiration	Photosynthesis	True Respiration	
0.				
(1)	Occurs in green plants	Occurs in green plants	Occurs in all living organisms in	
	in light.	in light.	light and dark.	
(2)	The primary substrate	Substrate is CO_2 and	Substrates are carbohydrates, fat	
	is glycolate formed	$H_2O.$	and proteins.	
	from RuBP.			
(3)	Occurs in most of the	Occurs in all green	Occurs in all living organisms.	
	C_3 plants.	plants.		
(4)	Intracellularly, the	Occurs in chloroplasts.	Occurs in cytosol and	
	process occurs in		mitochondria.	
	peroxisomes in			
	association with			
	chloroplasts and			
	mitochondria.			
(5)	The process increases	The process is inhibited	The process saturates at 2-3% O_2	
	with increasing	with increasing	in the atmosphere and beyond this	
	concentration of O_2 and	concentration of O_2 .	conc, virtually no increase occurs.	
	decreasing concentration			
	of <i>CO</i> ₂ .			
(6)	Hydrogen peroxide is	H_2O_2 is not formed.	H_2O_2 is not formed.	
	formed during this			
	process.			
(7)	Phosphorylation does	Photophosphorylation	Oxidative phosphorylation occurs.	
	not occur.	occurs.		

Differences between photorespiration, photosynthesis and true respiration

 CO_2 compensation point : In photosynthesis, CO_2 is utilized in presence of light to release O_2 whereas in respiration, O_2 is taken and CO_2 is released. If light factor is saturating, there will be certain CO_2 concentration at which rate of photosynthesis is just equal to rate of respiration or photosynthesis just compensates respiration or apparent photosynthesis is nil. It is called CO_2 compensation point. Rate of photosynthesis is higher than that of respiration during day time and ratio of O_2 produced to that consumed is 10 : 1.

 CO_2 compensation point is very low in C-4 plants, *i.e.*, 0 to 5 ppm whereas high CO_2 compensation point is found in C-3 plants, *i.e.* 25 to 100 ppm.

During compensation point there is no evolution of any gas.

5.6 ADENOSINE TRIPHOSPHATE (ATP)

A molecule of Adenosine is formed by reaction between a molecule of adenine (A nitrogenous base) and sugar D-ribose (A pentose sugar). Adenosine is a nucleoside. Adenosine monophosphate (AMP = Adenylic acid) is formed by condensation of a phosphate group at CH_2OH site of 5th carbon atom of deoxyribose sugar.

With the formation of this bond (represented by –) between sugar and phosphate energy of 1500-1800 cal./mol is stored. This is low energy bond. When next group of phosphate is attached to AMP, Adenosine diphosphate (ADP) is formed. In this bond 7300 cal./mol of energy is stored and this bond is represented by wavy lines (~). This is high energy bond. In the same way when third phosphate group is attached to ADP, ATP is formed. This third bond is also represented by wavy line (~) and the energy stored is equal to the second bond.

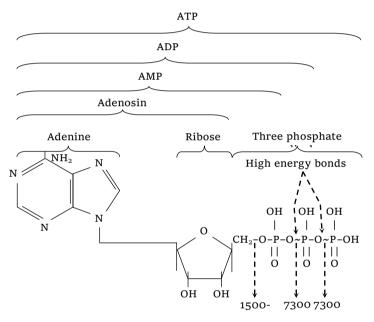


Fig : Molecular structure of Adenosine Triphosphate

In photochemical reactions of photosynthesis 18 ATP molecules are synthesized. Out of these 18 molecules of ATP, 6 react with ribulose monophosphate to form ribulose-1,5-biphosphate and the remaining 12 molecules react with 12 mols of 3-phosphoglyceric acid to form 12 mols of 1,3-diphosphoglyceric acid. ATP synthesized in cyclic and noncyclic photophosphorylation is utilized in dark reaction of photosynthesis.

Functions of ATP : In living cells energy yielding and energy consuming reactions take place continuously. By release of energy from one substance (*e.g.*, glucose) another substance, *e.g.*, protein is synthesized. By release of energy from proteins other activities of plants can be carried out. There is a mechanism of temporary storage of energy in the cells. This is ATP. This chemical is extremely important for all living cells. Energy released as a result of oxidation of carbohydrates, proteins and fats is utilized in the synthesis of ATP (from ADP and inorganic phosphate). This method of synthesis of ATP in respiration is called **oxidative phosphorylation** which is essential for various other synthetic activities, *e.g.*, synthesis of carbohydrates, fats, proteins and osmosis, active absorption,

translocation of foods, streaming of protoplasm, growth, etc. In this way by taking out energy from one compound and transferring it to another, ATP, functions as an **intermediary compound of energy transfer**. This is why ATP is called as **monetary system of energy exchange** in living organisms.

5.7 BACTERIAL PHOTOSYNTHESIS

Like green plants, some purple and green sulphur bacteria are capable of synthesizing their organic food in presence of light and in absence of O_2 , which is known as **bacterial photosynthesis**.

Van Niel was the first to point out these similarities. Oxygen is liberated in bacteria during process of photosynthesis. Their photosynthesis is non-oxygenic. Because bacteria use H_2S in place of water (H_2O) as hydrogen donor. Photosynthetic bacteria are anaerobic. <u>Only one type of pigment system</u> (PSI) is found in bacteria except cyanobacteria which possess both PSI and PSII. Bacteria has two type of photosynthetic pigments.

- Bacterial chlorophyll
- Bacterio viridin

The photosynthetic bacteria fall under three categories :

(1) Green sulphur bacteria : They are autotrophic. The hydrogen donor is H_2S and the pigment involved in the process is chlorobium chlorophyll (Bacterioviridin) *e.g. Chlorobium*.

$$6CO_2 + 12H_2S \xrightarrow{\text{Chlorophyll}} C_6H_{12}O_6 + 6H_2O + 12S$$
.

(2) **Purple sulphur bacteria :** They are also autotrophic. The hydrogen donor is thiosulphate and the pigment involved in photosynthesis is **bacteriochlorophyll a**. *e.g.*, *Chromatium*.

$$6CO_2 + 15H_2O + 3Na_2S_2O_3 \xrightarrow{\text{Bacterioch lorophylla}} C_6H_{12}O_6 + 6H_2O + 6NaHSO_4.$$

(3) **Purple non-sulphur bacteria :** They are heterotrophic utilizing succinate or malate or alcohol. *e.g., Rhodospirillum, Rhodopseudomonas.*

$$6CO_2 + 12CH_3CHOHCH_3 \longrightarrow C_6H_{12}O_6 + 12CH_3COCH_3 + 6H_2O$$

Characteristics of bacterial photosynthesis are :

(1) No definite chloroplasts but contain simple structures having pigments called **chromatophores** (term coined by **Schmitz**).

(2) Contain chlorobium chlorophyll or bacterio-chlorophyll.

(3) Use longer wavelengths of light (720-950*nm*).

(4) No utilization of H_2O (but <u>use H_2S </u> or other reduced organic and inorganic substances).

(5) No evolution of O_2 .

(6) Photoreductant is $NADH_2$ (Not $NADPH_2$).

- (7) Only one photoact and hence one pigment system and thus one reaction centre, *i.e.*, P₈₉₀.
- (8) Cyclic photophosphorylation is dominant.
- (9) It occurs in presence of light and in absence of O_2 .

5.8 CHEMOSYNTHESIS

Some forms of bacteria obtain energy by **chemosynthesis**. This process of carbohydrate formation in which organisms use chemical reactions to <u>obtain energy from inorganic compounds</u> is called **chemosynthesis**. Such <u>chemoautotrophic bacteria do not require light</u> and synthesize all organic cell requirements from CO_2 and H_2O and salts at the expense of oxidation of inorganic substances like (H_2 , NO_3^- , SO_4 or carbonate). Some examples of chemosynthesis are :

(1) **Nitrifying bacteria :** These bacteria oxidises ammonia to nitrites and release chemical energy. *e.g. Nitrosomonas, Nitrococcus* etc.

 $NH_4^+ + 2O_2 \longrightarrow NO_2 + 2H_2O + energy$

(2) Sulphur bacteria : Convert H_2S to sulphur. *e.g.*, *Beggiatoa*, *Thiothrix* and *Thiobacillus*.

$$H_2S + O_2 \longrightarrow 2H_2O + 2S + \text{energy}$$

(3) Iron bacteria : Oxidises ferrous to ferric e.g. Ferrobacillus, Leptothrix and Cladothrix.

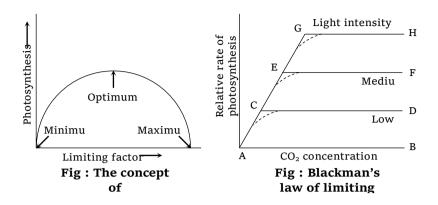
$$Fe^{2+} \longrightarrow Fe^{3+} + \text{energy}$$

(Ferrous) (Ferric)

(4) Hydrogen bacteria : e.g. Bacillus pentotrophus

 $H_2 \xrightarrow{[O]} (H_2 O) + \text{energy}$

(5) Carbon bacteria : Convert carbon monoxide to carbon dioxide. *e.g.*, *Carboxydomonas*, *Bacillus oligocarbophilus*.


 $CO \xrightarrow{[O]} CO_2 + \text{energy}$

5.9 FACTORS AFFECTING PHOTOSYNTHESIS

• Blackmann's law of limiting factors

<u>F.F. Blackmann (1905) proposed the law of limiting factors</u> according to which 'when process is conditioned to its rapidity by a number of factors, the rate of process is limited by the pace of the slowest factor'. <u>Blackmann's law of limiting factor is modification of Leibig's law of minimum</u>, which states that rate of process controlled by several factors is only as rapid as the slowest factor permits. Theory of <u>three cardinal points</u> was given by <u>Sachs in 1860</u>. According to this concept, there is minimum, optimum and maximum for each factor. For every factor, there is a minimum value when no

photosynthesis occurs, an optimum value showing highest rate and a maximum value, above which photosynthesis fails to take place. The law can be explained best by the following illustration :

Light intensity provided to a leaf is just sufficient to permit it to utilize 5 mg of CO_2 . At 'A' no photosynthesis occurs due to non-availability of CO_2 . If concentration is increased from 0 to 1 mg, rate of photosynthesis will increase from 'A' to 'C'. Now even if the CO_2 concentration is further increased to 5 mg rate becomes constant. Further increase from 'C' to 'E' is possible only when light intensity is increased, which is at this time working as limiting factor. Because the factor which is quantitatively smaller may not be limiting one, while a factor which is relatively less than the amount actually required will act as limiting factor. That is why many modifications in name have been suggested *e.g.* **'Law of relatively limiting factor'** or **'Law of most significant factor'**.

Factors : The rate of photosynthetic process is affected by several external (Environmental) and internal factors.

(1) External factors : These include light, temperature, CO₂, water and oxygen.

(i) **Light :** The ultimate source of light for photosynthesis in green plants is solar radiation, which moves in the form of electromagnetic waves. Out of the total solar energy reaching to the earth about 2% is used in photosynthesis and about 10% is used in other metabolic activities. Light varies in intensity, quality (Wavelength) and duration. The effect of light on photosynthesis can be studied under these three headings.

(a) **Light intensity :** The total light perceived by a plant depends on its general form (viz., height, size of leaves, etc.) and arrangement of leaves. Of the total light falling on a leaf, about 80% is absorbed, 10% is reflected and 10% is transmitted.

In general, rate of photosynthesis is more in intense light than diffused light. (Upto 10% light is utilized in **sugarcane**, *i.e.*, Most efficient converter).

Another photosynthetic superstar of field growing plants is *Oenothera claviformis* (Winter evening-primrose), which utilizes about 8% light.

However, this light intensity varies from plant to plant, *e.g.*, more in **heliophytes** (sun loving plants) and less in **sciophytes** (shade loving plants). For a complete plant, rate of photosynthesis increases with increase in light intensity, except very high light intensity where 'Solarization'

phenomenon occurs, *i.e.*, **photo-oxidation** of different cellular components including chlorophyll occurs.

It also affects the opening and closing of stomata thereby affecting the gaseous exchange. The value of light saturation at which further increase is not accompanied by an increase in CO_2 uptake is called **light saturation point**.

(b) **Light quality :** Photosynthetic pigments absorb visible part of the radiation *i.e.*, $380m\mu$ to $760m\mu$. For example, chlorophyll absorbs blue and red light. Usually plants show high rate of photosynthesis in the blue and red light. Maximum photosynthesis has been observed in red light than in blue light. The green light has minimum effect. On the other hand, red algae shows maximum photosynthesis in green light and brown algae in blue light.

(c) **Duration of light :** Longer duration of light period favours photosynthesis. Generally, if the plants get 10 to 12*hrs* light per day it favours good photosynthesis. Plants can actively exhibit photosynthesis under continuous light without being damaged. Rate of photosynthesis is independent of duration of light.

(ii) **Temperature :** The optimum temperature for photosynthesis is 20 to $35^{\circ}C$. If the temperature is increased too high, the rate of photosynthesis is also reduced by time factor which is due to denaturation of enzymes involved in the process. Photosynthesis occurs in conifers at high altitudes at $35^{\circ}C$. Some algae in hot springs can undergo photosynthesis even at $75^{\circ}C$.

(iii) **Carbon dioxide :** Carbon dioxide present in the atmosphere is about 0.032% by volume and it is really a low concentration which acts as limiting factor in nature. If we increase the amount of CO_2 under laboratory conditions and if the light and temperature are not the limiting factors, the rate of photosynthesis increases. This increase is observed upto 1% of CO_2 concentration. At the same time very high concentration of CO_2 becomes toxic to plants and inhibit photosynthesis.

(iv) **Water :** Water is an essential raw material in photosynthesis. This rarely, acts as a limiting factor because less than 1% of the water absorbed by a plant is used in photosynthesis. However, lowering of photosynthesis has been observed if the plants are inadequately supplied with water.

(v) **Oxygen :** Excess of O_2 may become inhibitory for the process. Enhanced supply of O_2 increases the rate of respiration simultaneously decreasing the rate of photosynthesis by the common intermediate substances. The concentration for oxygen in the atmosphere is about 21% by volume and it seldom fluctuates. O_2 is not a limiting factor of photosynthesis. An increase in oxygen concentration decreases photosynthesis and the phenomenon is called **Warburg effect**. (Reported by German scientist **Warburg** (1920) in *Chlorella* algae).

This is due to competitive inhibition of RuBP-carboxylase by increased O_2 levels, *i.e.*, O_2 competes for active sites of RuBP-carboxylase enzyme with CO_2 . The explanation of this problem lies in the phenomenon of **photorespiration**. If the amount of oxygen in the atmosphere decreases then photosynthesis will increase in C_3 cycle and no change in C_4 cycle.

(vi) **Pollutants and Inhibitors :** The oxides of nitrogen and hydrocarbons present in smoke react to form peroxyacetyl nitrate (PAN) and ozone. PAN is known to inhibit Hill reaction. Diquat and Paraquat (Commonly called as Viologens) block the transfer of electrons between Q and PQ in PS. II. Other inhibitors of photosynthesis are monouron or CMU (Chlorophenyl dimethyl urea) diuron or DCMU (Dichlorophenyl dimethyl urea), bromocil and atrazine etc. which have the same mechanism of action as that of viologens.

At low light intensities potassium cyanide appears to have no inhibiting effect on photosynthesis.

(vii) **Minerals :** Presence of Mn^{++} and Cl^{-} is essential for smooth operation of light reactions (Photolysis of water/evolution of oxygen) Mg^{++} , Cu^{++} and Fe^{++} ions are important for synthesis of chlorophyll.

(2) Internal factors

(i) **Protoplasmic factors :** There is some unknown factor which affect the rate of photosynthesis.

These factors effect the dark reactions. The decline in the rate of photosynthesis at temperature above $30^{\circ}C$ or at strong light intensities in many plants suggests the enzymatic nature of this unknown factor.

(ii) Chlorophyll content : Chlorophyll is an essential internal factor for photosynthesis. The amount of CO_2 fixed by a gram of chlorophyll in an hour is called **photosynthetic number** or **assimilation number**. It is usually constant for a plant species but rarely it varies. The assimilation number of variegated variety of a species was found to be higher than the green leaved variety. **Emerson** (1929) also found a direct relationship between chlorophyll contents and photosynthetic rate in *Chlorella*.

(iii) Accumulation of products : The food is largely prepared in the mesophyll cells of the leaf from where it is translocated to storage regions. If the rate of translocation becomes slower than the rate of manufacture, the former declines due to accumulation of end products.

(iv) **Structure of leaves :** The amount of CO_2 that reaches the chloroplast depends on structural features of the leaves like the size, position and behaviour of the stomata and the amount of intercellular spaces. Some other characters like thickness of cuticle, epidermis, presence of epidermal hairs, amount of mesophyll tissue, etc., influence the intensity and quality of light reaching in the chloroplast.

5.10 SIGNIFICANCE OF PHOTOSYNTHESIS

(1) **Synthesis of food :** Body of all living organism and their survival is dependent upon foods (Carbohydrates, fats and proteins). They need energy for different life activities which is derived from foods. Green plants are unique in the character that they are able to synthesize foods for all living beings.

(2) **Purification of atmosphere :** By oxidation of carbohydrates, fats and proteins CO_2 is released along with energy. Coal, petrol and many other type of oils release CO_2 when they are used in different industries. CO_2 so released is added to the atmosphere and would have proved harmful to living organisms, but in photosynthesis green plants take in CO_2 and release O_2 thus purifying the air.

(3) **Conversion of radiant energy :** It changes radiant energy into chemical energy. All organisms use chemical energy for their activities.

(4) **Plant products :** A number of useful products are obtained from plants, they are synthesized by plants through photosynthesis. Important plant products are fire wood, timber, oils, gums resins, rubber, cork, tannins, alkaloids or drugs, fibres, etc.

(5) **Productivity :** Rising of photosynthetic capacity will reduce the effect of excess carbon dioxide generation. It will increase crop productivity for feeding the rising human and cattle population. Therefore, methods of photosynthetic enhancement are being studied.

5.11 EXPERIMENTS

Experiment : 1

Ganong's light screen : This simple experiment confirms that light is necessary for photosynthesis. It is a metallic structure with a specific cut out. When a destarched leaf is covered by the screen and placed in sunlight, photosynthesis occurs. The leaf is then taken out, treated with ethanol and then with iodine. Only the exposed parts of the leaf turn blue. The covered parts remain unstained as no starch could be formed there due to non-availiability of light.

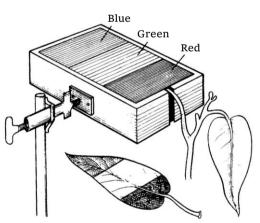
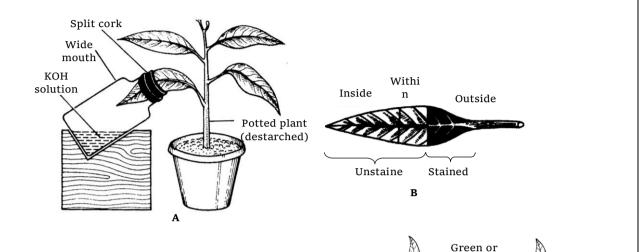



Fig : Ganong's light screen to study the effect of light on the photosynthesis

Experiment : 2

Moll's half leaf experiment : This experiment is designed to prove that CO_2 is necessary for photosynthesis. A plant is destarched by keeping in dark. A leaf of this plant is half inserted in a vial or bottle containing some *KOH* solution through a split cork. If the leaf is detached, its petiole should be dipped in a petridish containing water. The apparatus is kept in sunlight. After a few hours the leaf is taken out and put in ethanol for removing chlorophyll. It is, then treated with iodine. The part of the leaf lying outside the cork is stained blue confirming the occurrence of photosynthesis in that region.

The part of the leaf that lies inside the vial remains unstained because no photosynthesis occurs in that part due to non-availability of CO_2 . The part which lies in between the cork pieces also remains unstained because it neither gets light nor CO_2 .

Experiment : 3

To show that chlorophyll is necessary for photosynthesis : Select a potted Croton or Coleus plant having variegated leaves. Select a few young leaves and sketch the extent of the green as well as other colours of these leaves on a piece of paper. Place the pot in the sunlight for a few hours and then take starch test. Only chlorophyll containing cells give positive starch test.

Experiment : 4

To show that oxygen is evolved in photosynthesis by green plants : Water-weeds like *Hydrilla* or *Ceratophyllum* are best for this experiment. Take some water-weeds and cut the bases of the plant and tie them with a thread. Put them in a beaker containing water and invert a funnel over them as shown in the figure. Fill a test tube with water and invert it over the nozzle of the funnel so that no air-bubble gets in. Expose the whole apparatus to light.

It is seen that some bubbles come out continuously and are collected at the top of test tube by displacing the water.

On testing the gas it is found to be oxygen. This evolved oxygen is produced by the green aquatic plant in the process of photosynthesis. (A) (B) Fig : Experiment to show that chlorophyll is essential for photosynthesis (A) Variegated leaf before experiment. (B) Variegated leaf

hlorophyllou

s portion Non-green or

colourless

portion

Bluish

portion

Colourless

portion

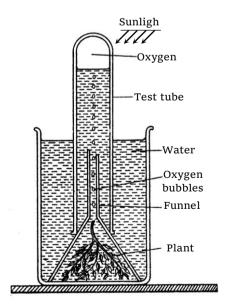


Fig : Liberation of oxygen in photosynthesis by an aquatic plant

Experiment : 5

To show that starch is formed in photosynthesis : Detach a destarched green leaf from a plant. Boil the leaf in water and then boil in 70% ethyl alcohol for 15 minutes (In a water bath). The leaf becomes colourless as chlorophyll gets dissolved in alcohol. Wash the leaf with water and test it with iodine solution. It gives negative starch test. Now keep the plant in light for 8 hours and again test it for starch. The leaf becomes bluish black or bluish-purple indicating the presence of starch.

Important Tips

- Photosynthetic Materials : 264 gm of CO₂ and 216 gm of water give rise to 108 gm of water, 192 gm of O₂ and 180 gm of glucose.
- Rubisco : Rubisco constitutes 16% of chloroplast protein. It is the most abundant protein on this planet.
- Actual reduction of CO₂ to carbohydrates is independent of light, i.e., occurs in presence or absence of light, but production of assimilatory powers (ATP and NADPH₂) needs light and is light dependent.
- *willmott's bubbler* is used to measure rate of O₂ evolution or rate of photosynthesis.
- T.W. Engelmann (1882) experimentally verified that in monochromatic lights, photosynthesis is maximum in red light.
- *Cyclic photophosphorylation is the most effective anaerobic phosphorylation mechanism.*
- NADP (Nicotinamide adenine dinucleotide phosphate) was earlier called as TPN (Triphosphopyridine nucleotide),
- ☞ In green plants the hydrogen acceptor is NADP, but in bacteria it is NAD.
- No Emerson effect is seen in bacteria.
- MAD is considered to be the "Universal hydrogen acceptor".
- Son-cyclic photophosphorylation or Z-scheme is inhibited by CMU and DCMU.
- As Calvin cycle takes in only one carbon (as CO₂) at a time, so it takes six turns of the cycle to produce a net gain of six carbons (i.e., hexose or glucose).
- Cytochromes : The terms was coined by Keilin (1925) though the biochemicals were discovered by Mac Munn (1866).
- Intensity of light can be measured by Luxmeter.
- ☞ Isolated chlorophyll 'a' in pure form emits red colour. It is called **fluoresence**.
- The <u>Phytochrome</u> is a proteinaceous pigment found in low concentrations in most plant organs. <u>Which</u> absorbs red (P_R or P_{660}) and far red (P_{fR} or P_{730}) light.
- Anthoxanthins and Anthocyanin pigments are also soluble in water and found in cell sap, due to which white, yellow and orange colour produce in flowers.

ASSIGNMENT

HISTORY OF PHOTOSYNTHESIS

Basi	c Level				
1.	The law of limiting factor for photosynthesis was enunciated by				
	(a) Blackmann	(b) Hill	(c) Ruben	(d) Kamen	
2.	The 'Z' scheme of phot	The 'Z' scheme of photosynthesis was proposed by			
	(a) Hill and Bendall	(b) Emerson	(c) Arnon	(d) Rabinowitch and	
Gov	indjee				
3.	Who revealed the chemical composition of chlorophyll carotene and xanthophyll			hophyll	
	(a) Govindjee	(b) Willstatter and Stoll	(c) Park and Biggins	(d) Mayer and French	
4.	Who proposed the 'law	of limiting factor' as the	'law of minimum'		
	(a) Blackmann	(b) Hill	(c) Liebig	(d) Priestley	
5۰	The law of limiting fact	tor in photosynthesis was	criticised by		
	(a) James and Harder	(b) Mayer and Anderson	(c) Willstatter and Stoll	(d) Hill and Scarisbrick	
6.	"The amount of <i>CO</i> ₂ ab proved by	The amount of CO_2 absorbed and O_2 released during photosynthesis are in equal volumes" was roved by			
	(a) Englemann	(b) Robert Mayer	(c) Priestley	(d) Bousingault	
7.	"Photosynthesis is the o	conversion of light energy	within a plant" was first	stated by	
	(a) Willstatter and Stoll	(b) Mayer and Anderson	(c) Benson and Calvin	(d) Robert Mayer	
8.	"Thylakoid" name was given by				
	(a) Arnon	(b) Park and Biggins	(c) Park and Fortan	(d) Manke	
9.	The researches on photo	osynthesis started			
	(a) In the 17 th century	(b) In the 18 th century			
	(c) In the 19 th century	(d) In the early 20 th century	iry		
10.	"Impure air is purified i	in the presence of light and	d green plants" was first	said by	
	(a) De Saussure	(b) Priestley	(c) Van Helmont	(d) Ingenhousz	
11.	Scientist who first disco	first discovered the role of light in photosynthesis			
	(a) Sachs	(b) Priestley	(c) Senebier	(d) Ingenhousz	
12.	The process of photoph	ocess of photophoshorylation was discovered by			
	(a) Calvin	(b) Arnon	(c) Priestley	(d) Warburg	
13.	The first experiment on	The first experiment on photosynthesis in flashing light were carried out by			
	(a) F.F. Blackmann	ckmann (b) Robert Emerson and Arnold		l Arnold	
	(c) Melvin Calvin		(d) Robert Hill		

	(a) Calvin	(b) Krebs	(c) Khorana	(d) Watson
5.	Who invented the enhancement			(d) Watson
5.	(a) Ruben	(b) Calvin	(c) Emerson	(d) Arnon
6.	Who proposed the CAN			(d) / milon
0.	(a) Benson and associat		(b)Rouhani and assoc	iates
	(c) Hatch and associate		(d)Arnon and associat	
7.	Action spectrum of pho			
/•	(a) Blackmann	(b) Van Mayer	(c) Engelmann	(d) Boussingault
8.	Hypothesis for oxygen	•	C C	(a) Doubbingaute
	(a) Hill	(b) Warburg	(c) Blackmann	(d) Mendel
).	The two pigment system	Č,		
	(a) Hill	(b) Blackmann	(c) Emerson	(d) Arnon
D .	C_4 -cycle was discovered		()	< <i>/</i>
	(a) Hatch and Slack	(b) Calvin	(c) Hill	(d) Arnon
1.	ATP formation in chlor			(a) Thirdi
	(a) Cholondny-Went m	-	(b) Chemi-osmotic the	eory of Mitchell
	(c) Munch's mass flow		(d) Relay pump theory	-
2.		-	donor in photosynthesis	, ,
	(a) Arnon	(b) Calvin	(c) Blakeslee	(d) Van Niel
3.	Melvin Calvin is associ	ated with		
	(a) EMP pathway		(b) Kreb's cycle	
	(c) Dark reactions of ph	notosynthesis	(d) Light reaction of p	bhotosynthesis
ŀ.	The term 'chromatopho	ore' was coined by		
	(a) Schmitz	(b) Comparethi	(c) W. Pfeffer	(d) Singer and Nicolsan
5.	This scientist suggested	I that there are two stag	es in photosynthesis, dark	and light
	(a) Melvin Calvin	(b) Martin Ruben	(c) F.F. Blackmann	(d) Stephen Hales
6.	Term 'Assimilatory pov	wers' was given by		
	(a) Emerson	(b) Lewis	(c) Arnon	(d) Ruben and Kamen
7.	Persons who received N	Nobel Prizes for their w	ork with green plants are	
	(a) Calvin and Waston	(b) Calvin and Borlan	g	
	(c) Beadle and Tatum	(d) Flemming and Wa	ksman	

Adv	ance Level			
28.	—	ological investigation w nd not from soil was carr		ision that plant makes its
	(a) Lamarck	(b) De Vries	(c) Von Helmont	(d) Darwin
29.	Most of the plants cont This pigment was name	ain a green colouring pig ed chlorophyll by	ment which is responsit	ble for photosynthesis.
	(a) Melvin Calvin	(b) Jean Senebier	(c) Julius Robert May	ver (d) Pelletier Caventou
30.	The scientist, who prov	ved that bacteria use $H_2 S$	gas and co_2 to synthesi	ze carbohydrate, is
	(a) Van Niel	(b) Ruben	(c) Jean Senebier	(d) Julius Robert Mayer
31.	The oxygen produced of by	during photosynthesis con	mes from photolysis of v	water was first time proved
	(a) Ruben and Kamen	(b) Robert Mayer	(c) Melvin Calvin	(d) Blackmann
	PHOTO	DSYNTHESIS APPA	RATUS AND GEN	ERAL
Basi	c Level			
32.	Chlorophyll molecules	has the structure like		
	(a) Monopyruvic	(b) Dipyruvic	(c) Tripyruvic	(d) Tetrapyruvic
33.	Chlorophyll 'e' is gene	rally present in		
	(a) Thallophytes	(b) Rhodophytes	(c) Mycophytes	(d) Xanthophytes
34.	A pigment which absor	rbs red and far-red light i	S	
	(a) Phytochrome	(b) Carotene	(c) Cytochrome	(d) Xanthophyll
35.	The value of Q_{10} for ph	otosynthesis is		
	(a) 4	(b) 6	(c) 7	(d) 2 to 3
36.	Which of the following	g is correct for photosyntl	nesis	
	(a) Biological oxidation	n process	(b) Photochemical cat	tabolic process
	(c) Photo-oxidative me	tabolism	(d) Biological photon	netabolism
37.	Which of the following	g is the non-polar part of	chlorophyll	
	(a) Phytol	(b) Porphyrin	(c) Pyrrol	(d) None of the above
38.	In prokaryotes, the pho	tosynthetic lamellae rem	ain in	
	(a) Group		(b) Isolated	
	(c) Associated with nuc	cleus	(d) None of the above	
39.	In normal chloroplast,	the percentage of chlorop	bhyll is	
	(a) 50%	(b) 75%	(c) 5–10%	(d) 95%
40.	Photosynthetic pigmen	ts in chloroplast are emb	edded in membrane of	
	(a) Thylakoids	(b) Photoglobin		
	(c) Matrix	(d) Envelope of chlorop	olast	

41.	Which of the followin	g equation can be more a	ppropriate for photosyntl	nesis		
	(a) $6CO_2 + 6H_2O \xrightarrow{\text{Light}} Chlorophyll}$	$C_6 H_{12} O_6 + 6 O_2$	(b) $6CO_2 + 12H_2O\frac{\text{Light}}{\text{Chlorophyle}}$	$C_6H_{12}O_6 + 6H_2O + 6O_2$		
	(c) $12CO_2 + 6H_2O \xrightarrow{\text{Light}}_{\text{Chlorophyll}}$	$2C_6H_{12}O_6 + 6O_2$	(d) None of these			
42.	In photosynthesis, plan	nts				
	(a) Absorb o_2 and rele	ease <i>CO</i> ₂	(b) Absorb co_2 and re-	elease o_2		
	(c) Absorb NH_3 and release N_2		(d) Absorb N_2 and rel	ease NH ₃		
43.	Which fractions of the of the higher plants	visible spectrum of solar	radiations are primarily	absorbed by carotenoids		
	(a) Violet and blue	(b) Blue and green	(c) Green and red	(d) Red and violet		
44.	Thylakoids, present in reaction. The organelle	chloroplast contains a ce e is	llular organelle in which	there occurs light		
	(a) Grana	(b) Stroma	(c) Lamellae	(d) Outer membrane		
45.	Which pigment is pres	sent universally in all gree	en plants			
	(a) Chlorophyll– <i>a</i>	(b) Chlorophyll– <i>b</i>	(c) Chlorophyll– <i>c</i>	(d) Chlorophyll– <i>m</i>		
46.	Which one of the follo	owing statements about cy	tements about cytochrome P_{450} is wrong			
	(a) It has an important	role in metabolism	(b) It contains iron			
	(c) It is a coloured cell	1				
	(d) It is an enzyme inv	volved in oxidation reaction	ons			
47.	P_{700} is a special form of	of which pigment				
	(a) Chlorophyll <i>b</i>	(b) Carotenes	(c) Chlorophyll <i>a</i>	(d) Phycobilins		
48.	Make suitable pair					
	(A) Emerson effect	(a) C_4 cycle				
	(B) Hill reaction	(b) Photolysis				
	(C) Calvin's cycle	(c) C_3 cycle				
		ycle (d) Photosystem–I an				
	(a) Aa, Bd, Cc, Dd		(c) <i>Ac</i> , <i>Bd</i> , <i>Ca</i> , <i>Db</i>	(d) <i>Ad</i> , <i>Bd</i> , <i>Cc</i> , <i>Da</i>		
49.	Compensation point re		(h) Desirations of abot	a arm the acid		
	(a) Little photosynthes	sis lesis equals to the rate of 1	(b) Beginning of phot	osynthesis		
	(d) None of these	lesis equais to the fate of f	respiration			
50.		urifiers of air due to proce	ess of			
50.	(a) Respiration	(b) Photosynthesis	(c) Transpiration	(d) Desiccation		
51.	Which one is Cu^{++} con	•	. / 1	× /		
	(a) Ferredoxin	(b) Plastocyanin	(c) Plastoquinone	(d) Cytochrome		

	$T_{1}^{h} = m = -t = -t = -1$	for the printer of 110	u south is	
52.	-	for the existance of life of		
	(a) Communication in		(b) Photosynthesis by plants	
	(c) Reproduction in pla		(d) Respiration in anim	
53.	_	r into hydrogen and oxyg		-
	(a) Nitrogen and phosp	-	(b) <i>Mn</i> and chloride io	ons
	(c) <i>Fe</i> and high turgor	-	(d) <i>Cu</i> and <i>Mo</i> atoms	
54.		tosynthesis is converted i		
	(a) All plants	(b) Majority of plants	(c) Algae only	(d) Bacteria only
55.	The core metal of chlor			
	(a) <i>Fe</i>	(b) <i>Mg</i>	(c) <i>Ni</i>	(d) <i>Cu</i>
56.	The ultraviolet radiatio	ons from the sun cause rea	actions that produce	
	(a) Carbon monoxide	(b) Carbon dioxide	(c) Ozone	(d) Fluorides
57.	CO_2 is formed in all of	the following except		
	(a) Burning of sugar		(b) Respiration in plan	its
	(c) Photosynthesis by p	olants	(d) On heating of limestone	
58.	Chloroplast fixes			
	(a) O_2	(b) <i>H</i> ₂	(c) CO_2	(d) N_2
59.	Which pigment is abse	nt in chloroplast		
	(a) Xanthophyll	(b) Anthocyanin	(c) Chlorophyll ' <i>a</i> '	(d) Carotene
60.	Two chief functions of	leaves are		
	(a) Photosynthesis and	respiration	(b) Photosynthesis and	l transpiration
	(c) Transpiration and r	espiration	(d) Respiration and dia	gestion
61.	Chlorophyll is present			
	(a) On the surface of cl	hloroplast	(b) In the stroma of ch	loroplast
	(c) In the grana of chlo	oroplast	(d) Dispersed through	out the chloroplast
62.	Quantasomes contain			
	(a) 200 chlorophyll mo		(b) 230 chlorophyll me	
	(c) 250 chlorophyll mo		(d) 300 chlorophyll me	olecules
63.	The gas absorbed durin	ng photosynthesis is		
	(a) Oxygen	(b) Nitrogen	(c) Ammonia	(d) Carbon dioxide
64.		ny is concerned with the s		
	(a) Ecology	(b) Psycology	(c) Plant physiology	(d) Embryology
65.	The process of photosy	nthesis takes place in		
	(a) Roots only		(b) Shoot only	
	(c) All the cells of plan	nt	(d) Chlorophyll contai	ning cells only
66.	Photosynthesis is a			
	(a) Exothermic process	s (b) Exergonic process	(c) Anabolic process	(d) Catabolic process

67.	During photosynthesi	s, the oxygen in glucose	comes from		
	(a) Water		(b) Carbon dioxide		
	(c) Both from CO_2 and	d water	(d) Oxygen in air		
68.	The brown colour of	some algae is due to the p	presence of pigments		
	(a) Chlorophyll	(b) Phycocyanin	(c) Carotene	(d) Fucoxanthin	
69.	All plastids have esse	ntially same structure be	cause		
	(a) They have to perfe	orm same function			
	(b) They are localized	l in aerial parts of plants			
	(c) All plastids store s	starch, lipid and proteins			
	(d) One type of plastic requirements	d can be differentiated in	to another type of plastid	depending on cell	
7 0 .	Compensation point i	S			
	(a) Where there is nei	ther photosynthesis nor r	respiration		
	(b) When rate of phot	osynthesis is equal to the	rate of respiration		
	(c) When entire food synthesized into photosynthesis remain utilized				
	(d) When there is enough water just to meet the requirements of plant				
71.	71. 85–90% of all photosynthesis of the world is carried out by				
	(a) Shrubs	(b) Herbs			
	(c) Oceanic algae	(d) Trees with large br	anches		
72.	The plant Cuscuta she	ows maximum photosynt	hesis in		
	(a) Red light	(b) Blue light			
	(c) Green light	(d) No photosynthesis	at all		
73.	The site of oxygen ev	olution and photosynthet	ic phosphorylation in chlored	proplast are	
	(a) Matrix		(b) Grana stacks		
	(c) Inner wall of chlor	-	(d) Surface of chlorop	blast	
74.	Blue-green algae show				
		(b) Chlorophyll ' <i>b</i> '	(c) Both (a) and (b)	(d) None of the above	
75.	Which one is the prec				
		ull (b) Bacterioviridin		(d) Chlorophyllide	
76.		ng pigment is soluble in v			
	(a) Chlorophyll	(b) Carotene	(c) Anthocyanin	(d) Xanthophyll	
77.	Grana refers to				
	-	ds in plastids of higher pl	lants		
	(b) A constant in quar	-			
	(c) Glycolysis of gluc		(d) Bye product of ph	otosynthesis	
78.	-	n green leaves can be iso	-		
	(a) Acetone	(b) Ethanol	(c) Alcohol	(d) Sugar solution	
1					

	The maximum qualuti	on of overgon is hy graate	at producers of organic m	otto	
7 9 .		on of oxygen is by greates			
	(a) Great land area	(b) Crops	(c) Phytoplankton of se	ea	(d) Forests
80.		all chlorophyll comprises		(1)	T 1 1
		(b) Cytochrome system	(c) Plastocyanin system	1 (d)	Flavoproteins only
81.	The emperical formula			(1)	
		(b) $C_{55}H_{70}O_6N_4Mg$		(d)	$C_{54}H_{70}O_6N_4Mg$
82.		g is the bye-product of ph	•		
	(a) Potential energy		(c) Carbon dioxide	(d)	Oxygen
83.	During photosynthesis				
	(a) Both co_2 and wate	er get oxidized (b)Bot	h co_2 and water get reduce	ced	
	(c) Water is reduced at	nd co_2 is oxidized (d)Car	bon dioxide gets reduced	and	water get oxidised
84.	Chlorophyll 'b' is char	racterised by the side grou	ıp of		
	(a) Methyl	(b) Formyl	(c) Phytol	(d)	Keto
85.	Magnesium is required	d to form the molecule of			
	(a) Plastocyanin	(b) Ferridoxin	(c) Chlorophyll	(d)	None above
86.	The molecular weight	of chlorophyll <i>a</i> is			
	(a) 891	(b) 907	(c) 893	(d)	889
87.	Maximum amount of o	organic matter that can be	produced on earth/year b	y pł	notosynthesis
	(a) 2×10^{10} tons	(b) 2×10^{9} tons	(c) 2×10^{11} tons	(d)	2×10^{19} tons
88.	If the contents of a ma	ss of living cells are caref	ully fractionated, which o	of th	e following fractions
	can be called 'alive'				
	(a) Chloroplast	(b) Cell wall			
	(c) Ribosome	(d) Endoplasmic reticul	um		
89.	Which enzyme is most	t abundantly found on ear	th		
	(a) Catalase	(b) Invertase	(c) Nitrogenase	(d)	Rubisco
90.	Photosynthesis will pr	oceed upto			
	(a) Limit of light	(b) Limit of wind	(c) Limit of moisture	(d)	None of the above
91.	Which of the followin	g may show photosynthes	is in moonlight		
	(a) Some thermal algae	e	(b) Some marine algae		
	(c) Some fresh water a	algae	(d) None of the above		
92.	Solarization of chlorop	phyll is			
	(a) Photo-oxidation	(b) Photoreduction	(c) Oxido-reduction	(d)	None of the above
93.	What is the quantum y	vield of photosynthesis			
	(a) 8%	(b) 12%	(c) 9%	(d)	33%
94.	Chlorophyll 'a' is four	nd in			
		ng photosynthetic forms	(b) All plants except fu	ngi	
	(c) All higher plants th				
	(d) All photosynthetic	prokaryotes and eukaryot	es		

0.5	How much percentage	of absorbed water is used	l in photosynthesis		
95.	(a) 1%	(b) 5%	(c) 10%	(d) 90%	
96.	· · /	itilised in the synthesis of			
90.	(a) 673 kcal	(b) 686 kcal	(c) 666 kcal	(d) 696 kcal	
07	$C_{40}H_{56}$ is the emperica	,	(c) 000 Keal	(d) 000 Keal	
97.			(a) Vanthanhull	(d) Anthogyanin	
	(a) Chlorophyll <i>b</i>	(b) Carotene	(c) Xanthophyll	(d) Anthocyanin	
98.	$C_{40}H_{56}O_2$ is an emperic				
	(a) Xanthophyll	(b) Carotene	(c) Anthocyanin	(d) Chlorophyll	
99.	Grana are absent in the	-	(-) 11	(4) T	
	(a) Shrubs	(b) Herbs	(c) Algae	(d) Trees	
100.	Chlorophyll consists of				
		nd tail of four pyrrole ring			
		arbons and tail of four pyr	-		
		role rings and tail of linke	-		
		role rings and an alcoholic	e phytol tall		
101.		compensation point are	(a) Shada planta	(d) Maganhytag	
	(a) C_3 plants	(b) Sun plants	(c) Shade plants	(d) Mesophytes	
102.	Chlorophyll is	1 /			
	(a) Soluble in organic		(b) Soluble in water		
	-	ganic solvents and water	(d) None of the above		
103.		is in photosynthesis is to			
		er energy to chlorophyll	stom		
		the electron transport sys		alastrong	
	(c) Fix carbon dioxide		(d) Carry hydrogen or	electrons	
104.	Starch containing plas (a) Amyloplasts	(b) Leucoplasts	(c) Chloroplasts	(d) Chromoplasts	
105	Intensity of light can b	-	(c) Chioropiasis	(u) Chromophasis	
105.	(a) Lux meter	(b) Wilmott's bubbler	(c) Ganong's potomet	er (d) Farmer's potometer	
106	Importance of photosy		(c) Guilong 5 potomet	er (u) i unner 5 potomotor	
100.	(a) Synthesis of food		(b) Purification of atm	osphere	
	(c) Provided vast reso	urces of energy	(b) Purification of atmosphere(d) All of the above		
107.		lucose molecule, the number			
,		e and 20 ATP for c_4 cycle	-		
	· · ·	le and 30 ATP for c_4 cycl			
		le and 35 ATP for c_4 cycl			
		-			
	(u) 24 ATP 10F C_3 Cyc	le and 36 ATP for c_4 cycl	IC		

108.	Chlorophyll <i>a</i> is not for	ound in		
	(a) Algae	(b)Photosynthetic bacte	eria(c)Both (a) and (b)	(d) Bryophytes
109.	The approximate dime	ension of chlorophyll porpl	hyrin ring is	
	(a) 1 Å square	(b) 5 Å square	(c) 10 Å square	(d) 15 Å square
110.	During the course of p	hotosynthesis		
	(a) ATP is formed			
	(b) ATP is not formed			
	(c) Oxygen evolved co	omes from carbon dioxide		
	(d) Water is required a	s medium but it does not t	ake part in photosynthet	ic reactions
111.	In angiosperms, synthe	esis of chlorophyll occurs	in presence of	
	(a) Phytochrome	(b) Light	(c) Cytochrome	(d) None of the above
112.	In photosynthesis, ener	rgy for passage of electron	is the one that is absorb	bed by
	(a) Chlorophyll	(b) RuBP	(c) Water	(d) ATP
113.	Reaction centre of pho	otosynthesis is formed of		
	(a) Chl <i>b</i>	(b) Chl a	(c) Carotene	(d) Xanthophyll
114.	Carotenes protect plan	ts from		
	(a) Photooxidation	(b) Desiccation	(c) Photorespiration	(d) Photosynthesis
115.	Photolithotrophs (phot	coautotrophs) obtain energ	y from	
	(a) Radiations and carl	bon from inorganic compo	ounds	
	(b)Radiations and carb	oon from organic compoun	ıds	
	(c) Organic compound		(d) Inorganic compour	nds
116.	RUBISCO content of	-		
	(a) 20%	(b) 5%	(c) 11%	(d) 16%
117.	-	oduct of photosynthesis is		
	(a) Glucose	(b) Fructose 1,6 diphosp	hate	
	(c) Ribulose phosphate	e (d) Starch		
118.	Photosynthesis is			
	(a) Oxidative, exergon		(b)Reductive, endergo	
	(c) Reductive, exergon	,	(d) Reductive, endergo	
119.		y weight of photosynthate		
		(b) 17 million tonnes		(d) 1700 million tonnes
120.		bcess which has supported	-	(d) Despiration
	(a) N_2 -fixation	(b) Photosynthesis	(c) Protein synthesis	(d) Respiration
121.	Which group is not all		(h) Opmopie 1 1'00	:
	(a) Enzyme and protein	•	(b) Osmosis and diffus	
	(c) Photosynthesis and	respiration	(d) Growth and moven	nent
1				

122.	Which one of the follow	wing statements is correct	for chlorophyll a		
	(a) Chlorophyll <i>a</i> is found more than chlorophyll <i>b</i> in leaves of most plants(b) Chlorophyll <i>a</i> and <i>b</i> are found in equal proportion in leaves of most plants				
			-		
	(c) Chlorophyll <i>a</i> is fou	and less than chlorophyll b	•		
	(d) Chlorophyll b is fou	and ten fold more than chlored	orophyll a in leaves of n	nost plants	
123.	The main difference be	tween the molecules of ch	lorophyll <i>a</i> and <i>b</i> is		
	(a) Chlorophyll <i>a</i> has a	n aldehyde group while ch	lorophyll <i>b</i> has a methy	l group	
	(b) Chlorophyll <i>a</i> has a	methyl group while chlore	ophyll <i>b</i> has an aldehyde	e group	
	(c) The phytol tail is ab	sent in chlorophyll a and i	is present in chlorophyll	b	
	(d) The porphyrin group	p in chlorophyll <i>b</i> has no t	binding site but a binding	g site is present in	
	chlorophyll a				
124.	Quantasomes are found	lin			
	(a) Surface or cristae	_	(b) Surface of plasma n		
	(c) Surface of nuclear n		(d) Surface of thylakoid		
125.	•	reaction complexes, one f	followed by the other. I	he second reaction	
complex (a) Traps light energy (b)			(b) Synthesis starch		
	(c) Functions in the pre	sence of light	(d) Fixes carbon dioxide		
126. Chlorophyll <i>b</i> is					
1201	(a) $C_{54}H_{70}O_6N_4M_g$	(b) $C_{rr}H_{ro}O_{r}N_{r}M_{r}$	(c) $C_{55}H_{72}O_5N_4Mg$	(d) $C_{47}H_{77}O_{7}N_{4}M_{7}$	
127	Maximum solar energy		(-) - 55 12 - 51 - 41 - 8	(
/*	(a) Planting trees		(b) Cultivating crops		
	(c) Growing algae in ta	nks	(d) Growing grasses		
128.	• •	re increased, the rate of ph			
	(a) Increases	(b) Decreases	(c) Remains unchanged	l (d) None of the above	
129.	Translocation of carbol	ydrate nutrients usually o	ccurs in the form of		
	(a) Glucose	(b) Maltose	(c) Starch	(d) Sucrose	
130.	Which of the following	trees will die first			
	(a) Deciduous	(b) Pruned	(c) Hollowed trunk	(d) Girdled	
131.	The size of chlorophyll	molecule is			
	(a) Head 15×15 Å, tail 25Å	(b) Head 20×20 Å, tail 25Å	(c) Head 15×15 Å, tail 20Å	(d) Head 10×12 Å, tail 15Å	
132.	Maximum starch is man	nufactured by			
	(a) Spongy parenchyma	a (b) Palisade parenchyma	(c) Guard cells	(d) Vascular tissue	
133.	Chlorophyll <i>b</i> differs fr	om chlorophyll <i>a</i> in that it	t does not		
	(a) Become oxidised	(b) Become reduced			
	(c) Become excited	(d) Produce excited electric	rons		
134.		ohydrate as glucose but do	-	ucose	
	(a) Is unstable		(b) Attracts herbivores		
	(c) Will change nucleic	acids	(d) Alters osmotic balan	nce	

135.	Rate of photosynthesis	s is		
	(a) Equal to that of res	spiration	(b) Less than that of re	espiration
	(c) Depends upon chlo	prophyll content	(d) Faster than that of	respiration
136.	In aquaria, green plant	ts are grown for		
	(a) CO_2	(b) Fish food	(c) Oxygen	(d) Both (a) and (b)
137.	During daylight hours oxygen produced to the	× •	s is higher than that of r	respiration, and the ratio of
	(a) 1 : 1	(b) 10 : 1	(c) 50 : 1	(d) 5 :1
138.	For each molecule of g	glucose formed in plants, t	he number of molecule	of ATP and <i>NADPH</i> ₂
	required are respective	ely		
	(a) 12 and 18	(b) 18 and 12	(c) 15 and 10	(d) 33 and 22
139.	If the rate of transloca	tion of food is slow, what	will be the effect on pho	otosynthesis
	(a) It will increase	(b) It will remain same	(c) Becomes double	(d) It will decrease
140.	Chemosynthesis and p	photosynthesis are alike in	that both	
	(a) Are associated with heterotroph		(b)Require sunlight as an energy source	
(c) Methods of autotrophic nutrition (d)Occur in the		(d)Occur in tracheoph	1 tracheophytes	
Adve	ance Level			
141.	Which of the followin	g is black-yellow pigment	of carrot roots	
	(a) Alpha-carotene	(b) Beta-carotene	(c) Violoxanthin	(d) Fucoxanthin
142.	Which one of the follo	owing elements is required	for photosynthetic oxy	gen evolution
	(a) Copper	(b) Iron	(c) Manganese	(d) Zinc
143.	In chlorophyll 'a' third	d carbon of second pyroll	ring is attached with	
	(a) Carboxyl group	(b) Magnesium	(c) Methyl group	(d) Aldehyde group
144.	The use of solar cooke	er by man is copying of wh	nich one by the followin	g processes
	(a) Photosynthesis	(b) Respiration	(c) Guttation	(d) Photorespiration
145.	How much energy in t	-	is consumed in the photo	osynthetic production of a
	mole of hexose	-	•	
	(a) 36 ATP eq.	(b) 38 ATP eq.	(c) 40 ATP eq.	(d) 54 ATP eq.
146.	Under conditions of co	onstant illumination, the co	ompensation period for	a whole aquarium would
	be of infinite length w	hen		
	de di minite lengui w	nen		
	Ũ	imals equals the biomass of	of plants	
	(a) The biomass of ani		-	etic exchanges of the
	(a) The biomass of ani	imals equals the biomass o	-	etic exchanges of the
	(a) The biomass of ani(b) The respiratory exc plants	imals equals the biomass o	equal to the photosynth	-
	(a) The biomass of ani(b) The respiratory exc plants(c) The oxygen intake	imals equals the biomass of the animals are	equal to the photosynth xygen output of photosy	ynthesis

	(a) A simple sugar	be the first substance that	(a) $Callulass$	(d) Eat
_	(a) A simple sugar	(b) Starch	(c) Cellulose	(d) Fat
148.	water it is called		important pigment conce	
	(a) β carotene	(b) Chlorophyll ' <i>b</i> '	(c) Cytochrome ' <i>c</i> '	(d) Phycocyanin
		LIGHT R	EACTION	
Basi	c Level			
149.	In the electron transpo	ort system, the reduced co	penzymes are regenerated	l by
	(a) Loss of hydrogen	(b) Loss of electron	(c) Addition of oxyge	en (d) None of the above
150.	The light energy passe	es in the form of		
	(a) Photo ions	(b) Photons	(c) Photosomes	(d) All of the above
151.	Which of the followin	g wavelength occur in re	d part of the spectrum	
	(a) 470 <i>nm</i>	(b) 390 <i>nm</i>	(c) 680 <i>nm</i>	(d) 830 <i>nm</i>
152.	Unidirectional flow of		horylation takes place in	
	(a) Cyclic	(b) Non-cyclic	(c) Pseudocyclic	(d) All of the above
153. In light reaction of photosynthesis, chlorophyll is subjected to				
	(a) Destruction		(b) Permanent reducti	on
	(c) Oxidation and redu	uction	(d) Neutralization	
154.	Which type of phosph	orylation takes place in p	ohotosynthesis	
	(a) Cyclic	(b) Non-cyclic	(c) Both (a) and (b)	(d) None of the above
155.	Ferredoxin is a compo			
	(a) Hill reaction	•		(d) Photosystem–II
156.			d electron so released pas	ses first into
	(a) Plastoquinone	(b) Plastocyanin	_	
	(c) Ferredoxin	(d) Ferredoxin reducing	g substrate	
157.	In photosynthesis ligh			1 1 1 .
	(a) Converting <i>ATP</i> in		(b) Changing co_2 into	o carbohydrate
	(c) Converting ADP in		(d) All of the above	
158.	Assimilatory power re			
	(a) Generation of ATE	and NADPH	(b) Reduction of co_2	
	(c) Splitting of water		(d) Disintegration of p	•
159.	In which of the follow	ing the rate of photosynt	hesis is decreased and is	known as red drop
	(a) Blue light		(b) Green light	
	(c) Red light more than	n 680 <i>nm</i>	(d) Red light less than	n 680 <i>nm</i>
160.	Pigment system-I rece	vives radiant energy and i	eleases electron	
	(a) Chlorophyll – 683	(b) Chlorophyll – 673	(c) Chlorophyll – 695	(d) $P - 700$

161.	ATP formation in phot	osynthesis is known as			
	(a) Phosphorylation		(b) Photophosphorylation		
	(c) Oxidative phosphor	rylation	(d) None of	the above	
162.	The process in which w	water is split during photo	synthesis and	is essential	for photosynthesis
	(a) Photolysis	(b) Hydrolysis	(c) Plasmoly	vsis	(d) Haemolysis
163.	The most effective way	velength of visible light in	photosynthes	is is in the	region of
	(a) Violet	(b) Green	(c) Yellow		(d) Red
164.	Photosystem-II occurs	in			
	(a) Stroma		(b) Grana		
	(c) On surface of mitod	chondria	(d) On cytoc	hrome	
165.	Energy transfer in photo	tosynthesis occurs as			
	(a) Phycoerythrin \rightarrow P	hycocyanin \rightarrow Carotenoid	$d \rightarrow Chloroph$	yll a	
	(b) Chlorophyll $b \rightarrow Ca$	arotenoid \rightarrow Phycoerythrin	\rightarrow Chlorophy	11 <i>a</i>	
	(c) Phycocyanin \rightarrow Ph	ycoerythrin \rightarrow Carotenoid	$d \rightarrow Chloroph$	yll a	
	(d) Chlorophyll \rightarrow Car	otenoid \rightarrow Phycocyanin –	→ Chlorophyll	а	
166.	Hill reaction occurs in				
	(a) High altitude plants	s (b) Total darkness			
	(c) Absence of water	(d) Presence of ferredox	in		
167.	Emerson effect explain	the phenomenon of			
	(a) Transpiration	(b) Absorption of water	by roots		
	(c) Photosynthesis	· · · ·			
168.	o_2 evolution is directly	associated with			
	(a) PS I	(b) PS II	(c) Phytochr		(d) Phycocyanin
169.	In photosynthesis, ener	rgy from light reaction to		s transferre	ed in the form of
	(a) ADP	(b) ATP	(c) RuDP		(d) Chlorophyll
170.	What percentage of usa potential energy	able radiant energy entering	ng a reaction s	ite of photo	osynthesis is converted to
	(a) 10%	(b) 20%	(c) 35%		(d) 42%
171.		the chlorophyll is at the w			(u) + 2 / 0
1/1.	(a) 400 <i>nm</i>	(b) 500 <i>nm</i>	(c) 600 <i>nm</i>		(d) 660 <i>nm</i>
172.		g conditions are favourabl		otophosph	
_/	(a) Anaerobic conditio	-	(b) Aerobic		•
	(c) Aerobic and low lig			-	light intensity
173.	-	chain of photosynthetic p			8
, 0	(a) In the stroma of the			d to the thy	lakoid membranes
		membrane of the chlorop		•	
174.		ve radiation (PAR) repres			
				c	

175.	The wavelength of light	nt most absorbed during pl	hotosynthesis is	
	(a) 440 <i>nm</i>	(b) 550 <i>nm</i>	(c) 660 <i>nm</i>	(d) 700 nm
176.	Photosynthetic unit is			
	(a) Glyoxysome	(b) Spherosome	(c) Microsome	(d) Quantasome
177.	Chlorophyll 'a' and 'b	' shows maximum absorp	tion in	
	(a) Blue region	(b) Red region		
	(c) Blue and red region	ns(d) Yellow and violet reg	gions	
178.	Where the primary pho	otochemical reaction occur	rs in chloroplast	
	(a) Stroma	(b) Periplast cavity	(c) Quantasome	(d) Inner membrane
179.		b visible light in the region	on of following waveleng	yths
	(a) 400 <i>nm</i> to 500 <i>nm</i> o	only	(b) 600 <i>nm</i> to 800 <i>nm</i> o	only
	(c) 400 <i>nm</i> to 500 <i>nm</i> a	and 600 nm to 700 nm	(d) 300 <i>nm</i> to 400 <i>nm</i> o	only
180.	The process in which e	excess energy is lost by lig		
	(a) Fluorescence	(b) Photophosphorylatio	•	(d) Photooxidation
181.		ments viz, erythrolable, c	-	
		(b) Red, Blue, Green	(c) Red, Green, Blue	(d) Blue, Green, Red
182.	Which process is relate			
	(a) Phosphorylation	(b) Translation	(c) Transcription	(d) None of these
183.	The full expansion of N			
	(a) Nicotinamide adeni		(b) Nicotinamide aden	osine diphosphate
		ine dinucleotide phosphate		
		osine dinucleotide phosph	ate	
184.	Photolysis of water tak	-		
	(a) Calvin cycle		(c) Light phase	(d) Dark phase
185.		osynthesis, light is directly	-	
	(a) For electron exitation		(b) For reduction of <i>co</i>	-
	(c) For regulating phot	-	(d) For cyclic photopho	osphorylation
186.		ated in photosynthesis in g	_	
	(a) Photosynthetic enzy	yme	(b)Carbohydrate preser	nt in leaf
	(c) Water		(d)Carbon dioxide	
187.	NADP is converted int	$0 \text{ NADPH}_2 \text{ in}$		
	(a) Photosystem–I		(b) Non-cyclic photoph	nosphorylation
	(c) Calvin cycle		(d) Photosystem–II	
188.	-	ght energy into chemical e	nergy, which of the follo	owing reaction would
	take place			
	(a) $ADP + IP = AIP$	(b) $ATP - IP = ADP$	(c) $AMP + IP = ADP$	$(\mathbf{u}) \mathbf{U}\mathbf{D}\mathbf{P} + \mathbf{I}\mathbf{P} = \mathbf{U}\mathbf{I}\mathbf{P}$
1				

189. The specific function of light energy in the process of photosynthesis is to(a) Activate chlorophyll(b) Split water(c) Reduce carbon dioxide(d) Synthesize glucose190. Wavelength of green light is(d) Synthesize glucose(a) 400 - 450 mµ(b) 500 - 550 mµ(c) 660 - 720 mµ(d) 720 - 800 m/(b) NADP and ATP(c) NADH2 and O2(d) NADP1 at GP(a) ATP(b) NADP and ATP(c) NADH2 is generated through(a) Glycolysis(b) Photosystem-I(c) Photophosphorylation differs from oxidative phosphorylation in(a) It takes place in light(b)ATP is formed(c) Cytochrome participates(d) All of the above194. Quantasomes are present in(a) Pigment system-I(b) Pigment system-II(c) Cytochrome participates(d) All of the above195. Which of the chlorophyll type ejects the electron during photophosphorylation(a) Circen(b) Red(c) Blue(d) Violet197. Fluorescent chlorophyll 'a' occurs in(a) PS - I(b) PS - II(c) Both (a) and (b)(d) Stroma198. The decrease in yield of photosynthesis in the presence of red light becomes increased to when it is supplemented with blue light. This phenomenon is termed as(a) Blackmann's effect(b) FS - II(c) PS - II → PS - II(c) PS - II ≠ QS - II ≠					
(c) Reduce carbon dioxide (d) Synthesize glucose 190. Wavelength of green light is (a) 400 - 450 mµ (b) 500 - 550 mµ (c) 660 - 720 mµ (d) 720 - 800 m/ 191. In cyclic photophosphorylation which one of the following is formed (a) ATP (b) NADP and ATP (c) NADH ₂ and O ₂ (d) NADPH ₂ ATP and O ₂ 192. NADPH ₂ is generated through (a) Glycolysis (b) Photosystem–I (c) Photosystem–II (d) Anaerobic respiration 193. Photophosphorylation differs from oxidative phosphorylation in (a) It takes place in light (b)ATP is formed (c) Cytochrome participates (d) All of the above 194. Quantasomes are present in (a) Pigment system–I (b) Pigment system–II (c) Both (a) and (b) (d) None of the <i>z</i> 195. Which of the chlorophyll type ejects the electron during photophosphorylation (a) Chlorophyll 'b' (b) Chlorophyll 'a' (c) Chlorophyll 'a' and 'b' (d)Xanthoph 196. Which colour of spectrum is least effective in photosynthesis (a) Green (b) Red (c) Blue (d) Violet 197. Fluorescent chlorophyll 'a' occurs in (a) PS – I (b) PS – II (c) Both (a) and (b) (d) Stroma 198. The decrease in yield of photosynthesis in the presence of red light becomes increased to when it is supplemented with blue light. This phenomenon is termed as (a) Blackmann's effect (b) Emerson's effect (c) Englemann's effect (d) Hill's effect 199. When the two pigment systems absorb light drive the flow of electrons against an electrocher gradient from (a) -1.1volt to +0.8volt (b) +0.8volt to -0.3volt (c) +2.0volt to +5.2volt (d) -0.5volt to +25volt 200. The two light reactions when absorb light drive the flow of standard conditions to mole of glucose costing 686 kcal (a) 1986 kcal (b) 1968 to 3456 kcal (c) 2620 to 3456 kcal (d) 1980 kcal 202. Which of the following does not participate when the light reaction synthesizes only ATP of performs the cyclic flow of electrons	189.	-		s of photosynthesis is to	
190.Wavelength of green light is (a) 400 - 450 mµ(b) 500 - 550 mµ(c) 660 - 720 mµ(d) 720 - 800 mµ191.In cyclic photophosphorylation which one of the following is formed (a) ATP (c) <i>NADH</i> 2 and <i>O</i> 2 (d) <i>NADPH</i> 2 ATP and <i>O</i> 2192.192. <i>NADPH</i> 2 is generated through (a) Glycolysis (c) Photophosphorylation differs from oxidative phosphorylation in (a) It takes place in light (c) Cytochrome participates (d) All of the above193.Photophosphorylation differs from oxidative phosphorylation in (a) It takes place in light (c) Cytochrome participates (d) All of the above194.Quantasomes are present in (a) Pigment system-1(c) Both (a) and (b) (d) None of the above195.Which of the chlorophyll type ejects the electron during photophosphorylation (a) Chlorophyll 'b' (b) Chlorophyll 'a' (c) Chlorophyll 'a' and 'b' (d)Xanthoph196.Which colour of spectrum is least effective in photosynthesis (a) Green (b) Red (c) Blue (d) Violet197.Fluorescent chlorophyll 'a' occurs in (a) PS - 1 (b) PS - Π (c) Both (a) and (b) (d) Hill's effect198.The decrease in yield of photosynthesis in the presence of red light becomes increased to when it is supplemented with blue light, This phenomenon is termed as (a) Blackmann's effect (b) Emerson's effect (c) Englemann's effect (d) Hill's effect199.When the two pigment systems absorb light, in what direction does energy flow between the (a) PS-I → PS-I (b) PS-II → PS-I (c) None of the absorb light reactions when absorb light drive the flow of electrons against an electrocher gradient from (a) -1.1vot to+0.8vot (b) +0.8vot to-0.3vot (c) +2.0vot to+5.2vot (d				-	
(a) $400 - 450 \ m\mu$ (b) $500 - 550 \ m\mu$ (c) $660 - 720 \ m\mu$ (d) $720 - 800 \ m\mu$ 191. In cyclic photophosphorylation which one of the following is formed (a) ATP (b) NADP and ATP (c) <i>NADH</i> ₂ and <i>O</i> ₂ (d) <i>NADPH</i> ₂ <i>ATP</i> and <i>O</i> ₂ 192. <i>NADPH</i> ₂ is generated through (a) Glycolysis (b) Photosystem–I (c) Photosystem–II (d) Anaerobic respiration 193. Photophosphorylation differs from oxidative phosphorylation in (a) It takes place in light (b) ATP is formed (c) Cytochrome participates (d) All of the above 194. Quantasomes are present in (a) Pigment system–I (b) Pigment system–II (c) Both (a) and (b) (d) None of the <i>a</i> 195. Which of the chlorophyll type ejects the electron during photophosphorylation (a) Chlorophyll 'b' (b) Chlorophyll 'a' (c) Chlorophyll 'a' and 'b' (d)Xanthoph 196. Which colour of spectrum is least effective in photosynthesis (a) Green (b) Red (c) Blue (d) Violet 197. Fluorescent chlorophyll 'a' occurs in (a) PS – I (b) PS – II (c) Both (a) and (b) (d) Stroma 198. The decrease in yield of photosynthesis in the presence of red light becomes increased to when it is supplemented with blue light. This phenomenon is termed as (a) Blackmann's effect (b) Emerson's effect (c) Englemann's effect (d) Hill's effect 199. When the two pigment systems absorb light drive the flow of electrons against an electrocher gradient from (a) -1.1 whot to +0.8 wher (b) +0.8 whot to -0.3 wh (c) +2.0 whot to +5.2 wh (d) -0.5 whot to +25.7 201. The energy of a 'mole' of light quarta is 72 kcal in blue region at 400 mm and 41 kcal in re region at 700 nm. How much light energy would be required under standard conditions to mole of glucose costing 686 kcal (a) 1986 kcal (b) 1968 to 3456 kcal (c) 2620 to 3456 kcal (d) 1980 kcal 202. Which of the following does not participate when the light reaction synthesizes only ATP of performs the cyclic flow of electrons		(c) Reduce carbon diox	kide	(d) Synthesize glucose	
191.In cyclic photophosphorylation which one of the following is formed (a) ATP (b) NADP and ATP (c) NADH2 and O2 (d) NADPH2 ATP and O2192.NADPH2 is generated through (a) Glycolysis (b) Photosystem—I (c) Photosystem—II (d) Anaerobic respiration193.Photophosphorylation differs from oxidative phosphorylation in (a) It takes place in light (b) ATP is formed (c) Cytochrome participates (d) All of the above194.Quantasomes are present in (a) Pigment system—II (b) Pigment system—II (c) Both (a) and (b) (d) None of the a 195.195.Which of the chlorophyll type ejects the electron during photophosphorylation (a) Chlorophyll 'b' (b) Chlorophyll 'a' (c) Chlorophyll 'a' and 'b' (d)Xanthoph 196.196.Which colour of spectrum is least effective in photosynthesis (a) Green (b) Red (c) Blue (c) Blue (d) Violet197.Fluorescent chlorophyll 'a' occurs in (a) PS − I (b) PS − II (c) Both (a) and (b) (d) Stroma (d) Stroma198.The decrease in yield of photosynthesis in the presence of red light becomes increased to when it is supplemented with blue light. This phenomenon is termed as (a) Blackmann's effect (b) Emerson's effect (c) Englemann's effect (d) Hill's effect199.When the two pigment systems absorb light drive the flow of electrons against an electrocher gradient from (a) −1.1vøt to +0.8vøt(b) +0.8vøt to -0.3vøt (c) +2.0vøt to +5.2vøt (d) -0.5vøt to +25.7vøt (e) -0.5vøt to +25.7vøt (f) -0.5vøt to +25.7vøt200.The energy of a "mole" of light quanta is 72 kcal in blue region at 400 nm and 41 kcal in re region at 700 nm. How much light energy would be required under standard conditions to to mole of glucos	190.	Wavelength of green li	ght is		
(a) ATP (b) NADP and ATP (c) <i>NADH</i> ₂ and <i>O</i> ₂ (d) <i>NADPH</i> ₂ <i>ATP</i> and <i>O</i> ₂ 192. <i>NADPH</i> ₂ is generated through (a) Glycolysis (b) Photosystem–I (c) Photosystem–II (d) Anaerobic respiration 193. Photophosphorylation differs from oxidative phosphorylation in (a) It takes place in light (b) ATP is formed (c) Cytochrome participates (d) All of the above 194. Quantasomes are present in (a) Pigment system–I (b) Pigment system–II (c) Both (a) and (b) (d) None of the si 195. Which of the chlorophyll type ejects the electron during photophosphorylation (a) Chlorophyll 'b' (b) Chlorophyll 'a' (c) Chlorophyll 'a' and 'b' (d)Xanthoph 196. Which colour of spectrum is least effective in photosynthesis (a) Green (b) Red (c) Blue (d) Violet 197. Fluorescent chlorophyll 'a' occurs in (a) PS – I (b) PS – II (c) Both (a) and (b) (d) Stroma 198. The decrease in yield of photosynthesis in the presence of red light becomes increased to when it is supplemented with blue light. This phenomenon is termed as (a) Blackmann's effect (b) Emerson's effect (c) Englemann's effect (d) Hill's effect 199. When the two pigment systems absorb light, in what direction does energy flow between th (a) PS-I → PS-II (b) PS-II → PS-I (c) PS-II ≠ PS-I (d) None of the size and the standard conditions to a mode of plate to the standard conditions to a mode of plate to the standard conditions to a mode of glucose costing 686 <i>kcal</i> (a) 1986 <i>kcal</i> (b) 1968 to 3456 <i>kcal</i> (c) 2620 to 3456 <i>kcal</i> (d) 1980 <i>kcal</i> 2002. Which of the following does not participate when the light reaction synthesizes only ATP of performs the cyclic flow of electrons		(a) $400 - 450 \ m\mu$	(b) $500 - 550 \ m\mu$	(c) $660 - 720 m\mu$	(d) $720 - 800 \ m\mu$
 (c) NADH₂ and O₂ (d) NADPH₂ ATP and O₂ 192. NADPH₂ is generated through (a) Glycolysis (b) Photosystem—I (c) Photosystem—II (d) Anaerobic respiration 193. Photophosphorylation differs from oxidative phosphorylation in (a) It takes place in light (b) ATP is formed (c) Cytochrome participates (d) All of the above 194. Quantasomes are present in (a) Pigment system—I (b) Pigment system—II (c) Both (a) and (b) (d) None of the sistem of the chlorophyll type ejects the electron during photophosphorylation (a) Chlorophyll 'b' (b) Chlorophyll 'a' (c) Chlorophyll 'a' and 'b' (d)Xanthoph 196. Which of the chlorophyll ray ejects the electron during photophosphorylation (a) Chorophyll 'b' (b) Chlorophyll 'a' (c) Chlorophyll 'a' and 'b' (d)Xanthoph 196. Which colour of spectrum is least effective in photosynthesis (a) Green (b) PS – II (c) Both (a) and (b) (d) Violet 197. Fluorescent chlorophyll 'a' occurs in (a) PS – I (b) PS – II (c) Both (a) and (b) (d) Stroma 198. The decrease in yield of photosynthesis in the presence of red light becomes increased to when it is supplemented with blue light. This phenomenon is termed as (a) Blackmann's effect (b) Emerson's effect (c) PS-II ≠ PS-I (d) None of the factor and the above of the standard conditions to a mode of glucose costing 686 kcal (a) 1-1.1vot to+0.8voh (b) +0.8voh to-0.3voh (c) +2.0voh to+5.2voh (d) -0.5voh to+25.2voh 201. The energy of a 'mole' of light quanta is 72 kcal in blue	191.	In cyclic photophospho	orylation which one of the	following is formed	
192.NADPH2 is generated through (a) Glycolysis (b) Photosystem–I (c) Photosystem–II (d) Anaerobic respiration193.Photophosphorylation differs from oxidative phosphorylation in (a) It takes place in light (b) ATP is formed (c) Cytochrome participates(d) All of the above194.Quantasomes are present in (a) Pigment system–I(b) Pigment system–II (c) Both (a) and (b) (d) None of the r195.Which of the chlorophyll type ejects the electron during photophosphorylation (a) Chlorophyll 'b' (b) Chlorophyll 'a' (c) Chlorophyll 'a' and 'b' (d)Xanthoph196.Which colour of spectrum is least effective in photosynthesis (a) Green (b) Red (c) Blue (c) Blue (d) Violet197.Fluorescent chlorophyll 'a' occurs in (a) PS − I (b) PS − II (c) Both (a) and (b) (d) Stroma198.The decrease in yield of photosynthesis in the presence of red light becomes increased to when it is supplemented with blue light. This phenomenon is termed as (a) Blackmann's effect (b) Emerson's effect (c) Englemann's effect (d) Hill's effect199.When the two pigment systems absorb light, in what direction does energy flow between th (a) PS-I → PS-II (b) PS-II → PS-II (c) PS-II ≠ PS-II (d) None of the r200.The two light reactions when absorb light drive the flow of electrons against an electrocher gradient from (a) -1.1volt to+0.8volt (b) +0.8volt to-0.3volt(c) ±2.0volt to+5.2volt (d) -0.5volt to+25.2volt (d) -0.5volt to+25.2volt (d) -0.5volt to+25.2volt (d) 0 mm and 41 kcal in re region at 700 mm. How much light energy would be required under standard conditions to a mole' of light of the following does not participate when the light reaction synthesizes on		(a) ATP	(b) NADP and ATP		
(a) Glycolysis (b) Photosystem–I (c) Photosystem–II (d) Anaerobic respiration 193. Photophosphorylation differs from oxidative phosphorylation in (a) It takes place in light (b)ATP is formed (c) Cytochrome participates (d) All of the above 194. Quantasomes are present in (a) Pigment system–I (b) Pigment system–II (c) Both (a) and (b) (d) None of the signal and the chlorophyll type ejects the electron during photophosphorylation (a) Chlorophyll 'b' (b) Chlorophyll 'a' (c) Chlorophyll 'a' and 'b' (d)Xanthoph 195. Which of the chlorophyll type ejects the electron during photophosphorylation (a) Chlorophyll 'b' (b) Chlorophyll 'a' (c) Chlorophyll 'a' and 'b' (d)Xanthoph 196. Which colour of spectrum is least effective in photosynthesis (a) Green (b) Red (c) Blue (d) Violet 197. Fluorescent chlorophyll 'a' occurs in (a) PS − I (b) PS − II (c) Both (a) and (b) (d) Stroma 198. The decrease in yield of photosynthesis in the presence of red light becomes increased to when it is supplemented with blue light. This phenomenon is termed as (a) Blackmann's effect (b) Emerson's effect (c) Englemann's effect (d) Hill's effect 199. When the two pigment systems absorb light, in what direction does energy flow between th (a) PS-I → PS-II (b) PS-II → PS-I (c) PS-II ≠ PS-I (d) None of the a 200. The two light reactions when absorb light drive the flow of electrons against an electrocher gradient from (a) −1.1volt to+0.8volt (b) +0.8volt to −0.3volt (c) +2.0volt to+5.2volt (d) -0.5volt to+25volt (a) −1.1volt to+0.8volt (b) +0.8volt to −0.3volt (c) +2.0volt to+5.2volt (d) -0.5volt to+25volt (a) 1986 kcal (b) 1968 to 3456 kcal (c) 2620 to 3456 kcal (d) 1980 kcal 202. Which of the following does not participate when the light reaction synthesizes only ATP of performs the cyclic flow of electrons		(c) $NADH_2$ and O_2	(d) $NADPH_2 ATP$ and O	2	
 (c) Photosystem-II (d) Anaerobic respiration 193. Photophosphorylation differs from oxidative phosphorylation in (a) It takes place in light (b) ATP is formed (c) Cytochrome participates (d) All of the above 194. Quantasomes are present in (a) Pigment system-I (b) Pigment system-II (c) Both (a) and (b) (d) None of the a 195. Which of the chlorophyll type ejects the electron during photophosphorylation (a) Chlorophyll 'b' (b) Chlorophyll 'a' (c) Chlorophyll 'a' an 'b' (d) Xanthoph 196. Which colour of spectrum is least effective in photosynthesis (a) Green (b) Red (c) Blue (d) Violet 197. Fluorescent chlorophyll 'a' occurs in (a) PS - I (b) PS - II (c) Both (a) and (b) (d) Stroma 198. The decrease in yield of photosynthesis in the presence of red light becomes increased to when it is supplemented with blue light. This phenomenon is termed as (a) Blackmann's effect (b) Emerson's effect (c) Englemann's effect (d) Hill's effect 199. When the two pigment systems absorb light drive the flow of electrons against an electrocher gradient from (a) -1.1 volt to+0.8 volt (b) +0.8 volt to-0.3 volt (c) +2.0 volt to+5.2 volt (d) -0.5 volt to +25.9 200. The two light reactions when absorb light drive the flow of electrons against an electrocher gradient from (a) -1.1 volt to+0.8 volt (b) +0.8 volt to-0.3 volt (c) +2.0 volt to+5.2 volt (d) -0.5 volt to +5.5 volt (d) -0.5 volt to +125.2 volt (e) -0.5 volt to +125.2 volt (f) -0.5 volt to +125.2 volt (h) -0.5 volt to +125.2 volt (h) -0.5 volt to +125.2 volt (h) -0.6 volt (h) -0.8 vo	192.	NADPH ₂ is generated t	hrough		
 193. Photophosphorylation differs from oxidative phosphorylation in (a) It takes place in light (b)ATP is formed (c) Cytochrome participates (d) All of the above 194. Quantasomes are present in (a) Pigment system–I (b) Pigment system–II (c) Both (a) and (b) (d) None of the above 195. Which of the chlorophyll type ejects the electron during photophosphorylation (a) Chlorophyll 'b' (b) Chlorophyll 'a' (c) Chlorophyll 'a' an 'b' (d)Xanthoph 196. Which colour of spectrum is least effective in photosynthesis (a) Green (b) Red (c) Blue (d) Violet 197. Fluorescent chlorophyll 'a' occurs in (a) PS – I (b) PS – II (c) Both (a) and (b) (d) Stroma 198. The decrease in yield of photosynthesis in the presence of red light becomes increased to when it is supplemented with blue light. This phenomenon is termed as (a) Blackmann's effect (b) Emerson's effect (c) PS-II ≠ PS-I (d) None of the a 200. The two light reactions when absorb light drive the flow of electrons against an electrocher gradient from (a) -1.1volt to+0.8volt (b) +0.8volt to-0.3volt (c) +2.0volt to+5.2volt (d) -0.5volt to+52.5volt (d) 1980 kcal (a) 1986 kcal (b) 1968 to 3456 kcal (c) 2620 to 3456 kcal (d) 1980 kcal 202. Which of the following does not participate when the light reaction synthesizes only ATP operforms the cyclic flow of electrons 		(a) Glycolysis	(b) Photosystem–I		
 (a) It takes place in light (b)ATP is formed (c) Cytochrome participates (d) All of the above 194. Quantasomes are present in (a) Pigment system–I (b) Pigment system–II (c) Both (a) and (b) (d) None of the above 195. Which of the chlorophyll type ejects the electron during photophosphorylation (a) Chlorophyll 'b' (b) Chlorophyll 'a' (c) Chlorophyll 'a' and 'b' (d) Xanthoph 196. Which colour of spectrum is least effective in photosynthesis (a) Green (b) Red (c) Blue (d) Violet 197. Fluorescent chlorophyll 'a' occurs in (a) PS – I (b) PS – II (c) Both (a) and (b) (d) Stroma 198. The decrease in yield of photosynthesis in the presence of red light becomes increased to when it is supplemented with blue light. This phenomenon is termed as (a) Blackmann's effect (b) Emerson's effect (c) Englemann's effect (d) Hill's effect 199. When the two pigment systems absorb light, in what direction does energy flow between the (a) PS-I → PS-II (b) PS-II → PS-II (c) PS-II ≠ PS-I (d) None of the above the flow of electrons against an electrocher gradient from (a) -1.1volt to +0.8 volt (b) +0.8 volt to -0.3 volt (c) +2.0 volt to +5.2 volt (d) -0.5 volt to +25 volt to +25 volt (d) -0.5 volt to +25 volt (e) 1986 kcal (f) 1968 to 3456 kcal (f) 2620 to 3456 kcal (g) 1980 kcal 202. Which of the following does not participate when the light reaction synthesizes only ATP of performs the cyclic flow of electrons		(c) Photosystem–II	(d) Anaerobic respiration	n	
(c) Cytochrome participates(d) All of the above194. Quantasomes are present in(a) Pigment system–I(b) Pigment system–II(c) Both (a) and (b)(d) None of the above195. Which of the chlorophyll type ejects the electron during photophosphorylation(a) Chlorophyll 'b'(b) Chlorophyll 'a'(c) Chlorophyll 'a' and 'b'(d) Which colour of spectrum is least effective in photosynthesis(a) Green(b) Red(c) Blue(d) Violet197. Fluorescent chlorophyll 'a' occurs in(a) PS – I(b) PS – II(c) Both (a) and (b)(d) Stroma198. The decrease in yield of photosynthesis in the presence of red light becomes increased to when it is supplemented with blue light. This phenomenon is termed as(a) Blackmann's effect(b) Emerson's effect(c) Englemann's effect (d) Hill's effect199. When the two pigment systems absorb light, in what direction does energy flow between th(a) PS-I → PS-II(b) PS-II → PS-I(c) PS-II ≠ PS-I(d) None of the above the flow of electrons against an electrocher gradient from(a) -1.1volt to+0.8volt(b) +0.8volt to-0.3volt(c) +2.0volt to+5.2volt(d) -0.5volt to+25.2volt(d) -0.5volt to+25.2volt(d) 1980 kccal(a) 1986 kccal(b) 1968 to 3456 kccal(c) 2620 to 3456 kccal(d) 1980 kccal202. Which of the following does not participate when the light reaction synthesizes only ATP of performs the cyclic flow of electrons	193.	Photophosphorylation	differs from oxidative pho	osphorylation in	
 194. Quantasomes are present in (a) Pigment system–I (b) Pigment system–II (c) Both (a) and (b) (d) None of the and the chlorophyll type ejects the electron during photophosphorylation (a) Chlorophyll 'b' (b) Chlorophyll 'a' (c) Chlorophyll 'a' and 'b' (d) Xanthoph 195. Which colour of spectrum is least effective in photosynthesis (a) Green (b) Red (c) Blue (d) Violet 197. Fluorescent chlorophyll 'a' occurs in (a) PS – I (b) PS – II (c) Both (a) and (b) (d) Stroma 198. The decrease in yield of photosynthesis in the presence of red light becomes increased to when it is supplemented with blue light. This phenomenon is termed as (a) Blackmann's effect (b) Emerson's effect (c) Englemant's effect (d) Hill's effect 199. When the two pigment systems absorb light, in what direction does energy flow between the (a) PS–I → PS–II (b) PS–II → PS–I (c) PS–II ≠ PS–I (d) None of the assorb light reactions when absorb light drive the flow of electrons against an electrocher gradient from (a) -1.1volt to+0.8volt (b) +0.8volt to-0.3volt (c) +2.0volt to+5.2volt (d) -0.5volt to+25 volt to+0.3volt (e) 42.0volt to+5.2volt (f) -0.5volt to+25 volt to+0.8volt (h) 1968 to 3456 kcal (h) 1980 kcal 200. The two light enactions when absorb light energy would be required under standard conditions to mole of glucose costing 686 kcal (a) 1986 kcal (b) 1968 to 3456 kcal (c) 2620 to 3456 kcal (d) 1980 kcal 202. Which of the following does not participate when the light reaction synthesizes only ATP of performs the cyclic flow of electrons		(a) It takes place in light	nt	(b)ATP is formed	
 (a) Pigment system–I (b) Pigment system–II (c) Both (a) and (b) (d) None of the at the system of the chlorophyll type ejects the electron during photophosphorylation (a) Chlorophyll 'b' (b) Chlorophyll 'a' (c) Chlorophyll 'a' and 'b' (d)Xanthoph (a) Green (b) Red (c) Blue (d) Violet 197. Fluorescent chlorophyll 'a' occurs in (a) PS – I (b) PS – II (c) Both (a) and (b) (d) Stroma (a) Blackmann's effect (b) Emerson's effect (c) Englemann's effect (d) Hill's effect (d) Hill's effect (e) Emerson's effect (f) Emerson's effect (f) Emerson's effect (f) Hill's effect (g) PS – II (f) PS –		(c) Cytochrome partici	pates	(d) All of the above	
 195. Which of the chlorophyll type ejects the electron during photophosphorylation (a) Chlorophyll 'b' (b) Chlorophyll 'a' (c) Chlorophyll 'a' and 'b' (d) Xanthoph 196. Which colour of spectrum is least effective in photosynthesis (a) Green (b) Red (c) Blue (d) Violet 197. Fluorescent chlorophyll 'a' occurs in (a) PS - I (b) PS - II (c) Both (a) and (b) (d) Stroma 198. The decrease in yield of photosynthesis in the presence of red light becomes increased to when it is supplemented with blue light. This phenomenon is termed as (a) Blackmann's effect (b) Emerson's effect (c) Englemann's effect (d) Hill's effect 199. When the two pigment systems absorb light, in what direction does energy flow between th (a) PS-I → PS-II (b) PS-II → PS-I (c) PS-II ≠ PS-I (d) None of the at the energy of a 'mole' of light quanta is 72 kcal in blue region at 400 nm and 41 kcal in re region at 700 nm. How much light energy would be required under standard conditions to mole of glucose costing 686 kcal (a) 1986 kcal (b) 1968 to 3456 kcal (c) 2620 to 3456 kcal (d) 1980 kcal 	194.	Quantasomes are prese	ent in		
 (a) Chlorophyll 'b' (b) Chlorophyll 'a' (c) Chlorophyll 'a' and 'b' (d)Xanthoph 196. Which colour of spectrum is least effective in photosynthesis (a) Green (b) Red (c) Blue (d) Violet 197. Fluorescent chlorophyll 'a' occurs in (a) PS - I (b) PS - II (c) Both (a) and (b) (d) Stroma 198. The decrease in yield of photosynthesis in the presence of red light becomes increased to when it is supplemented with blue light. This phenomenon is termed as (a) Blackmann's effect (b) Emerson's effect (c) Englemann's effect (d) Hill's effect 199. When the two pigment systems absorb light, in what direction does energy flow between the (a) PS-I → PS-II (b) PS-II → PS-I (c) PS-II ≠ PS-I (d) None of the at a sequence of the sequence of a mole of light quanta is 72 kcal in blue region at 400 nm and 41 kcal in rearing on at 700 nm. How much light energy would be required under standard conditions to mole of glucose costing 686 kcal (a) 1986 kcal (b) 1968 to 3456 kcal (c) 2620 to 3456 kcal (d) 1980 kcal 		(a) Pigment system–I	(b) Pigment system–II	(c) Both (a) and (b)	(d) None of the above
 196. Which colour of spectrum is least effective in photosynthesis (a) Green (b) Red (c) Blue (d) Violet 197. Fluorescent chlorophyll 'a' occurs in (a) PS – I (b) PS – II (c) Both (a) and (b) (d) Stroma 198. The decrease in yield of photosynthesis in the presence of red light becomes increased to when it is supplemented with blue light. This phenomenon is termed as (a) Blackmann's effect (b) Emerson's effect (c) Englemann's effect (d) Hill's effect 199. When the two pigment systems absorb light, in what direction does energy flow between the (a) PS-I → PS-II (b) PS-II → PS-I (c) PS-II ≠ PS-I (d) None of the as a solution of the solution of	195.	Which of the chlorophy	yll type ejects the electron	during photophosphory	lation
 (a) Green (b) Red (c) Blue (d) Violet 197. Fluorescent chlorophyll 'a' occurs in (a) PS - I (b) PS - II (c) Both (a) and (b) (d) Stroma 198. The decrease in yield of photosynthesis in the presence of red light becomes increased to when it is supplemented with blue light. This phenomenon is termed as (a) Blackmann's effect (b) Emerson's effect (c) Englemann's effect (d) Hill's effect 199. When the two pigment systems absorb light, in what direction does energy flow between the (a) PS-I → PS-II (b) PS-II → PS-I (c) PS-II ≠ PS-I (d) None of the a 200. The two light reactions when absorb light drive the flow of electrons against an electrocher gradient from (a) -1.1volt to+0.8 volt (b) +0.8 volt to-0.3 volt (c) +2.0 volt to+5.2 volt (d) -0.5 volt to+25 volt to+0.8 volt (d) -0.5 volt to+25 volt 201. The energy of a 'mole' of light quanta is 72 kcal in blue region at 400 nm and 41 kcal in re region at 700 nm. How much light energy would be required under standard conditions to a mole of glucose costing 686 kcal (a) 1986 kcal (b) 1968 to 3456 kcal (c) 2620 to 3456 kcal (d) 1980 kcal 202. Which of the following does not participate when the light reaction synthesizes only ATP of performs the cyclic flow of electrons		(a) Chlorophyll ' <i>b</i> '	(b) Chlorophyll 'a'	(c) Chlorophyll 'a' and	d 'b' (d)Xanthophyll
 197. Fluorescent chlorophyll 'a' occurs in (a) PS – I (b) PS – II (c) Both (a) and (b) (d) Stroma 198. The decrease in yield of photosynthesis in the presence of red light becomes increased to when it is supplemented with blue light. This phenomenon is termed as (a) Blackmann's effect (b) Emerson's effect (c) Englemann's effect (d) Hill's effect 199. When the two pigment systems absorb light, in what direction does energy flow between the (a) PS–I → PS–II (b) PS–II → PS–I (c) PS–II ≠ PS–I (d) None of the a solution of the solutio	196.	Which colour of spectr	rum is least effective in ph	otosynthesis	
 (a) PS – I (b) PS – II (c) Both (a) and (b) (d) Stroma 198. The decrease in yield of photosynthesis in the presence of red light becomes increased to when it is supplemented with blue light. This phenomenon is termed as (a) Blackmann's effect (b) Emerson's effect (c) Englemann's effect (d) Hill's effect 199. When the two pigment systems absorb light, in what direction does energy flow between th (a) PS–I → PS–II (b) PS–II → PS–I (c) PS–II ≠ PS–I (d) None of the a 200. The two light reactions when absorb light drive the flow of electrons against an electrocher gradient from (a) -1.1volt to+0.8volt (b) +0.8volt to -0.3volt (c) +2.0volt to+5.2volt (d) -0.5volt to+25volt 201. The energy of a 'mole' of light quanta is 72 kcal in blue region at 400 nm and 41 kcal in reregion at 700 nm. How much light energy would be required under standard conditions to mole of glucose costing 686 kcal (a) 1986 kcal (b) 1968 to 3456 kcal (c) 2620 to 3456 kcal (d) 1980 kcal 202. Which of the following does not participate when the light reaction synthesizes only ATP of performs the cyclic flow of electrons		(a) Green	(b) Red	(c) Blue	(d) Violet
 198. The decrease in yield of photosynthesis in the presence of red light becomes increased to when it is supplemented with blue light. This phenomenon is termed as (a) Blackmann's effect (b) Emerson's effect (c) Englemann's effect (d) Hill's effect 199. When the two pigment systems absorb light, in what direction does energy flow between the (a) PS-I → PS-II (b) PS-II → PS-I (c) PS-II ≠ PS-I (d) None of the at 200. The two light reactions when absorb light drive the flow of electrons against an electrocher gradient from (a) -1.1volt to+0.8volt (b) +0.8volt to-0.3volt (c) +2.0volt to+5.2volt (d) -0.5volt to+25 to 201. The energy of a 'mole' of light quanta is 72 kcal in blue region at 400 nm and 41 kcal in reregion at 700 nm. How much light energy would be required under standard conditions to a mole of glucose costing 686 kcal (a) 1986 kcal (b) 1968 to 3456 kcal (c) 2620 to 3456 kcal (d) 1980 kcal 202. Which of the following does not participate when the light reaction synthesizes only ATP of performs the cyclic flow of electrons 	197.	Fluorescent chlorophyl	l 'a' occurs in		
 when it is supplemented with blue light. This phenomenon is termed as (a) Blackmann's effect (b) Emerson's effect (c) Englemann's effect (d) Hill's effect 199. When the two pigment systems absorb light, in what direction does energy flow between th (a) PS-I → PS-II (b) PS-II → PS-I (c) PS-II ≠ PS-I (d) None of the a 200. The two light reactions when absorb light drive the flow of electrons against an electrocher gradient from (a) -1.1 volt to +0.8 volt (b) +0.8 volt to -0.3 volt (c) +2.0 volt to +5.2 volt (d) -0.5 volt to +25 volt 201. The energy of a 'mole' of light quanta is 72 kcal in blue region at 400 nm and 41 kcal in reregion at 700 nm. How much light energy would be required under standard conditions to remole of glucose costing 686 kcal (a) 1986 kcal (b) 1968 to 3456 kcal (c) 2620 to 3456 kcal (d) 1980 kcal 202. Which of the following does not participate when the light reaction synthesizes only ATP of performs the cyclic flow of electrons 		(a) PS – I	(b) PS – II	(c) Both (a) and (b)	(d) Stroma
 199. When the two pigment systems absorb light, in what direction does energy flow between the (a) PS-I → PS-II (b) PS-II → PS-I (c) PS-II ≠ PS-I (d) None of the a 200. The two light reactions when absorb light drive the flow of electrons against an electrocher gradient from (a) -1.1volt to+0.8volt (b) +0.8volt to-0.3volt (c) +2.0volt to+5.2volt (d) -0.5volt to+25volt 201. The energy of a 'mole' of light quanta is 72 kcal in blue region at 400 nm and 41 kcal in reregion at 700 nm. How much light energy would be required under standard conditions to renole of glucose costing 686 kcal (a) 1986 kcal (b) 1968 to 3456 kcal (c) 2620 to 3456 kcal (d) 1980 kcal 202. Which of the following does not participate when the light reaction synthesizes only ATP of performs the cyclic flow of electrons 	198.	-		_	omes increased to normal
 (a) PS-I → PS-II (b) PS-II → PS-I (c) PS-II ≠ PS-I (d) None of the a gradient from (a) -1.1volt to+0.8volt (b) +0.8volt to-0.3volt (c) +2.0volt to+5.2volt (d) -0.5volt to+25v 201. The energy of a 'mole' of light quanta is 72 kcal in blue region at 400 nm and 41 kcal in region at 700 nm. How much light energy would be required under standard conditions to region at 700 nm. How much light energy would be required under standard conditions to region at 700 nm. How much light energy would be required under standard conditions to region at 986 kcal (a) 1986 kcal (b) 1968 to 3456 kcal (c) 2620 to 3456 kcal (d) 1980 kcal 202. Which of the following does not participate when the light reaction synthesizes only ATP of performs the cyclic flow of electrons		(a) Blackmann's effect	(b) Emerson's effect	(c) Englemann's effect	t (d) Hill's effect
 200. The two light reactions when absorb light drive the flow of electrons against an electrocher gradient from (a) -1.1volt to+0.8volt (b) +0.8volt to-0.3volt (c) +2.0volt to+5.2volt (d) -0.5volt to+25v 201. The energy of a 'mole' of light quanta is 72 kcal in blue region at 400 nm and 41 kcal in region at 700 nm. How much light energy would be required under standard conditions to mole of glucose costing 686 kcal (a) 1986 kcal (b) 1968 to 3456 kcal (c) 2620 to 3456 kcal (d) 1980 kcal 202. Which of the following does not participate when the light reaction synthesizes only ATP of performs the cyclic flow of electrons 	199.	When the two pigment	systems absorb light, in v	what direction does energ	gy flow between them
 gradient from (a) -1.1volt to+0.8volt (b) +0.8volt to-0.3volt (c) +2.0volt to+5.2volt (d) -0.5volt to+25v 201. The energy of a 'mole' of light quanta is 72 kcal in blue region at 400 nm and 41 kcal in reregion at 700 nm. How much light energy would be required under standard conditions to mole of glucose costing 686 kcal (a) 1986 kcal (b) 1968 to 3456 kcal (c) 2620 to 3456 kcal (d) 1980 kcal 202. Which of the following does not participate when the light reaction synthesizes only ATP of performs the cyclic flow of electrons 		(a) $PS-I \rightarrow PS-II$	(b) $PS-II \rightarrow PS-I$	(c) $PS-II \neq PS-I$	(d) None of the above
 201. The energy of a 'mole' of light quanta is 72 <i>kcal</i> in blue region at 400 <i>nm</i> and 41 <i>kcal</i> in region at 700 <i>nm</i>. How much light energy would be required under standard conditions to mole of glucose costing 686 <i>kcal</i> (a) 1986 <i>kcal</i> (b) 1968 to 3456 <i>kcal</i> (c) 2620 to 3456 <i>kcal</i> (d) 1980 <i>kcal</i> 202. Which of the following does not participate when the light reaction synthesizes only ATP of performs the cyclic flow of electrons 	200.	-	when absorb light drive t	the flow of electrons aga	inst an electrochemical
 region at 700 <i>nm</i>. How much light energy would be required under standard conditions to mole of glucose costing 686 <i>kcal</i> (a) 1986 <i>kcal</i> (b) 1968 to 3456 <i>kcal</i> (c) 2620 to 3456 <i>kcal</i> (d) 1980 <i>kcal</i> 202. Which of the following does not participate when the light reaction synthesizes only ATP of performs the cyclic flow of electrons 		(a) $-1.1 volt to + 0.8 volt$	(b) $+0.8 \text{ volt to} -0.3 \text{ volt}$	(c) $+2.0$ volt to $+5.2$ volt	(d) $-0.5 \text{ volt to} + 25 \text{ volt}$
202. Which of the following does not participate when the light reaction synthesizes only ATP of performs the cyclic flow of electrons	201.	region at 700 nm. How	much light energy would	-	
performs the cyclic flow of electrons		(a) 1986 <i>kcal</i>	(b) 1968 to 3456 <i>kcal</i>	(c) 2620 to 3456 kcal	(d) 1980 kcal
	202.	-		n the light reaction synth	nesizes only ATP or
				(c) Ferredoxin	(d) Plastocvanin
					(), · · · · · · · · · · · · · · · · · ·

203.	Emmerson defined 'red drop' as a decline in photosynthesis also termed Emmerson's effect. It				
	appears at	(\mathbf{h}) 620 un wavelen eth			
	 (a) 460 nm wavelength (b) 630 nm wavelength (c) 680 nm wavelength (d) > 680 nm wavelength 				
204	Photosystem–I contain	-	11		
204.	(a) <i>Chl. a, Chl. b</i> , carot		(b) <i>Chl. a, Chl. b</i>	and p	
			(d) <i>Chl. a</i> , xantho		
	(c) <i>Chl. a, Chl. b</i> and <i>I</i>				
205.	(a) Negative charge	e lost 1 electron from its o (b) Becomes neutral	(c) Positive charg		
206		chlorophyll molecules is	(c) i ositive charg		
200.		ond (b)More than 0.01 se	econd		
	(c) 10 seconds	(d)1 second			
207.		ted into chemical energy i	n the presence of		
	(a) Pyrenoids	(b) Chloroplasts	(c) Ribosomes	(d) Mesosomes	
208.	During photochemical	reactions of photosynthes	is		
	(a) Liberation of oxygen takes place				
	(b) Formation of ATP	and NADPH ₂ take place			
	(c) Liberation of o_2 and	d formation of ATP and	$NADPH_2$ take place		
	(d) Assimilation of <i>co</i>	$_2$ takes place			
209.	Hill's reaction takes pl	ace in			
	(a) Dark	(b) Light	(c) Dark and ligh	t both (d) At any time	
210.	Through which of the	following substances the p	ohotosystem–I pass	es an electron to NADP during	
	light reactions				
	(a) Plastocyanin	(b) Plastoquinone	(c) Cytochrome	(d) Ferredoxin	
211.	The first event in photo	•			
	•	(b)Photoexcitation of ch	lorophyll and eject	ion of electron	
	-	(d)Release of oxygen			
212.	Photophosphorylation	-			
		verted into chemical ener	gy in the form of A	TP	
	(b) NADP is formed	used to preduce ATD			
	(c) Chemical energy is				
	(d) co_2 is reduced to calculate the set of the set	-			
213.	The role of chlorophyl	i ili photosyntnesis is		(h) Absorption of light	
	(a) Absorption of co_2	1 1 / 1 1 1 1	•.• 6	(b)Absorption of light	
		and photochemical decor	nposition of water	(a)Absorption of water	
214.	(a) Grana	osynthesis takes place in (b) Stroma	(c) ER	(d)Cytoplasm	
	(a) Grana			(u)Cytopiasiii	

215.	What percentage of light	ht energy is utilized in the	pho	otosynthesis of higher	plants
	(a) 1 – 2%	(b) 10 %	(c)	50 %	(d) 100 %
216.	What is the role of ligh	t in plants			
	(a) Necessary for photo	osynthesis		(b)Controls growth a	and movement
	(c) Controls distribution	n of hormones and flower	ing	(d)All of the above	
217.	The reaction centre for	PS – I and PS – II are			
	(a) P_{700} and P_{680} respect	rively	(b)	P_{680} and P_{700} respect	ively
	(c) P_{580} and P_{700} respect	ively	(d)	P_{700} and P_{580} respective	ively
218.	What is common betwee	een photosynthesis and res	spira	tion	
	(a) Cytochrome	(b) Light	(c)	H_2O	(d) Temperature
219.	What will be the effect	of intermittent light on ph	noto	synthesis	
	(a) It will increase	(b) It will decrease	(c)	Will not be effected	(d) Process will stop
220.	Pigment system—I con	iducts			
	(a) Cyclic photophosph	orylation	(b)	Non-cyclic photophe	osphorylation
	(c) Both (a) and (b)		(d)	None of the above	
221.	Pigment system-II is co	oncerned with			
	(a) Photolysis of water	(b) Reduction of CO_2	(c)	Flowering	(d) None of the above
222.	Leaves appear green be	ecause they			
	(a) Reflect green light		(b)	Absorb green light	
	(c) Both reflect and abs	sorb green light	(d)	None of the above	
223.	Light is necessary durin	ng photosynthesis for			
	(a) Evolution of hydrog	gen (b)Photolysis of wate	er(c)	Heating	(d) Opening of stomata
224.	Photochemical reaction	by excited form of chlor	phyl	1 'a' takes part in	
	(a) Metastable triplet st	tate (b)First singlet state	(c)	Second singlet state	(d) Ground state
225.	Where do you find cyto	ochromes b_6 and f			
	(a) Chloroplast	(b) Lysosomes	(c)	Ribosomes	(d) Mitochondria
226.	Quinones are				
	(a) Mobile electron car			Enzymes of oxidativ	ve phosphorylation
	(c) Enzymes of krebs c	-		None of the above	
227.		nt contains <i>kcal</i> or 1	-		
	(a) 40	(b) 70	. ,	220	(d) 10
228.		es are involved in the elect		-	
	(a) Two	(b) Four	. ,	Five	(d) Six
229.		ogen is transferred from th		-	-
	(a) DPN	(b) DNA	(c)	ATP	(d) NADP
230.		is inactivated in red drop	. .		
	(a) $PS - I$ and $PS - II$	(b) PS – I	(c)	PS – II	(d) None of these

231.	The ingredient required	l for ATP synthesis is				
	(a) <i>Ca</i>	(b) <i>S</i>	(c) <i>P</i>	(d) <i>Fe</i>		
232.	2. In the two light reactions of photosynthesis					
	(a) PS I produces stron	g oxidant while PS II a str	ong reductant			
	(b) PS I produces stron	g reductant NADPH while	e PS II a strong oxidant			
	(c) PS I emits electrons					
	· · · ·	which is not formed by PS	S II.			
233.	Which one is dephosph	-				
	(a) Fructose 1-phospha	te \rightarrow Fructose, 1-6-biphos	sphate			
	(b) Fructose, 1-6 bipho	sphate \rightarrow Fructose 1-phos	phate			
	(c) Fructose 1-phospha	te \rightarrow Fructose 6-phosphat	e			
	(d) Glucose 6-phosphat	te \rightarrow Fructose 6-phosphate	2			
234.	Ferredoxin in					
	(a) Phenol	(b) Protein	(c) Fat	(d) Carbohydrate		
235.	Hill used a dye for his	famous Hill reaction				
	(a) Sulphur green	(b) Eosine				
	-	(d) Dichlorophenol indop				
236.	Accessory pigments tra	unsfer their energy to chlor	cophyll molecules throug	<u>g</u> h		
	(a) Fluorescence	(b) Resonance	(c) Radiation	(d) Transduction		
237.	7. In photosynthetic electron transport system, <i>Mn</i> ions are associated with					
	(a) $CF_0 - CF_1$ complex		(b) $Cyt b_6 - Cyt f$ complex			
	(c) Oxygen evolving co	omplex	(d) Plastoquinone			
238.	Emerson effect is related	ed to				
	(a) Decrease in photosy	ynthesis in presence of hig	h light intensity			
		ynthesis when lights of two	-	are provided together		
	(c) Increase in photosy	nthesis in presence of mor	nochromatic light			
		nthesis when lights of two	different wavelengths a	re provided together		
239.	Source of protons with	_				
	(a) Water	(b) Excited chlorophyll		(d) Rubisco		
240.		nosphorylation is similar to				
	(a) Substrate-level pho		(b)Oxidative phosphory			
	(c) Carbohydrate phosp	-	(d)Hydrolysis of phosp	horylated compounds		
241.		TP synthesis in PS II come				
	(a) Proton gradient		(b) Electron gradient			
	(c) Reduction of glucos		(d) Oxidation of glucos			
242.		brylation the electron relea	•			
	(a) Ferredoxin	(b) $NADP^+$	(c) Reaction centre	(d) Plastocyanin		

243.	. Our present day view regarding photosynthesis is that it				
	(a) Converts light energy	gy into chemical energy	(b) Creates useful ener	gy	
	(c) Fixes co_2 into carbo	ohydrates	(d) Reverses the action	of respiration	
244.	The process for which	manganese and chloride id	ons are required is		
	(a) Photolysis of water				
	(b) For transfer of H^+ is	on to NADP			
	(c) For transfer of charge	ge of hydroxyl ion to chlo	rophyll		
	(d) None of the above				
245.	How many molecules of	of water should be photoly	used to form a $NADPH_2$ m	olecule	
	(a) 4	(b) 2	(c) 6	(d) 1	
246.	In photosynthesis, phot	colysis of water is used in			
	(a) Reduction of NADE	P(b) Oxidation of NADP	(c) Oxidation of FAD	(d) None of these	
247.	Main pigment involved	l in transfer of electrons in	n photosynthesis is		
	(a) Cytochrome	(b) Phytochrome	(c) Both (a) and (b)	(d) None of these	
248.	What are the two peaks	s of light absorption of Ch	hlorophyll ' a '. The two peaks are near		
	(a) 400 and 500 <i>nm</i>	(b) 430 and 730 <i>nm</i>	(c) 430 and 660 <i>nm</i>	(d) 400 and 660 <i>nm</i>	
249.	DCMU is an inhibitor of				
	(a) PS – I	(b) PS – II	•	•	
250.	Supply of which of the	material to an isolated chi	loroplast increases o_2 ev	volution	
	(a) Water	(b) ATP	(c) NAD ⁺	(d) NADP ⁺	
251.		ures a link between reduce	ed end of LR-II $(PQ^{})$ ar	nd oxidised end of	
	$LR - 1(PC^{++})$				
	(a) $Cyt - c$	(b) $Cyt - a_1$	(c) $Cyt - a_3$	(d) $Cyt - f$	
252.	What will be the effect	when very high intensity	of light is supplied to a p	photosynthesis system	
	(a) Process will increase	e	(b) Process will decrea	se	
	(c) Process will stop du	e to solarization	(d) None of the above		
253.	-	ry photochemical reactionesis take place or Light reactionesis take place or Light reactionesis take place or Light reactiones the statement of the state	-	or Where does the light	
	(a) Stroma		(b) Endoplasmic reticu	lum	
	(c) Quantasome or thyl	akoids (Grana)	(d) Inner membrane of	chloroplast	
1					

Adva	ance Level					
254.	The synthesis of ATP in photosynthesis and respiration is essentially an oxidation-reduction					
	-	emoval of energy from	$() \cap (1)$			
	(a) Oxygen	(b) Phytochrome	(c) Cytochrome	(d) Electrons		
255.		pathway of photosynthesis		-		
	Reason : Oxygen st photosynthesis evo	arted accumulating in the lved	atmosphere after the non	-cyclic pathway of		
	(a) If both Assertion	n and Reason are true and	the reason is the correct	explanation of the assertion		
	(b) If both Assertion and Reason are true but the reason is not the correct explanation of the assertion					
	(c) If Assertion is the	rue statement but Reason i	s false			
	(d) If both Assertion	n and Reason are false				
256.	256. If the photosynthetic yield in blue wavelength is 10 units and that in red wavelength is 40 units; what should be the yield of photosynthesis in combination of two wavelengths, if the effect is synergistic					
	(a) 30 units	(b) 40 units	(c) 50 units	(d) > 50 units		
257.	Which photochemi	cal reaction generates stro	ng oxidant and weak red	uctant		
	(a) LR – I		(b) LR – II			
	(c) Cyclic photopho	osphorylation	(d) Non-cyclic phot	ophosphorylation		
258.	What is the commo	n value of PQ (photosynth	netic quotient) of a leaf			
	(a) > 1	(b) < 1	(c) One	(d) Zero		
259.	Which one of the for of energy in cellula		rency of the cell or The o	common immediate source		
	(a) Phosphate	(b) ATP	(c) ADP	(d) AMP		
260.	-	observed accumulation of alga <i>Cladophora</i> . He the		blue and red illumination of		
	(a) Chlorophyll abs	orbs green light				
	(b) Absorption spec	etrum of o_2 evolution is bl	ue and red			
	(c) o_2 is released fr	com H_2O in light reaction	(d) o_2 is released from the set of the s	om co_2 in light reaction		
261.	Continued evolutio	n of o_2 in suspension of a	n isolated chloroplast in	light in the presence of		
	ferric salt, viologen	dyes etc. is called				
	(a) Emerson's react	tion	(b) Hill's reaction			
	(c) Blackmann's re	action	(d) Oxygenation			
262.	The rate of photosy when red light is su	nthesis declines in the pre	sence of red light and is	increased to normal level		
	(a) Far-red light	(b) Orange light	(c) Blue light	(d) Ultraviolet light		
1						

DARK REACTION

Basi	Basic Level					
263.	The plants growing in called as	dark show yellowing in le	aves and elongated inter	nodes, this condition is		
	(a) Etiolation	(b) Chlorosis	(c) Dechlorosis	(d) Dark effect		
264.	Dark reaction of photo	synthesis is called				
	(a) Aphotic action		(b) Black action			
	(c) Blackmann's reacti	on	(d) None of the above			
265.	Ribulose phosphate is	a				
	(a) Aldose sugar	(b) Ketose sugar	(c) Disaccharide	(d) Trisaccharide		
266.	Which of the following	g is obtained from co_2 due	ring glucose manufacture			
	(a) Oxygen	(b) Carbon	(c) Both (a) and (b)	(d) None of the above		
267.	Which of the enzyme i	s involved in the conversi	on of 3PGA to 3PGAL			
	(a) Triose phosphate de	ehydrogenase	(b) Carboxydismutase			
	(c) Phosphatase		(d) Aldolase			
268.	The number of carbon	atoms is five in				
	(a) Xylulose	(b) Ribose	(c) Ribulose	(d) All the above		
269.	Sedohaptulose is a carl	oohydrate having				
	(a) 3 carbon atoms	(b) 2 carbon atoms	(c) 4 carbon atoms	(d) 7 carbon atoms		
270.	Which of the following	g required for conversion of	of 3PGAL and dihydroxy	y acetone phosphate to		
	fructose 1, 6 diphospha	ate				
	(a) Transketolase	(b) Aldolase	(c) Phosphatase	(d) Hexokinase		
271.	First stable product of	•				
	(a) 2 carbon atoms	(b) 3 carbon atoms		(d) 6 carbon atoms		
272.		f glyceraldehyde phospha	•			
	(a) 9 ATP and 9 <i>NaOH</i>	-	(b) 6 ATP and 6NaOH are required			
	(c) 3 ATP and 3 <i>NaOH</i> a	-	(d) 9 ATP and 6NaOH a	are required		
273.	First transitory chemic	al formed by reaction betw	ween CO_2 and $RuBP$ is			
	(a) PGAL / GAP		(b) 2 Carboxy, 3-keto, 1-5 biphospho ribotol			
	(c) PGA		(d) Dihydroxy acetone	phosphate		
274.	CO_2 joins the photosyn	thetic pathway during				
	(a) Light reaction	(b) Dark reaction	(c) Photosystem – I	(d) Photosystem – II		
275.	The initial enzyme of G	Calvin cycle is				
	(a) Ribulose 1,5 diphos	sphate carboxylase	(b) Triose phosphate de	ehydrogenase		
	(c) Phosphopentokinas	e	(d) Cytochrome oxidas	e		
276.	•••	when PGA is changed int	o phosphoglyceraldehyd	e, which of the following		
	reaction occur					
	(a) Oxidation	(b) Reduction	(c) Electrolysis	(d) Hydrolysis		

2	77.	Dark reaction of photos	synthesis is called so beca	use			
		(a) It can also occur in	dark	(b)It does not require light energy			
	(c) Cannot occur during day time (d)It o			(d)It occurs more ra	apidly in night		
2	78.	Phosphatase enzymes i	In C_3 cycle participate in				
		(a) Addition of phosph	ate				
		(b) Removal of phosph	ate				
		(c) Both the above					
		(d) The enzyme is not o	concerned with removal o	r addition of phosphate			
2	79.	In dark reaction, first re	eaction is the				
		(a) Carboxylation	•	(c) Dehydrogenation	(d) Deamidation		
2	80.	Calvin's cycle is found	lin				
		(a) Only C_3 plants (b) Only photophillous plants					
		(c) All C_4 plants	(d) All photosynthetic pl	ants			
2	81.	Which of the following	g is the main product in the	e photorespiration of C_3	plants		
		(a) Phosphoglycerate	(b) Phosphoglycolate	(c) Glycerate	(d) Glycolate		
2	82.	How many Calvin cycl	ow many Calvin cycle form one hexose molecule				
		(a) 2	(b) 6	(c) 4	(d) 8		
2	83.	CO_2 acceptor in C_3 plan	nts is				
		(a) Xylulose – 5 - phos	sphate	(b) 3-phosphoglyceric acid			
		(c) Ribulose 1, 5 dipho	osphate	(d) Phosphoenol pyruv	ic acid		
2	84.	Which of the following	g is present in Calvin cycle	e			
		(a) Photophosphorylati	on	(b)Oxidative carboxyla	ation		
		(c) Reductive carboxyl	ation	(d) Oxidative phosphor	rylation		
2	85.	Calvin cycle occurs in					
		(a) Chloroplast	(b) Cytoplasm	(c) Mitochondria	(d) Glyoxysomes		
2	86.		formed during photosynthe				
		(a) Fructose 1, 6- dipho	-	(b) Ribulose 1, 5-bipho	-		
		(c) Xylulose –5-phosph		(d) Phosphoglyceraldel	•		
2	87.	-		the three carbon atoms	of each molecule of 3-		
			PGA) are derived from				
		(a) <i>RuBP</i> only	(b) co_2 only	(c) $RuBP + CO_2$	· · · 2		
2	88.		osynthetic process does no		-		
	0-	(a) Hill's reaction	(b) Blackmann's reaction	in (c) wardurg s reaction	(u) Emerson's reaction		
2	89.	Chloroplast contains m	· ·	(a) $P_{\mu}DP$ corboxylass	(d) None of the shove		
		(a) Pyruvic carboxylase	(U) HEAUKIIIASE	(c) RuDr Carboxyrase	(d) None of the above		
1							

			1. 11.	10.10	
290.		athway of co_2 fixation in			
	(a) Unicellular green		(b) Isolated chloroplas	st by spinach by Hill	
	(c) Mesophyll cells of variegated leaves by Arnon				
		s of maize by Hatch and			
291.	•	catalyses the formation o		• 1	
	(a) Pyruvic acid	1 1	(b) Phosphoglyceric a		
	(c) Phosphoglyceralde		(d) None of the above		
292.	e. Which of the following have high co_2 compensation point				
	(a) C_2 plants	(b) C_3 plants	(c) C_4 plants	(d) Alpine herbs	
293.	In C_3 plants, the first s	stable product of photosy	nthesis during dark reacti	on is	
	(a) 3-phosphoglyceric	acid	(b)Phosphoglyceralde	hyde	
	(c) Malic acid		(d) Oxaloacetic acid		
294.	Dark reaction of photo	osynthesis take place in			
	(a) Grana	(b) Stroma	(c) Matrix	(d) Cytoplasm	
295.	Which of the method	is more effective to know	the chemical pathway of	f a physiological process	
	(a) Titration method	(b) Calorimetric metho	d (c) Tracer technique	(d) None of the above	
296.	During dark reaction of	of photosynthesis			
	(a) Water split (b) co_2 is reduced to organic compounds				
	(c) Chlorophyll is acti	vated (d)6 carbon sugar	is broken down into 3 ca	rbon sugar	
297.	Which of the followin	g product of Hill's reacti	on are used in Blackmann	n's reaction	
	(a) NAD, ATP	(b) ATP, NADH ₂	(c) ATP, NADPH ₂	(d) ADP, NAD	
298.	Ribulose diphosphate	carboxylase enzyme cata	lyses the carboxylation r	eaction between	
	(a) Oxalocetic acid an	d acetyl CoA	(b) co_2 and ribulose 1	, 5 diphosphate	
	(c) Ribulose diphosph	ate and phosphoglyceral	lehyde		
	(d) PGA and dihydrox	xy acetone phosphate			
299.	Quanta required for as	ssimilation of one molecu	le of co_2 or liberation of	the molecule of oxygen	
	are				
	(a) 16	(b) 8	(c) 4	(d) 2	
300.	During fixation of one	e molecule of co_2 by c_3	plants		
	(a) 3 ATP and 2 NAD	PH ₂ are required	(b) 5 ATP and 2 NAD	PH ₂ are required	
	(c) 12 ATP and 2 NA	DPH ₂ are required	(d) 18 ATP and 12 NA	ADPH ₂ are required	
301.	In hydrophytes, the ra	te of carbon assimilation	is		
	(a) More than land pla	ants	(b)Lesser than land pl	ants	
	(c) Equal in both		(d) None of the above		
302.	The mean photosynthe	etic rates of C_3 and C_4 pl	ants per dm^2 per hour are	respectively	
	(a) 10 <i>mg</i> and 20 <i>mg</i>	(b) 90 <i>mg</i> and 22 <i>mg</i>	(c) 22 <i>mg</i> and 75 <i>mg</i>	(d) 75 mg and 22 mg	
303.	Mesophyll chloroplas	t of which plant alone is a	capable of synthesising st	arch or sucrose	
	(a) C_3 plant	(b) C_4 plant	(c) Both (a) and (b)	(d) Neither c_3 nor c_4	

304.		f water on earth which sp	lit by photosynthesis one	ce every 2 million years	
	is				
	(a) 10 million km^3	(b) 15 million km^3	(c) 20 million km^3	(d) 25 million km^3	
305.	In C_3 plants, phosphoke	etopentose epimerase is r	equired for converting		
	(a) Ribose into ribulose		(b) Xylulose to ribulos	e 1.5 <i>Di PO</i> ₄	
	(c) Erythrose to xylulos	se	(d) None of the above		
Rasi	c Level	BACTERIAL PHC	TOSYNTHESIS		
	Chromatophores are ab	cont in			
306.	(a) Chemosynthetic bac		(b) Pteridophyta		
	(c) Gymnosperms		(d) Angiosperms		
207	Photosynthetic bacteria	have nigments in	(u) Aligiosperiils		
307.	(a) Leucoplasts	(b) Chloroplasts	(c) Chromoplasts	(d) Chromatophore	
	· · · ·		(c) Chromoplasts	(u) Chromatophore	
308.	Bacterial photosynthesi (a) Cytoplasm	(b) Chromoplast	(c) Chloroplast	(d) Oxysome	
200	• • •	o not release oxygen duri		(u) Oxysonie	
309.	-	(b) Bacteria	(c) Pteridophytes	(d) Mosses	
	(a) Algae	(0) Dacterra	(c) rtendopilytes	(u) 1v105585	
310.	Leptothrix is a (a) Nitrifying bacteria	(h) Sulphur bacteria	(c) Iron bacteria	(d) Hydrogen bacteria	
011	Green bacteria contains	-	(c) Itoli bacteria	(u) Hydrogen bacteria	
311.	(a) Chlorobium chlorop		(b) Chlorobium chloro	nhvll 650	
	(c) Both (a) and (b)	Jily II – 000	(b) Chlorobium chlorophyll – 650(d) Chlorobium chlorophyll – 700		
212		nthesis, hydrogen donor		pnyn – 700	
312.	(a) H_2S	(b) NH_2	(c) H_2O	(d) $H_2 SO_4$	
	., 2	() 2		(d) $H_2 S O_4$	
313.	-	ight carry out photosynth		(d) Ear and	
	(a) Ultraviolet light	(b) Blue	(c) Red	(d) Far red	
314.	× •	fers from chlorophyll 'a'	•	h turo hudrogon	
	(a) One pyrrol ring with	, ç	(b) One pyrrol ring wit	• •	
	(c) One pyrrol ring with	• •	(d) One pyrrol ring wit	n four nydrogen	
315.		bacteria possess both PS			
	(a) Purple sulphur bacto		(b)Cyanobacteria		
	(c) Purple non-sulphur		(d) Green sulphur bact	eria	
316.	Bacterial photosynthesi		(-) D - (1, DC L 1 DC L)		
	(a) PS I Champagemethatis haster	(b) PS II	(c) Both PS I and PS I	(a) None of them	
317.	•		(a) O meandar - 1 (
	(a) Sun	(b) Infra-red rays	(c) Organic substances	(d) Inorganic chemicals	

318.	8. Aerobic bacteria collect near illuminated phytoplankton due to					
	(a) Manufactured food (b) Light					
	(c) Oxygen	(d) Reduced CO_2 concent	tration			
319.	Which organism does i	not evolve oxygen in photo	osynthesis			
	(a) Anabaena	(b) Funaria	(c) Higher plants	(d) Rhodospirillum		
320.	One of the following is	photosynthetic non-sulph	ur bacterium			
	(a) Chlorobium	(b) Chromatium	(c) Rhodospirillum	(d) All of these		
321.	The bacterial photosyn	thesis is different from the	at of higher plants as			
	(a) Energy is not fixed		(b) Light is not required	d		
	(c) Oxygen is not relea	sed	(d) A host organism is	required		
322.	In chemosynthesis of <i>N</i>	VO_2 bacteria, the carbohyd	rates are formed by			
	(a) NO_2 and H_2O	(b) NH_3 and CO_2	(c) CO_2 , H_2O and SO_2	(d) Hydrocarbons		
323.	Which of the following	g fixes <i>CO</i> ² in carbohydrat	es			
	(a) Rhodospirillium	(b) Nitrobacter	(c) Rhizobium	(d) Bacillus		
Adv	ance Level					
324.	Which of the following	g bacteria grow on isoprop	yl alcohol and convert it	into acetone		
	(a) Fermentative bacter	ria	(b) Chemosynthetic bacteria			
	(c) Photosynthetic purp	ole non-sulphur bacteria	(d) Nitrifying bacteria			
325.	All life on earth derive	its energy directly or indi-	rectly from sun except			
	(a) Mushroom and more	ald (b)Chemosynthetic b	acteria			
	(c) Symbiotic bacteria	(d)Pathogenic bacteri	a			
D		ACTORS AFFECTIN	IG PHOTOSTNIHE	<u> 2515</u>		
	<i>c Level</i>	we the est of the territies	$a_{10} a_{10} a_{10} a_{10}$			
326.		orm the act of photosynthe		(1) A 11 - 6 41		
	(a) Palm plants	(b) Mango plants	(c) Lichens	(d) All of these		
327.		g is capable of performing		-		
	(a) <i>Opuntia</i>	(b) Mango	(c) Potato	(d) None of these		
328.		h temperature ponds are ca		_		
	(a) $30^{\circ}C$	(b) $75^{\circ}C$	(c) $90^{\circ}C$	(d) 100° <i>C</i>		
329.	In cold and foggy areas	-	(a) \mathbf{D} oth (b) and (b)	(d) Name of these		
	(a) Temperature	(b) Light	(c) Both (a) and (b)	(d) None of these		
330.		hiting factor is applied to	(a) Transmination	(d) Dhataarrathaaia		
	(a) Growth	(b) Respiration	(c) Transpiration	•		
331.		ur on photosynthesis, if the	e amount of oxygen in t	le aunosphere decreases		
	-	e and decrease in C_4 cycle				
	-	e and decrease in C_3 cycle				
	-	e and no change in C_4 cycl				
	(d) Increase in C_4 cycle and no change in C_3 cycle					

332.	At relatively high conc	entration of CO_2 , the rate	of					
	(a) Photosynthesis is in	creased	(b) Osmosis is increased					
	(c) Ascent of sap is dec	creased	(d) Transpiration is decreased					
333.	Q_{10} refers to							
	(a) Quality quotient		(b) Temperature quotie	ent				
	(c) Respiratory quotien	t	(d) Quantum constant					
334.	The modified view of t	he law of limiting factor i	s written as					
	(a) Relatively limiting	factor	(b) The factor in relativ	ve minimum				
	(c) The most significant	t factor	(d) Any of the above					
335.	In nature the photosynt	hesis should proceed upto	the limit of					
	(a) Light	(b) Temperature	(c) <i>CO</i> ₂	(d) Moisture and wind				
336.	Plants which can photo	synthesize at as low temp	erature (upto $-35^{\circ}C$) ar	e				
	(a) Conifers	(b) Blue-green algae	(c) Xerophytes	(d) Tropical plants				
337.	Which of the following	g is not required in the syn	thesis of carbohydrates					
	(a) <i>CO</i> ₂	(b) Chlorophyll	(c) Nitrogen (d) Water					
338.	For the process of phote exception	cosynthesis all except one	of the following items a	re essential. Point out the				
	(a) Water, minerals		(b) Light, chlorophyll					
	(c) <i>CO</i> ₂ , optimum temp	perature	(d) Oxygen, sucrose					
339.	Besides water and light	t, which is more essential	as a raw material for food formation					
	(a) <i>O</i> ₂	(b) <i>CO</i> ₂	(c) Mineral salts (d) NAD					
340.	For photosynthesis (i.e	. for the synthesis of organ	anic matter), the green plants need only					
	(a) Light	(b) Chlorophyll	(c) CO_2 and water (d) All of these					
341.	Rate of photosynthesis	is independent of						
	(a) Quality of light	(b) Intensity of light	(c) Duration of light	(d) Temperature				
342.	Which one of the follow	wing is not a limiting facto	or for photosynthesis					
	(a) Oxygen	(b) Carbon dioxide	(c) Chlorophyll	(d) Light				
343.	During monsoon, the r	ice crop of eastern states	of India shows lesser yi	ield due to limiting factor				
	of							
	(a) CO_2	(b) Light	(c) Temperature	(d) Water				
344.	Photorespiration is affe	•						
	(a) Temperature	(b) Light intensity	(c) CO_2 and O_2	(d) All of these				
345.		g's effect on photosynthesi						
	(a) Low rate of the pro-	cess due to O_2 supply	-	cess due to CO_2 supply				
	(c) Both (a) and (b)		(d) None of these					

Advance Level

346. Blackmann demonstrated that increasing illumination increased the photosynthetic rate upto a point when CO_2 becomes limiting. If light was not limiting, temperature becomes limiting. Emerson found that maximum CO_2 fixation could be achieved with brief flashes of light. Mark the correct statement in the following

(a) Only one factor can be limited in photosynthesis

(b) Photosynthesis consists of a light and dark reaction

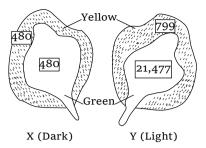
(c) The trapping of light by chloroplast is temperature dependent

(d) The trapping of light by chloroplast can coccur only if CO_2 is present

EXPERIMENTS

Basic Level

347.	Path of carbon in photosynthesis was found by using											
	(a) Centrifugation	(b) Radio isotopes	(c) Fractionation	(d) Chromatography								
348.	How chlorophyll would	d appear when seen in rec	l light									
	(a) Red	(b) Green	(c) Black	(d) Colourless								
349.	What plant is used in a	in experiment commonly	performed in laboratory	in demonstrate evolution								
	of oxygen in photosynt	hesis										
	(a) Sunflower	(b) Hydrilla	(c) Croton	(d) Balsam								
350.	*		e	ied but when a plant was								
	also introduced into it, the rat survived. Who performed this experiment											
	(a) Ingenhousz	(b) Priestley	(c) Englemann	(d) Thimann								
351.	Which element is left w	when chlorophyll is burnt										
	(a) Iron	(b) Manganese	(c) Magnesium	(d) Molybdenum								
352.	The path of CO_2 in the	e dark reaction of photos	ynthesis was successfull	y traced by the use of the								
	following or The dark	reaction is traced by										
	(a) O_2^{18}	(b) $C^{14}O_2$	(c) P^{36}	(d) X-rays								
353.	Moll's experiment show	VS										
353.	•	vs on from two surfaces of l	eaf									
353.	(a) Unequal transpiration											
353.	(a) Unequal transpiration	on from two surfaces of l anspiration and absorptic	n	ntial for photosynthesis								
	 (a) Unequal transpiration (b) Relation between transpiration (c) CO₂ is required for 	on from two surfaces of l anspiration and absorptic	n (d) Chlorophyll is esse	ntial for photosynthesis								
	 (a) Unequal transpiration (b) Relation between transpiration (c) CO₂ is required for 	on from two surfaces of 1 anspiration and absorptic photosynthesis	n (d) Chlorophyll is esse	ntial for photosynthesis (d) All of these								
354.	(a) Unequal transpiration (b) Relation between tr (c) CO_2 is required for Algae used by Calvin at (a) <i>Chlorella</i>	on from two surfaces of 1 anspiration and absorption photosynthesis and associates for photosy	n (d) Chlorophyll is esse enthetic research is (c) <i>Volvox</i>	(d) All of these								
354.	(a) Unequal transpiration (b) Relation between tr (c) CO_2 is required for Algae used by Calvin at (a) <i>Chlorella</i> Which is the evidence to	on from two surfaces of 1 anspiration and absorption photosynthesis and associates for photosy (b) <i>Chlamydomonas</i>	n (d) Chlorophyll is esse inthetic research is (c) <i>Volvox</i> d in photosynthesis come	(d) All of these es from water								
354.	(a) Unequal transpiration (b) Relation between transpiration (c) CO_2 is required for Algae used by Calvin at (a) <i>Chlorella</i> Which is the evidence of (a) Isotopic O_2 supplied	on from two surfaces of 1 anspiration and absorption photosynthesis and associates for photosy (b) <i>Chlamydomonas</i> to show that O_2 is release d as H_2O appears in the O_2	n (d) Chlorophyll is esse onthetic research is (c) <i>Volvox</i> d in photosynthesis come O ₂ released in photosynth	(d) All of these es from water								
354.	(a) Unequal transpiration (b) Relation between transpiration (c) CO_2 is required for Algae used by Calvin at (a) <i>Chlorella</i> Which is the evidence of (a) Isotopic O_2 supplied	on from two surfaces of 1 anspiration and absorption photosynthesis and associates for photosy (b) <i>Chlamydomonas</i> to show that O_2 is release d as H_2O appears in the O_2	n (d) Chlorophyll is esse onthetic research is (c) <i>Volvox</i> d in photosynthesis come O ₂ released in photosynth	(d) All of these es from water esis								
354.	(a) Unequal transpiration (b) Relation between transpiration (c) CO_2 is required for Algae used by Calvin at (a) <i>Chlorella</i> Which is the evidence transpiration (b) Isolated chloroplast reducing agent	on from two surfaces of 1 anspiration and absorption photosynthesis and associates for photosy (b) <i>Chlamydomonas</i> to show that O_2 is release d as H_2O appears in the O_2	n (d) Chlorophyll is esse enthetic research is (c) <i>Volvox</i> d in photosynthesis come 2 released in photosynth f supplied potassium fer	(d) All of these es from water esis								
354.	(a) Unequal transpiration (b) Relation between transpiration (c) CO_2 is required for Algae used by Calvin at (a) <i>Chlorella</i> Which is the evidence transpiration (a) Isotopic O_2 supplied (b) Isolated chloroplast reducing agent	on from two surfaces of 1 anspiration and absorption photosynthesis and associates for photosy (b) <i>Chlamydomonas</i> to show that O_2 is release d as H_2O appears in the O_2 t in water releases O_2 if	n (d) Chlorophyll is esse enthetic research is (c) <i>Volvox</i> d in photosynthesis come 2 released in photosynth f supplied potassium fer	(d) All of these es from water esis								


00	WICHISTER and Wayer	have studied the Warbur	g's effect on					
	(a) Pea	(b) Arachis	(c) Soyabean (d) All of these					
357.	What will be the effec	t on photosynthesis, if bo	oiled water is used in one of its experiment					
	(a) Process will be rap	vid	(b)Process will be lo	OW				
	(c) No process will tak	ke place	(d) None of these					
358.	Warburg studied his en	ffect on						
	(a) Chlamydomonas	(b) Chlorella	(c) Volvox	(d) All of these				
359.	Which of the followin	g technique was used by	Calvin in determining	carbon pathway				
	(a) Chromatography (b) Electrophoresis (c) Spectrophotometery (d) Histochemistry							
360.	•	• •	• • •	plant, a pinch of sodium				
	bicarbonate is added to	o water. The rate of phot	osynthesis or O_2 evolut	ion will				
	(a) Increase	(b) Decrease	(c) Stop	(d) Not be affected				
361.	CO_2 is necessary for p entering a control appa		nical used to remove th	is gas most effectively from				
	(a)Potassium hydroxi	de solution	(b) Calcium oxide					
	(c) Sodium carbonate		(d) Distilled water					
362.	Starch is detected in fo	ood by its						
	(a) White appearance		(b) Blue reaction with iodine solution					
	(c) Presence as an ene	rgy store	(d) Granular from even if cooked					
363.	Hydrilla is used for de	emonstrating photosynthe	esis because it shows					
	(a) Little respiration		(b) Little transpiration	on				
	(c) Rapid photosynthe	\$1\$						
		bbles which can be colle	cted over water					
364.	(d) Evolution of O_2 bu							

365. Two plants A and B are supplied with CO_2 with H_2O^{18} and CO_2^{18} with H_2O respectively which of the following plant releases O^{18} type oxygen in photosynthesis

(a) A plant (b) B plant (c) Both (a) and (b) (d) First (a) and then (b) **366.** If half of the leaves of a plant are removed, the rate of photosynthesis would be

- (a) More and the photosynthetic yield is also more (b)More but the photosynthetic yield is less
- (c) Less and the photosynthetic yield is also less (d)Less but the photosynthetic yield is more
- **367.** Variegated leaves of a plant were supplied with radioactive carbon dioxide $({}^{14}CO_2)$ during an experiment. Leaf X was kept in the dark and leaf Y was kept in the light. At the end of the experiment the radioactivity in the leaves was measured and found to be as shown on the diagram below.

What is the most likely explanation for the level of radioactivity found in the yellow zone of Y

(a) Photosynthesis occurs but no storage of starch occurs in this zone

(b) Radioactive carbon dioxide diffuses into the leaf and accumulates here

(c) Products of photosynthesis diffuse into the yellow zone

(d) Photosynthesis proceeds slowly in the absence of chlorophyll a and b

368. Engelmann's experiment with *Spirogyra* demonstrated that

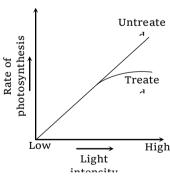
(a) The full spectrum of sunlight is needed for photosynthesis

- (b) Only red wavelengths are effective in causing photosynthesis
- (c) Only blue wavelengths are effective
- (d) Both blue and red wavelengths are effective

369. Algae float in the water during day time and sink during night time because

- (a) They become buoyant due to consumption of food materials in respiration
- (b) They loose weight at night

(c) They come up to enjoy sunshine


(d) They become buoyant in light due to accumulation of oxygen bubbles released in photosynthesis

370. The graph given below shown the effect of potassium cyanide on the rate of photosynthesis of *Chlorella* at different light intensities. Which one of the following can be deduced from the graph

(a) Potassium cyanide appears to inhibit the light (Hill) reaction

(b) Potassium cyanide appears to absorb more light at high light intensities

(c) Potassium cyanide appears to inhibit photosynthesis equally at high and low light intensities

- (d) Potassium cyanide appears to have no inhibiting effect on photosynthesis at low light intensities
- 371. If water supply to the plant is extremely meagre to as to cause wilting of leaves, the rate of photosynthesis may
 - (a) Increase
 - (c) First increase than decrease

- (b) Decrease
- (d) First decrease than increase

372. The thylakoids are removed and kept in a culture medium containing CO_2 and H_2O . If the setup is exposed to light, hexose sugars are not formed as the end product. The most appropriate reason for this will be that (a) Carbon assimilation cannot take place (b)The pigments (P-700 and P-680) are not linked (c) Enzymes are not available (d)The light trapping device is not functional **373.** A plant is kept in 300 $ppm CO_2$ concentration, what will happen to it (b)Plant will grow but will not die (a) Plant will die soon (c) Plant will show normal photosynthesis(d)Respiration will be greatly decreased 374. Which of the following isotope of carbon was used by Calvin to trace the path of carbon in photosynthesis or The isotope of carbon used extensively for studies in photosynthesis is (a) C^{13} (b) C^{14} (c) C^{15} (d) C^{16} **375.** The experimental material that has largely been responsible for making rapid advances in research on photosynthesis is (a)*Chlamydomonas* (b) Spinach leaf (c) *Chlorella* (d) Hydrilla **376.** The starch is insoluble in water even than it is stored in potato in more quantity (b) Because it is manufactured in tuber (a) By microbes (c) Because plants use it as food (d) Because first it come to tuber as sugar solution then it is stored as starch 377. Much of the starch is deposited in Banana fruit as it matures. Which of the following explains how the starch gets there (a) Starch solution passes through cells from phloem to fruit (b) Starch grains pass through cells from xylem to fruit (c) Starch solution passes through companion cells to fruit (d) A sugar solution passes through phloem cells to the fruit where it is changed to starch 378. Emerson found photosynthesis to increase with light flashes. Blackmann observed increase in photosynthesis with the increase in light and CO_2 till temperature became limiting. What of the following is true in light of above observation (a) Light intensity is temperature dependent (b) Light harvesting occurs only in the presence of CO_2 (c) Photosynthesis has two phases, light and dark (d) One factor is limiting photosynthesis at one time

	Column I		Column II					
A	Mitchell	р	Steps of dark reaction of photosynthesis					
			photosynthesis					
В	Gibbs	q	Photophosphorylation					
С	Arnon	r	Concept of free energy					
D	Calvin	S	Chemiosmotic hypothesis					
_	_	t	Mass flow hypothesis					

379. Match the items of column I and column II

(a) $A - s$, $B - t$, $C - r$, $D - q$	(b) $A - s, B - r, C - p, D - q$
(c) $A - r$, $B - s$, $C - p$, $D - q$	(d) $A - s, B - r, C - q, D - p$

C / CAM / PHOTORESPIRATION

Basic Level

380.	The enzymes of dark re	eaction in C_4 plants are for	und in				
	(a) Bundle sheath chlor	oplast	(b) Mesophyll chloroplast				
	(c) Both (a) and (b)		(d) None of these				
381.	The family in which ma	any plants are C_4 type					
	(a) Malvaceae	(b) Solanaceae	(c) Crucifereae	(d) Graminae			
382.	Which of the chloropla	st does not contain grana					
	(a) Pea leaf		(b) Hydrophytic stem				
	(c) Bundle sheath of su	garcane leaf	(d) Mesophyll of grasses				
383.	Conversion of oxaloace	etic acid into malic acid is	\$				
	(a) Oxidation	(b) Reduction	(c) Carboxylation	(d) Hydroxylation			
384.	Which of the following acid	g enzyme is responsible f	for the conversion of ox	aloacetic acid into malic			
	(a) PEP oxidase	(b) PEP reductase					
	(c) PEP dismutase	(d) Malate dehydrogenas	e				
385.	Which of the following	is required for transformation	ation of oxaloacetic acid	into malic acid			
	(a) NADP	(b) NADPH ₂	(c) Both (a) and (b)	(d) None of these			
386.	Number of carboxylation	on in C ₄ cycle is/are					
	(a) 1	(b) 2	(c) 5	(d) 3			

387.	In Hatch and Slack pat	hway									
	(a) Chloroplast are of s	same type									
	(b) Occurs in Kranz an agranal chloroplast	atomy where mesophyll h	ave small chloroplast wl	hereas bundle sheath have							
	(c) Occurs in Kranz an larger chloroplast	atomy when mesophyll h	ave small chloroplast wl	here a bundle sheath have							
	(d) Kranz anatomy where mesophyll cell are diffused										
388.	3. Which one statement is not true of the C_4 pathway										
	(a) Overcomes loss due	e to photorespiration	(b) The CO_2 acceptor i	s a C_3 compound							
	(c) Inhibited by high C	O_2 concentration									
	(d) It requires more energy than the C_3 pathways for production of glucose										
389.	In photorespiration gly	colate is converted to CO	2 and serine in								
	(a) Chloroplasts	(b) Peroxisomes	(c) Vacuoles	(d) Mitochondria							
390.	Which of the following	g is not a C_4 plant									
	(a) Sugarcane	(b) Maize	(c) Sorghum	(d) Wheat							
391.	In sugarcane plant ^{14}Ce	<i>O</i> ₂ is fixed in malic acid, i	in which the enzyme that fixes CO_2 is								
	(a) Fructose phosphata	se	(b) Ribulose biphospha	ate carboxylase							
	(c) Phosphoenol pyruv	ic acid carboxylase	(d) Ribulose phosphate kinase								
392.	The first reaction in ph	otorespiration is									
	(a) Carboxylation	(b) Decarboxylation	(c) Oxygenation	(d) Phosphorylation							
393.	Which of the following	g cells of C_4 plants are pro-	minently loaded with sta	arch							
	(a) Epidermal cells	(b) Mesophyll cells	(c) Bundle sheath cells	(d) All of these							
394.	Which one of the follo	wing is C_4 plant									
	(a) <i>Spirogyra</i>	(b) Pinus	(c) Sorghum	(d) Funaria							
395.	Agranal chloroplasts of	ccur in certain									
	(a) Succulents	(b) C_4 plants	(c) Hydrophytes	(d) C_3 plants							
396.	Dimorphism of chlorop	plast is found in									
	(a) C_4 plants	(b) C_3 plants	(c) CAM plants	(d) All of these							
397.	Kranz type of anatomy	is found in									
	(a) C_2 plants	(b) C_3 plants	(c) C_4 plants	(d) CAM plants							
398.	Which of the following	g process shows light deac	idification and night aci	dification							
	(a) CAM cycle	(b) C_3 cycle	(c) C_4 cycle	(d) All of these							
1											

399.	Which of the following	g is a CAM plant						
	(a) Maize	(b) Sugarcane	(c) Agave	(d) Mango				
400.	In which of the follow	ing there is a loss of energ	<u>y</u>					
	(a) Respiration	(b) Photorespiration	(c) Photosynthesis	(d) None of these				
401.	C_4 plants are found and	ong						
	(a) Gramineae only	(b) Monocots only						
	(c) Dicots only	(d) Monocots as well as	dicots					
402.	In C_4 plants, CO_2 com	bine with PEP in presence	e of					
	(a) PEP carboxylase	(b) RuBP carboxylase	(c) RuBP oxygenase	(d) Hydrogenase				
403.	Which of the following	g anatomical features char	cacterize a C_4 plant					
	(a) Chloroplast packed	l bundle sheath cells	(b) Small-sized stomat	al pores				
	(c) More compact mes	ophyll with reduced inter	cellular spaces	(d) All of these				
404.	How many types of ph	otosynthetic cells occur in	n C_4 plant					
	(a) One type	(b) Two types	(c) Four types	(d) Eight types				
405.	Which one of the follo	wing is wrong in relation	on to photorespiration					
	(a) It is a characteristic	c of C_3 plants	(b)It occurs in chloroplasts					
	(c) It occurs in day tim	ne only	(d)It is a characteristic of C_4 plants					
406.	In CAM cycle, during	formation of malic acid, s	stomata remains					
	(a) Open	(b) Closed	(c) Semiopen	(d) Always closed				
40 7.	CAM photosynthesis of	occurs in plants with						
	(a) Thin green leaves v	with reticulate venation	(b) Thin green leaves	with parallel venation				
	(c) Fleshy green leaves	S	(d) Thin coloured leav	es				
408.	C_4 plants are adapted t							
	(a) Hot and dry climat		(b) Temperate climate					
	(c) Cold and dry clima		(d) Hot and humid clir	nate				
409.		g is CO_2 acceptor in C_4 pl						
	(a) Phosphoenol pyruv		(b) Ribulose 1, 5 dipho	-				
	(c) Oxaloacetic acid (C		(d) Phosphoglyceric ad	ciù (PGA)				
410.	<i>C</i>⁴ photosynthesis doe(a) <i>Zea mays</i>		(b) Saccharum munja					
	(a) Zea mays(c) Saccharum officina	ารบท	(d) Euphorbia splende	ns				
411.	C_4 plants are also know		(d) Euphoroia spienae	115				
411.	(a) Hatch and Slack ty		(b)Calvin type					
	(c) Calvin and Basshar	-	(d) Emerson type					
	(c) currin und Dubblid							

412.	In C ₄ plants, Calvin cy	cle occurs in								
	(a) Stroma of bundle s	heath chloroplast	(b) Mesophyll chloroplast							
	(c) Grana of bundle sh	eath chloroplast								
		CO_2 is fixed mainly by PE								
413.		hotosynthesis carbon diox		_						
	(a) Palisade tissue	(b) Spongy mesophyll		(d) Guard cells						
414.	-	O ₂ fixation in Hatch and S								
	(a) Formation of oxald cells	pacetate by carboxylation	of phosphoenol pyruva	te (PEP) in bundle sheath						
	(b) Formation of phosphoglyceric acid in mesophyll cells									
	(c) Formation of bund	le sheath cells								
	(d) Formation of oxale cells	pacetate by carboxylation	of phosphoenol pyruvat	e (PEP) in the mesophyll						
415.	The C_4 plants are diffe	erent from C_3 plants with r	reference to the							
	(a) Substance that acce	ept CO ₂ in carbon assimila	ation							
	(b)Type of end produc	t of photosynthesis								
	(c) Number of ATP th	at are consumed in prepar	ing sugar							
	(d) Types of pigments	involved in photosynthesi	is							
416.	The energy wastage or	ccurs during								
	(a) Dark respiration	-	(c) Glycolysis	(d) Photorespiration						
417.	Which one is a C_4 plan									
	(a) Papaya	(b) Pea	(c) Potato	(d) Maize						
418.	Which of the plants ca	·								
	(a) Members of gramin		(b) Members of cactaceae							
	(c) Members of cheno	podiaceae	(d) All of these							
419.	Which pair is wrong									
	(a) C_3 – Maize		(b) Calvin cycle \rightarrow PC	βA						
	(c) Hatch and Slack cy	$vcle \rightarrow OAA$	(d) C_4 – Kranz anatom	y						
420.	C_4 plants have higher t	net photosynthetic rate as	they have							
	(a) No photorespiration	n	(b) PEP as CO_2 accept	or						
	(c) Kranz anatomy		(d) Photosynthesis eve	n at low light intensity						
421.	Photorespiration is cha	aracteristic of								
	(a) C_3 plants	(b) C_4 plants	(c) CAM plants	(d) All of these						

422.	In Amaranthus, the first	t <i>CO</i> ² acceptor is						
	(a) Pyruvate	(b) Phosphenol pyruvate						
	(c) Ribulose phosphate	(d) Ribulose biphosphate						
423.	C ₄ plants require							
	(a) Lesser CO_2	(b) Lesser salts	(c) Lesser water	(d) Lesser light				
424.	Photorespiration occurs	s in						
	(a) Ribosomes	(b) Mitochondria	(c) Peroxisomes	(d) Lysosomes				
425.	Organelles involved in	photorespiration are						
	(a)Mitochondria, chlore	oplasts and ribosomes						
	(b)Mitochondria, perox	isomes and chloroplasts						
	(c) Mitochondria, nucle	eus and ribosomes						
	(d) Mitochondria, peroz	xisomes and glyoxysomes						
426.	C_4 and C_3 pathways of	CAM plants are separated	ed by					
	(a) Bundle sheath		(b) Mesophyll and bundle sheath cells					
	(c) Mesophyll and bund	dle sheath chloroplasts	(d) Time					
427.	PEPco is associated wi	th						
	(a) C_3 plants	(b) CAM plants	(c) C_4 plants	(d) Both (b) and (c)				
428.	In succulent xerophytes is called	s, there is accumulation of	malic acid in night, this	s path of CO_2 metabolism				
	(a) Beta carboxylation		(b) Hatch and Slack cycle					
	(c) Crassulacean acid n	netabolism	(d) Calvin cycle					
429.	In C_4 – plants, photosys	stem II is absent in chlorop	plasts of					
	(a) Mesophyll cells		(b) Bundle sheath cells					
	(c) Palisade cells		(d) Spongy cells					
430.	The carbon dioxide acc	ceptor in CAM plants is						
	(a) Malic acid pyruvic acid	(b) Oxalo-acetic acid	(c) Pyruvic acid	(d) Phosphoenol				
431.	The first stable product	t in CAM/C ₄ plants is						
	(a) Starch	(b) Oxalo-acetic acid	(c) Sugar	(d) Malic acid				
432.	The co-operative photo	synthesis is found in						
	(a) C_4 – plants	(b) C_3 – plants	(c) C_2 – plants	(d) Succulents				
1								

433.	. Glycolate accumulates in chloroplasts when there is										
	(a) High CO ₂	(b)Bright light	(c) Low temperature (d) Low CO_2								
434.	The substrate for photo	respiration is									
	(a) Phosphoglyceric ac	id (b)Glycolate	(c) Serine	(d) Glycine							
Adv	ance Level										
435.	5. Who proposed the cycle of events leading to the fixation of CO_2 in mesophyll and its reduction in bundle sheath										
	(a) Emerson	(b) Melvin Calvin	(c) Hatch and Slack	(d) Hill and Bendall							
436.	Which of the following	g is essential for the norma	al growth of C_4 plants								
	(a) Silicon (100 <i>m</i>)	(b) Vanadium (100µ <i>m</i>)	(c) Sodium (100 <i>m</i>)	(d) Barium (100 <i>m</i>)							
437.	Which of the following	g plants stand intermediate	iate between C_3 and C_4 plants								
	(a) Triticum aestivum	(b) Zea mays	(c) <i>Panicum milioides</i> (d) All of these								
438.	Correlation between 'K	ranz' anatomy and C_4 path	of CO_2 assimilation was first established by								
	(a) Hill and Bendall	(b) Calvin	(c) Dowton and Tregu	na (d)Arnold							
439.		ng crop plant is very eff s from $2kg$ to $4kg/m^2$ or ev		ar energy and whose net							
	(a) Sugarcane	(b) Rice	(c) Wheat	(d) Bajra							
440.	Tropical plant like suga	arcane show high efficiend	cy of CO_2 fixation becau	ise of							
	(a) Calvin cycle	(b) Hatch and Slack cycl	e								
	(c)EMP pathway	(d) TCA cycle									
441.	In C ₄ plants mesophyll	cells are connected with b	oundle sheath cells with	the help of							
	(a) Cytoplasmic connect	ctions	(b) Special connecting	tissues							
	(c) Plasmodesmata		(d) Connection is not e	ssential							
1											

<u>ANSWER</u>

ASSIGNMENT (BASIC & ADVANCE LEVEL)

												r	r		r	r	r		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
а	a	b	С	a	d	d	d	b	b	d	b	b	a	c	b	c	a	c	a
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
b	d	c	a	c	c	b	c	d	a	a	d	d	a	d	d	a	b	c	a
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
b	b	a	a	a	c	С	d	c	b	b	b	b	b	b	c	c	c	b	b
61	62	63	64	65	66	67	68	69	7 0	71	72	73	74	75	76	77	78	79	80
c	b	d	c	d	c	b	d	d	b	c	d	b	a	d	c	a	a	c	a
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
c	d	d	b	c	c	c	a	d	a	b	a	b	a	a	b	b	a	c	d
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
a	a	a	a	a	d	b	b	d	a	b	a	b	a	a	d	d	b	c	b
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
с	a	b	d	d	b	с	c	d	d	c	b	a	d	d	c	b	b	d	c
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
b	c	c	a	d	d	a	d	b	b	c	a	c	c	b	a	c	a	c	d
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
b	a	d	b	a	d	с	b	b	c	d	b	b	b	a	d	c	c	c	d
181 :	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
с	a	c	c	a	c	b	a	a	b	a	b	a	c	b	a	b	b	b	b
201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220
b	b	d	c	c	a	b	c	b	d	b	a	c	a	a	d	a	a	a	a
221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240
а	a	b	a	a	a	b	c	d	c	c	b	b	b	d	b	c	d	a	b
241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260
a	c	a	a	b	a	a	c	b	d	d	c	c	d	b	d	b	c	b	b
261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280
b	c	a	c	b	c	a	d	d	b	b	a	b	b	a	b	b	b	a	d
281 2	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300
b	b	c	с	a	d	C	b	c	a	b	b	a	b	c	b	c	b	b	a

_																			
301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320
a	c	a	b	b	a	d	a	b	c	c	a	d	b	b	a	d	c	d	c
321	322	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340
c	b	a	c	b	c	a	b	c	d	c	a	b	d	a	a	c	d	b	d
341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359	360
c	a	b	d	a	b	b	c	b	b	c	b	c	a	d	c	c	b	a	a
361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	379	380
a	b	d	a	a	b	c	d	d	d	b	c	c	b	c	d	d	c	d	a
381	382	383	384	385	386	387	388	389	390	391	392	393	394	395	396	397	398	399	400
d	c	b	d	b	b	b	a	d	d	c	c	c	c	b	a	c	a	c	b
401	402	403	404	405	406	407	408	409	410	411	412	413	414	415	416	417	418	419	420
d	a	d	b	d	a	c	a	a	d	a	a	b	d	a	d	d	b	a	a
421	422	423	424	425	426	427	428	429	430	431	432	433	434	435	436	437	438	439	440
a	b	a	c	b	d	d	c	b	d	d	a	d	b	с	с	c	с	a	b

441 C
