

- 1. Wohler prepared the first organic compound urea while preparing ammonium cyanate.
- 2. Classification of organic compounds:

3. Isomerism. The existence of two or more chemical compounds with the same molecular formula but having different properties owing to different arrangement of atoms within the molecule is termed as isomerism.

C-90

- 4. Hydrocarbons : All those compounds which contain just carbon and hydrogen are called hydrocarbons.
- 5. Functional group : The atom or group of atoms which determine the properties of a compound is known as functional group. e.g. -OH (alcohol), -CHO (aldehyde), $> C = C < (alkene), -C \equiv C (alkyne),$ etc.
- 6. Homologous Series : A series of compounds in which the same functional group substitutes hydrogen in a carbon chain is called a homologous series. e.g. CH_3Cl and C_2H_5Cl differ by a $-CH_2$ unit.
- 7. Nomenclature : Chemists developed a set of rules, for naming organic compounds based on their structures which is known as IUPAC rules.

The IUPAC name of an organic compounds consists of three parts.

Prefix – word root – Suffix

Word root : A word root indicates the nature of basic carbon skeleton.

- In case a functional group is present, it is indicated in the name of the compound with either as a prefix or as a suffix.
- While adding the suffix to the word root the terminal 'e' of carbon chain is removed
- If the carbon chain is unsaturated then the final 'ane' in the name of the carbon chain is substituted by 'ene' or 'yne' respectively for double and triple bonds.

Functional group	Prefix/Suffix	Functional group	Example	IUPAC Name	
1. Halogen	Chloro, bromo, Iodo	-Cl, - Br, - I	$\begin{array}{c ccc} H & H & H \\ & & & \\ H - C - C - C - C - Br \\ & & \\ H & H & H \end{array}$	– Bromopropane	
2.Alcohol	-ol	-OH	$ \begin{array}{ccc} H & H \\ $	–Ethanol	
3. Aldehyde	-al	-CHO	$CH_3CH_2CH_2CHO$	– Butanal	
4. Ketone	-one	-CO	CH ₃ COCH ₃	-Propanone	
5. Carboxylic acid	-oic acid	-СООН	CH ₃ CH ₂ COOH	-Propanoicacid	
6. Amine	Amino	-NH ₂	CH ₃ CH ₂ NH ₂	-Amino ethane	
7. Ester	oate –	-COOR	CH ₃ COOCH ₃	-Methyl ethanoate	
8. Double bond	ene		$CH_3 - CH = CH_2$	-Propene	
9. Triple bond	yne		$CH_3 - CH_2 - C \equiv CH$	-Butyne	

8. Chemical Properties of Carbon Compounds

(i) **Combustion :** Carbon compound undergo combustion reaction to produce CO_2 and H_2O with the evolution of heat and light.

$$CH_4 + O_2 \longrightarrow CO_2 + H_2O + heat and light$$

(ii) Oxidation:

$$\begin{array}{c} CH_{3}CH_{2}OH \xrightarrow{alk. KMnO_{4}/\Delta} CH_{3}COOH \\ ethanol & ethanoic acid \end{array}$$

The substance which are used for oxidation are known as oxidising agent. e.g alkaline $KMnO_4$, acidified $K_2Cr_2O_7$. (iii) Addition reaction :

Unsaturated hydrocarbons (alkenes and alkynes undergo addition reaction in presence of catalysts e.g.

(iv) Substitution reaction : Saturated hydrocarbons give substitution reaction e.g. methane in presence of sunlight undergo chlorination.

EXERCISE

- 1. Two adjacent members of a homologous series have :
 - (a) a difference of $-CH_2$ in their structure
 - (b) a difference of 14 a.m.u. in molecular mass
 - (c) same general methods of preparation
 - (d) all of the above
- 2. Alkenes are characterized by
 - (a) C C bonds (b) C = C bonds
 - (c) $C \equiv C$ bonds (d) cyclic structure
- 3. Which of the following contains carbonyl group?
 - (a) Ketones (b) Aldehydes
 - (c) Esters (d) All of these
- 4. The functional group present in $CH_3COOC_2H_5$ is
 - (a) ketonic (b) aldehydic
 - (c) ester (d) carboxylic
- 5. Butanone is a four-carbon compound with the functional group
 - (a) carboxylic acid (b) aldehyde
 - (c) ketone (d) alcohol
- 6. Which of the following is incorrectly matched?
 - (a) Vinegar \rightarrow carboxylic acid
 - (b) $C_2H_6 \rightarrow alkane$

8.

9.

- (c) Ethanol \rightarrow alcohol
- (d) Methanol \rightarrow ketone
- 7. If a hydrocarbon has any double bond, it is
 - (a) alkyne (b) alkane
 - (c) alkene (d) All the above
 - Alkynes are characterized by
 - (a) C C bonds (b) C = C bonds
 - (c) $C \equiv C$ bonds (d) cyclic structure
 - How many different isomers are possible for a hydrocarbon with the molecular formula C_4H_{10} ?
 - (a) 1 (b) 2
 - (c) 3 (d) 5
- 10. The general formula $C_nH_{2n}O_2$ could be for open chain (a) diketones (b) carboxylic acids
 - (c) diols (d) dialdehydes
- 11. The IUPAC name of CH₃CH₂COCl is (a) propanoyl chloride (b) ethanoyl chloride
 - (c) acetyl chloride (d) chloroethane
- 12. General formula of alkenes and alkyl radicals are respectively:
 - (a) C_nH_{2n} and C_nH_{2n+1} (b) C_nH_{2n} and C_nH_{2n+2}
 - (c) C_nH_{2n-1} and C_nH_{2n} (d) C_nH_{2n+1} and C_nH_{2n+2}
- 13. The IUPAC name of $CH_3COOC_2H_5$ will be (a) ethyl acetate (b) ethyl ethanoate
 - (a) ethyl acetale (b) ethyl ethanoal
 - (c) methyl propanoate (d) none of these
- 14. While cooking, if the bottom of the vessel is getting blackened on the outside, it means that
 - (a) the food is not cooked completely.
 - (b) the fuel is not burning completely.
 - (c) the fuel is wet.
 - (d) the fuel is burning completely.

- 16. Which is a general formula of alkenes?
 - (a) $C_n H_{2n+2}$ (b) $C_n H_{2n}$
 - (c) $C_n H_{2n-2}$ (a) None of these
- 17. Organic compounds will always contain
 - (a) carbon (b) hydrogen
 - (c) nitrogen (d) sulphur
- 18. Methane, ethane and propane are said to form a homologous series because all are
 - (a) hydrocarbons
 - (b) saturated compounds
 - (c) aliphatic compounds
 - (d) differ from each other by a CH_2 group
- 19. General formula of alkyne is
- 20. Which among the following are unsaturated hydrocarbons?
 - (i) $H_3C CH_2 CH_2 CH_3$
 - (ii) $H_3C C \equiv C CH_3$
 - (iii) $H_3C CH CH_3$ | CH_3

(iv)
$$H_3C - C = CH_2$$

 $\downarrow CH_3$

- (a) (i) and (iii) (b) (ii) and (iii)
- (c) (ii) and (iv) (d) (iii) and (iv)
- 21. Pentane has the molecular formula C_5H_{12} . It has
 - (a) 5 covalent bonds (b) 12 covalent bonds
 - (c) 16 covalent bonds (d) 17 covalent bonds
- 22. The heteroatoms present in

$$CH_3 - CH_2 - O - CH_2 - CH_2 Cl are$$

- (i) oxygen (ii) carbon
- (iii) hydrogen (iv) chlorine
- (a) (i) and (ii) (b) (ii) and (iii)
- (c) (iii) and (iv) (d) (i) and (iv)
- 23. Isomers of a substance must have the same
 - (a) structural formula
 - (b) physical properties
 - (c) chemical properties
 - (d) molecular formula

ANSWER KEY									
1	(d)	7	(c)	13	(b)	19	(c)		
2	(b)	8	(c)	14	(b)	20	(c)		
3	(d)	9	(b)	15	(b)	21	(c)		
4	(c)	10	(b)	16	(a)	22	(d)		
5	(c)	11	(a)	17	(a)	23	(d)		
6	(d)	12	(a)	18	(d)				

HINTS AND SOLUTIONS

6.

7.

- 2. (b) Alkanes are saturated compounds in which all the four electrons of carbon are covalently bonded with other carbon atoms through single bond
- 3. (d) All contains carbonyl (>C = O) compounds.

Ketones
$$\longrightarrow$$
 $\stackrel{O}{\stackrel{||}{-}}$
Aldehydes \longrightarrow $\stackrel{O}{-}$ $\stackrel{C}{C-}$ H
 $\stackrel{O}{\stackrel{||}{-}}$
Esters \longrightarrow $\stackrel{-}{-}$ $\stackrel{C}{-}$ $O-$ H

4. (c)
$$CH_3 - \underbrace{C-O-H}_{ester group}$$

5. (c)
$$CH_3 - CH_2 - C - CH_3$$

Butanone or methyl ethyl ketone

- (d) Methanol is an alcohol.
- (c) Alkenes have double bond.

9. (b)
$$CH_3 - CH_2 - CH_2 - CH_3$$
 $CH_3 - CH - CH_3$
normal butane $|$
 CH_3
iso butane
(chain isomers)

- 10. (b) General formula
- 18. (d) They belong to homologus series as they successively have a difference of $a CH_2$ group.
- 20. (c) Unsaturated hydrocarbons have double or triple bond.

H H H H H
H H H H
21. (c)
$$H = C = C = C = C = C = C = H$$
 i.e., 16 covalent
| | | | | |
H H H H H
pentane

bonds.

23. (d) Organic compounds having same molecular formula but differ from each other in physical properties or chemical properties or both are known as isomers.