## 17. ALTERNATING CURRENT

## 1. AC AND DC CURRENT:

A current that changes its direction periodically is called alternating current (AC). If a current maintains its direction constant it is called direct current (DC).











## 3. ROOT MEAN SQUARE VALUE:

Root Mean Square Value of a function, from  $t_i$  to  $t_g$ , is defined as  $f_{mis} = \sqrt{\frac{t_{il}}{t_2 - t_1}}$ .

## 4. POWER CONSUMED OR SUPPLIED IN AN AC CIRCUIT:





$$= \ \frac{V_m}{\sqrt{2}} \ . \ \frac{I_m}{\sqrt{2}} \ . \ \cos \varphi \ = \ V_{rms} \ I_{rms} \ \cos \varphi.$$

Here  $\cos \phi$  is called **power factor**.

#### 5. SOME DEFINITIONS:

The factor  $\cos \phi$  is called **Power factor**.

 $I_{m}$  sin  $\phi$  is called wattless current.

Impedance Z is defined as Z = 
$$\frac{V_m}{I_m} = \frac{V_{rms}}{I_{rms}}$$

 $\omega L$  is called inductive reactance and is denoted by  $X_{\blacksquare}$ 

 $\frac{1}{\omega C}$  is called **capacitive reactance** and is denoted by  $X_{\underline{\boldsymbol{w}}}$ 

## 6. PURELY RESISTIVE CIRCUIT:

$$I = \frac{v_s}{R} = \frac{V_m \sin \omega t}{R} = I_w \sin \omega t$$



$$I_m = \frac{V_m}{R}$$

$$I_{ms} = \frac{V_{ms}}{R}$$

$$<$$
P> =  $V_{ms}I_{ms}\cos \phi = \frac{V_{ms}}{R}$ 

7. **PURELY CAPACITIVE CIRCUIT:** 

$$I = = \frac{V_m}{1/\omega C} \cos \omega t$$

= 
$$\frac{V_m}{X_C}$$
 cos  $\omega t$  =  $I_m$  cos  $\omega t$ .

 $X_{\infty} = \frac{1}{\omega C}$  and is called capacitive reactance.

 ${\bf I}_{\rm le}$  leads by  ${\bf v}_{\rm le}$  by  $\pi/2$  Diagrammatically (phasor diagram) it is represented as

$$\underset{\vee_{m}}{\longrightarrow}^{I_{m}}.$$

Since 
$$\varphi$$
 =90°,  = V\_{\text{imis}} \, I\_{\text{imis}} cos \, \varphi = 0





#### **MAGNETIC EFFECT OF CURRENT & MAGNETIC FORCE ON CHARGE/CURRENT**

1. Magnetic field due to a moving point charge

$$B = \frac{\mu_0}{4\pi} \frac{q(v r)}{r^3}$$

2. **Biot-savart's Law** 

$$\overrightarrow{dB} = \frac{\mu_0 I}{4\pi} \quad \frac{\overrightarrow{d\ell} \quad \overrightarrow{r}}{r^3}$$

Magnetic field due to a straight wire 3.

$$B = \frac{\mu_0}{4\pi} \frac{1}{r} (\sin \theta_i + \sin \theta_g)$$

Magnetic field due to infinite straight wire 4.

$$B = \frac{\mu_0}{2\pi} \frac{I}{r}$$

# 5. Magnetic field due to circular loop

(i) At centre 
$$B = \frac{\mu_0 NI}{2r}$$

(ii) At Axis 
$$B = \frac{\mu_0}{2} \frac{NIR^2}{(R^2 + x^2)^{3/2}}$$

## 6. Magnetic field on the axis of the solenoid

$$B = \frac{\mu_0 n l}{2} (\cos \theta_i \cos \theta_g)$$

## 7. Ampere's Law



## 8. Magnetic field due to long cylinderical shell

$$B = 0, r < R$$

$$= \frac{\mu_0}{2\pi} \frac{I}{r}, r \quad R$$

### 9. Magnetic force acting on a moving point charge

a. 
$$F = q(v B)$$

$$r = \frac{mv}{qB}$$

$$T = \frac{2\pi m}{qB}$$

(ii) 
$$r = \frac{mv \sin \theta}{qB}$$

$$T = \frac{2\pi m}{qB}$$
Pitch = 
$$\frac{2\pi mv \cos \theta}{qB}$$

**b.** 
$$F = q \begin{bmatrix} (v & B) + E \end{bmatrix}$$

- 10. Magnetic force acting on a current carrying wire
- 11. Magnetic Moment of a current carrying loop
- 12. Torque acting on a loop
- 13. Magnetic field due to a single pole
- 14. Magnetic field on the axis of magnet
- 15. Magnetic field on the equatorial axis of the magnet
- 16. Magnetic field at point P due to magnet

$$F = I \begin{pmatrix} \ell & B \end{pmatrix}$$

$$M = N \cdot I \cdot A$$

$$\vec{\tau} = \vec{M} \quad \vec{B}$$

$$B = \frac{\mu_0}{4\pi} \frac{m}{r^2}$$

$$B = \frac{\mu_0}{4\pi} \cdot \frac{2M}{r^3}$$

$$B = \frac{\mu_0}{4\pi} \cdot \frac{M}{r^3}$$

$$B = \frac{\mu_0}{4\pi} \frac{M}{r^3} \sqrt{1 + 3\cos^2 \theta}$$

