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CHAPTER XXI.

NVERGENCY AND DIVERGENCY OF SERIES.

076 Ax expression in which the successive terms are formed

^ ! lr law is called a series ; if the series terminate at
by some reguJ« ^ w ^e ^ number q{
some assigiMgl t^m lt: lb ca'iea a

B^J.
terms is unfimitfd, it is called an infinite series.

In the preset chapter we shall usually denote a series by

an expression c- °ue form

u
x
+ n

2
+ i/-

3
+ + u +

/
Suppose that we have a series consisting of w terms.

The sum of the series will be a function of n; if n increases

indetinitely, the sum either tends to become equal to a certain

finite fcmi*, or else it becomes infinitely great.

An infinite series is said to be convergent when the sum

of the first n terms cannot numerically exceed some finite

quantity however great n may be.

An infinite series is said to be divergent when the sum of

the first n terms can be made numerically greater than any finite

quantity by taking n sufficiently great.

978 If we can find the sum of the first n terms of a given

series we may ascertain whether it is convergent or divergent

W examining whether the series remains finite, or becomes in-

finite, when n is made indefinitely great.

For example, the sum of the first n terms of the series

.
1-*"

1 + x + x2 + x* + ... is . _ a
.

•
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If x is numerically less than 1, the sum appro. ; -, the
finite limit j—- ,

and the series is therefore converge,^!

If x is numerically greater than 1, the sum of t„ first

n terms is —y ,
and by taking n sufficiently great, tk can

cUve?ge
d

n
e

t.

greater ""* ™Y &n*e l""*^ thus «» *>•» is

serie'srdi^ent
Um

* ^ ** "^ * "» *"d ***» ^
If x= - 1, the series becomes

1-1+1-1+1 -1+
The sum of an even number of terms is I ,;L the sumof an odd number of terms is 1 • and thiw +\L •„

T

between the values and 1. Thi t,feXAc ^™
1which may be called o-iBo^ orA^c^

5 ^^
f /^' ?i

here are
,
many 0ases in which we'haic ,„. hodof finding the. sum of the first n terms of a series. Wep"

therefore to investigate rules by which we can test the cTtS:T °f a^ «*• -*Hout effecting its

280. 4n tra/mfe series w* taAicA *Ae ferw are alternately

Let the series be denoted by

M
,
-% + % - u, + u - M +

where w1 >^>^a >w,> M ....* o 4 5

for,™
6 giVe

" SerfeS may be Written in each of the following

K-«,)+(«,-«0 +(».-«,) + ^
».-K-«J-(«4-«,)-K-«r)- (

2).

From (1) we see that the sum of any number of terms isa positive quantity; and from (2) that the sum of any nnmberof terms is less than «, ; hence the series is convergent.
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281. For example, the series

, 11111
1 f- 1 h

2 3 4 5 6

is convergent. By putting x -• 1 in Art. 223, we see that its

sum is loge 2.

Again, in the series

23 4 _5 6 _7
T~2

+ 3"4 +
5
~6 + '

each term is numerically less than the preceding term, and the

series is therefore convergent. But the given series is the sum of

i
11111 m

1 -2 + 3-4 + 5"6 +
' (1) '

and 1-1+1-1 + 1-1 + , (2).

Now (1) is equal to loge 2, and (2) is equal to or 1 according'

as the number of terms is even or odd. Hence the given series

is convergent, and its sum continually approximates towards

log,, 2 if an even number of terms is taken, and towards 1 + log
8
2

if an odd number is taken.

282. An infinite seizes in which all the terms are of the same

sign is divergent \f each term is greater than some finite quantity

however small.

For if each term is greater than some finite quantity a,

the sum of the first n terms is greater than na ; and this, by
taking n sufficiently great, can be made to exceed any finite

quantity.

283. Before proceeding to investigate further tests of con-

vergency and divergency, we shall lay down two important

principles, which may almost be regarded as axioms.

I. If a series is convergent it will remain convergent, and
if divergent it will remain divergent, when we add or remove
any finite number of its terms ; for the sum of these terms is

a finite quantity.

II. If a series in which all the terms are positive is con-

vergent, then the series is convergent when some or all of the

terms are negative ; for the sum is clearly greatest when all

the terms have the same sign.

We shall suppose that all the terms are positive, unless the

contrary is stated.
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284. An infinite series is convergent iffrom and after some

fixed term the ratio of each term to the preceding term is numerically

less than some quantity zuhich is itself numerically less than unity.

Let the series beginning from the fixed term be denoted by

u, + u
c>
+ u^ + u^ +12 3 4

U U
1

UA
and let — < r, — < r, -* < r

U
:

U
2

U
s

where r < 1.

Then u, +u
r,
+ u+uA +12 3 4

/_. u
9

u. ua n u u
1

V ^ <fa
u

x
u

3
u

2 Ul 1

< it, (1 + r + r
2 + r3 + )

;

tliat is, <
~

1

, since r < 1.
1 - r

u.

Hence the given series is convergent.

285. In the enunciation of the preceding article the student

should notice the significance of the words " from and after a

fixed term."

Consider the

1
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286. An infinite series in which all the terms are of the same
sign is diverge)it iffrom and after some fixed term the ratio of ea<-li

term to the 'preceding term is greater than unify, or equal to unify.

Let the fixed term be denoted by t* . If the ratio is equal to

unity, each of the succeeding terms is equal to u , and the sum
of n terms is equal to nu

l ; hence the series is divergent.

If the ratio is greater than unity, each of the terms after the

fixed term is greater than u
x , and the sum of n terms is greater

than nu
}

; hence the series is divergent.

287. In the practical application of these tests, to avoid

having to ascertain the particular term after which each term is

greater or less than the preceding term, it is convenient to find

the limit of — - when n is indefinitely increased; let this limit

n—\

be denoted by A.

If X< 1, the series is convergent. [Art. 284.]

If \> 1, the series is divergent. [Art. 286.]

If X=l, the series may be either convergent or divergent,

and a further test will be required ; for it may happen that

—— < 1 but continually approaching to 1 as its limit ivhen n is

n— 1
m

indefinitely increased. In this case we cannot name any finite

quantity r which is itself less than 1 and yet greater than X.

u
Hence the test of Art. 284 fails. If, however, —— > 1 but con-

u
H — I

tinually approaching to 1 as its limit, the series is divergent by
Art. 286.

We shall use " Liin —— " as an abbreviation of the words
u

,n — 1

U
"the limit of —— when n is infinite."

u .

n — 1

Example 1. Find whether the series whose nlh term is — -
.,
— is con-

1
di-

vergent or divergent.

„ ?/n (n + l)a:n ru^1 (n + l)(n-l)-

('„_! n2 {h - 1)
2 n*

him —

—

—x\
"n I
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hence if x < 1 the series is convergent

;

if x> 1 the series is divergent.

u
If x= l, then Lim ——=1, and a further test is required.

Example 2. Is the series

l2 + 22x + 32x2 + 4?xs+
convergent or divergent?

_ T . un n2 xn
~l

Here Lim —7jL =Lim-. —.
„ 9=x.un-i (n-l)-xn 2

Hence if x < 1 the series is convergent

;

if x> 1 the series is divergent.

If x= 1 the series becomes l 2 + 22 + 32 + 42 + . .
.

, and is obviously divergent.

Example 3. In the series

a+(a + d)r+{a + 2d)r2 +... + (a + n-1 . d)rn
~ 1 + ...,

, . wn T . a -t- (n - 1) d
Lim ——=Lim——. -^--.r= r;

»*-i a + (n-2)d

thus if r< 1 the series is convergent, and the sum is finite. [See Art. 60, Cor.]

288. If there are two infinite series in each of which all the

terms are ])Ositive, and if the ratio of the corresponding terms in

the two series is always finite, the two series are both convergent,

or both divergent.

Let the two infinite series be denoted by

u
x
+ u

a
+ ua

+ w
4
+ ,

and v, + v, + v, + v. +12 3 4

The value of the fraction

u
i
+ u

,
+ ua^ +n

n

lies between the greatest and least of the fractions

\ -*, -», [Art. 14.1

and is therefore a, finite quantity, L say

;

Hence if one series is finite in value, so is the other; if one
series is infinite in value, so is the other; which proves the

proposition.
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289. The application of this principle is very important, for
by means of it we can compare a given series with an auxiliary
series whose convergency or divergency has been already esta-

blished. The series discussed in the next article will frequently
be found useful as an auxiliary series.

290. The infinite series1111
y T

2P 3P 4.1'

is always divergent except when p is positive and greater than 1.

Case I. Let;? > 1.

The first term is 1 ; the next two terms together are less than
2 . 4
j—; the following four terms together are less than-—; the fol-
Z 4

lowing eight terms together are less than — ; and so on. Hence
o

2 4 8
the series is less than I + t^+th+ttt, +•••;

2P 4' o 1

that is, less than a geometrical progression whose common ratio

2
~j is less than 1, since p > 1 ; hence the series is convergent.

Case II. Let_p=l.

The series now becomes 1 + ^ + -^ + - + =;+ ...

2 3 4 5

2 1
The third and fourth terms together are greater than - or

^ ;
t —

4 1
the following four terms together are greater thau ^ or -

; the
o 2

8 1
following eight terms together are greater than — or -

; and so

on. Hence the series is greater than1111
2
+

2
+

2
+

2
+ '"'

and is therefore divergent. [Art. 2^6.]

Case III. Let p<\, or negative.

Each term is now greater than the corresponding term in

Case II., therefore the series is divergent.

Hence the series is always divergent except in the case when
p is positive and greater than unity.



236 HIGHER ALGEBRA.

Example. Prove that the series

2 3 4 n+1

is divergent.

Compare the given series with 1 + « + « + v "^

—

•"••••

Thus if «*n and vn denote the nth terms of the given series and the

auxiliary series respectively, we have

un _n+ l . 1 _ w + 1

i'n n2
' re ?i

7/

hence Zi-m, — =1, and therefore the two series are both convergent or both

divergent. But the auxiliary series is divergent, therefore also the given

series is divergent.

This completes the solution of Example 1. Art. 287.

291. In the application of Art. 288 it is necessary that the

limit of — should be finite ; this will be the case if we find our

auxiliary series in the following way :

Take u , the nth term of the given series and retain only the

highest powers of n. Denote the result by v
n ) then the limit of

u
- is finite by Art. 270, and v may be taken as the 7i

th term of

the auxiliary series.

3/2n2 - 1
Example 1. Shew that the series whose nth term is ,, = isr

Z/S?vi + 2n+5
divergent.

As n increases, un approximates to the value

l/w '
or

4/3 * i

n12

1 u 3/2
Hence, if v„=-r ,we have Lim—= ^r, which is a finite quantity;

~ vn v/3
n1 -

1
therefore the series whose nth term is — may be taken as the auxiliary

series. But this series is divergent [Art. 290] ; therefore the given series is

divergent.
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Example 2. Find whether the series in which

vn = ^/;<
:} +l -n

is convergent or divergent.

Here "»=« \\/ * + tf
~
*J

//

(
1 + »-»+ -;" 1

)

~3n2
9><

5 +

If we take vn= = , we have

vM 3 9n'JN

Luti — =x.
v„ 3n

But the auxiliary series

JL JL Jl l
P +

22
+

3
2+ '" n

1+ " -

is convergent, therefore the given series is convergent.

292. To shew that the expansion of (1 + x)n by the Binomial

T/teorem is convergent when x < 1.

Let u
r , ur+l

represent the ?*th and (?-+l)th terms of the ex-

pansion ; then
u . , n-r+1
w r

r

When r>?6+l, this ratio is negative; that is, from this

point the terms are alternately positive and negative when x
is positive, and always of the same sign when x is negative.

7/

Now when r is infinite, Lim —— = x numerically ; therefore

since x < 1 the series is convergent if all the terms are of the

same sign; and therefore a fortiori it is convergent when some of

the terms are positive and some negative. [Art. 283.]

293. To shew that the expansio?i of ax in ascending powers
of x is convergent for every value of x.

W # 1°#« ^ 1 1 • 7- •
U 11 1

Here —*- = —-— ; and therefore Lim —=- < 1 whatever be
«„_, n-1 «*__,

the value of x; hence tlie series is convergent.
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294. To shew that the expansion of log (1 + x) in ascending

powers of x is convergent when x is numerically less than 1.

-i
ni n't I

Here the numerical value of—— = x. which in the limit
u

,
n

is equal to x \ hence the series is convergent when x is less than 1.

If a5 = l, the series becomes 1— k + 77-t+--> an^ is con"

2 3 4

vergent. [Art. 280.]

If x~ — 1, the series becomes — 1 — -— q
_ t" •••> an(^ *s

a O 4:

divergent. [Art. 290.] This shews that the logarithm of zero is

infinite and negative, as is otherwise evident from the equation

e-°°=0.

295. The results of the two following examples are important,

and will be required in the course of the present chapter.

\q<j x
Example 1. Find the limit of —2-- when x is infinite.

Put x= ev; then

logs y y
X ~ eV y* yi

i - y y'2

y \2
^ 3

+ "

also when x is infinite y is infinite ; hence the value of the fraction is zero.

Example 2. Shew that when n is infinite the limit of nxn= 0, when x<l.

Let x=- , so that y>l;
if

also let y
n =z, so that n\ogy = logz; then

fu^=—= i ^^ =— logz
.

y
n z'logy logy' z

Now when n is infinite z is infinite, and —s_ = 0; also logy is finite;
z

therefore Lim nxn= 0.

296. It is sometimes necessary to determine whether the

product of an infinite number of factors is finite or not.

Suppose the product to consist of n factors and to be denoted by
uMAia io

;

then if as n increases indefinitely u <<1, the product will ulti-

mately be zero, and if u
n
> 1 the product will be infinite ; hence in

order that the product may be finite, u- must tend to the limit 1

.
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Writing 1 + v
n
for u

n , the product becomes

(l+*
1
)(l+*,)(l+*

8) (l+O-

Denote the product by P and take logarithms j then

logP = log(l+v
1
) + log(l+v8)

+...+ log(l + vJ (1),

and in order that tlie product may be finite this series must be
convergent.

Choose as an auxiliary series

v,+v
2
+ v

3
+ +v

n (2).

/ _1 .

r . log(l + t;) _. r- 2** + "

Now Lim-2-l ^ = Lim\ /==1,
v \ v I

n n

since the limit of v is when the limit of u is 1

.

n n

Hence if (2) is convergent, (1) is convergent, and the given

product finite.

Example. Shew that the limit, when n is infinite, of

13 3 5 5 7 2n-l 2n + l

2'

2

'4*1*6' 6 ~JT~'~2ir
is finite.

The product consists of 2n factors; denoting the successive pairs by
Uj, m2 , Ug,... and the product by P, we have

P= u
x
v

2
u
3 un>

2n-l 2«+l , 1
where **n=—s— • -5— = 1 - t-?;2m 2n 4«-

but logP= logM
1 + log«2+ logM3 + ...+logMn (1),

and we have to shew that this series is finite.

Now log«n= log (l -^)=-~
3̂2/i-1

'•'

therefore as in Ex. 2, Art. 291 the series is convergent, and the given product
is finite.

297. In mathematical investigations infinite series occur so
frequently that the necessity of determining their convergency or
divergency is very important ; and unless we take care that the
series we use are convergent, we may be led to absurd conclusions.

[See Art. 183.]
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For example, if we expand (l—x)~ 2 by the Binomial Theorem,
we find

( 1 - a;)-
2 = 1 + 2x + 3ar + 4a3 +

But if we obtain the sum of n terms of this series as ex-

plained in Art. 60, it appears that

in O 9 n-l * ^ ^^
1 + 2.*; + 3ar + ... + nx = t= ra — = :

(1 - x) 1 - x

whence

I +'2x+ 3x~ + ... + nx 4- 7z ^ +
(l-x) 2 -'—'— - (1-a?)9 1-*

i

By making n infinite, we see that -z -
a can only be re-J ° (l-x) 2

garded as the true equivalent of the infinite series

1 + 2x + 3x2 + ix3 +

x nx
when -rz ri + =— vanishes.

(1 -x)~ l-x

If n is infinite, this quantity becomes infinite when x=l,
or aj>l, and diminishes indefinitely when a,*<l, [Art. 295], so

that it is only when x < 1 that we can assert that

\
Ta =* 1 + 2x + 3x2 + 4#3 + to inf.

j

and we should be led to erroneous conclusions if we were to use

the expansion of (1 - x)~ 2 by the Binomial Theorem as if it were
true for all values of x. In other words, we can introduce the

infinite series 1 + 2x + 3x2 + ... into our reasoning without error

if the series is convergent, but we cannot do so when the series

is divergent.

The difficulties of divergent series have compelled a distinction

to be made between a series and its algebraical equivalent. For
example, if we divide 1 by (1 - x)

2
, we can always obtain as

many terms as we please of the series

l + 2a;+3£2
+4a;3 +

whatever x may be, and so in a certain sense -p. ^ niay be

called its algebraical equivalent ; yet, as we have seen, the equi-

valence does not really exist except when the series is con-



CONVERGENCY AND DIVERGENCY OF SERIES. 241

vergent. It is therefore more appropriate to speak of —

—

(l — X)
as the generating function of the series

1 +2a,- + 3a2 +

being that function which Avhen developed by ordinary alge-

braical rules will give the series in question.

The use of the term generating function will be more fully

explained in the chapter on Recurring Series.

EXAMPLES. XXI. a.

Find whether the following series are convergent or divergent.:

. Ill 1
1 #

1
_ 4.

x x+ a x-^-2a .v+ 3a

x and a being positive quantities.

1 1 1 1

1.2
+
273

+
371

+
475

+

_1_
1 1 1

6
- xy (*+i)(y+i)

4>+a)(y+*) (*+3)(y+3)
+ '

x and y being positive quantities.

x x2 x3 x*
4 1 1 1 h .1.2^2.3^3.4^4.5

/>» /)»2 o»o o***tf \Mj \Mj %A/

T72
+
3T4

+
576

+
778

+

n , 2 2 32 42

6 - 1+
I+I+I+

7 -

\/l + \/i + \/f + \/1+

8. 1 + toe + bx2 + la? + 9af* +

2
__ 1 i. Ay

*
"i^
+

2/'
+

3p
+

4p
+

ia 1 +
2
+

5
+
Ib
+ - +

,^TT
+

3 ., 8 , 15 n2 -\
11. x + - x2+ -x*+ —xA+ . . . + -.,—-.. xn +

5 10 17 nl+

1

H. H. A. 16
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-.n -, 2 6 , 14 , 2'l -2
12. l +

g
*+5*»

+I
^P + „.+—*p-i+

1 — — —

14. 2.r+— + -- + . ..+ -,— +
8 2 7 ?t

3

1C /22 2\-! /33 3\-2 /44 4\-3

15
' (p-l) + (2-3 -2) +«= ="

/4_
4 _4\

\3 4 3^

22 33 44

16. 1 + -- + - + - + - +

17. Test the series whose general terms are

(1) Jn*+l-n. (2) jtF+l- Jnt-^i.

18. Test the series

/1N 1 1 1 1

.r A+l a+2 x+3

/on 11 1 1 1

(2) -+ r-+——-+ 5+—T5+
A- # -1 A+l ^ -2 a + 2

x being a positive fraction.

19. Shew that the series

2" 3^ 4"
1+
I
+
I
+
E
+

is convergent for all values of p.

20. Shew that the infinite series

u
x + 2i2 + u

3 + u± +

is convergent or divergent according as Lim^fun iti <1, or >1.

21. Shew that the product

2 2 4 4 6 2ti-2 2tt-2 2n
• 1 * 3' 3' 5 ' 5 271-3' 2»-l"S^Ti

is finite when n is infinite.

22. Shew that when x=\, no term in the expansion of (1 +#)" is
infinite, except when n is negative and numerically greater than unity.
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*298. The tests of convergency and divenrencV wp i.™sriven m Art* 9x7 ogi 11 «» . & cxltv we nave

proved in the next article enables n/^T of^ bST^
I .1 1 1

l»
+

2»
+

3?
+ ••• +

,7
+ ---

venter
6

"
ddit£0U,a ** wUch ^ S01»eti»'es "» fa-d con-

tergent when the v-servs is convergent if after some particular term— <^ ;
onrf Me „*»*» «,<« J, AWjori «,/t(!re the v-sertes is

divergent if —5- > _-n
Un-i V.,

'

Let us suppose that Wj and », are the particular terms.

Case I. Let * < Ei &<! . then
2

w, + w
fl
+ u

3
+

= 2t

that is,

V w
i **

2
w, y

< — (v. -f -y + v + )

Hence, if the ^-series is^convergent the w-series is also con-vergent.

Case II. Let -2 > 3» ^^
**, v, tt, « ; then

i a 2

M
i
+ ^9 + U, +

V V, V
a

27, J

16—2
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that is, > — (v
l
+ v

2
+ v

3
+ ...).

Hence, if the ^-series is divergent the it-series is also di-

vergent.

*300. We have seen in Art. 287 that a series is convergent

or divergent according as the limit of the ratio of the ?i
th term

to the 'preceding term is less than 1, or greater than 1. In the

remainder of the chapter we shall find it more convenient to use

this test in the equivalent form :

A series is convergent or divergent according as the limit of

the ratio of the nth term to the succeeding term is greater than 1,

or less than 1 ; that is, according as Lim —— > 1, or < 1.

Similarly the theorem of the preceding article may be

enunciated

:

The w-series will be convergent when the v-series is convergent

u v
provided that Lim —— > Lim—— ; and the it-series will be di-

vergent when the v-series is divergent provided that

Lim ^^ Lim ^.

*301. The series whose general term is un is convergent or di-

vergent according as Lim \ n ( —-— 1 \ >> 1, or < 1.

Let us compare the given series with the auxiliary series

whose general term v is — .

"When p > 1 the auxiliary series is convergent, and in this

case the given series is convergent if

u
n

(n+iy
U

n + l
n?

, or (l + iy.

thatis,if JS B. > l +g + -J
> CP-lV+ „

un+i n 2n~

/ u ,\ p (p-l)
nKCr lrp+ ^ +

that is, if Lim \n (
—- 1 ) 1 >)>.

I Wh J)
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But the auxiliary series is convergent if y; is greater than 1

by a Unite quantity however small ; hence the first part of the
proposition is established.

When p< 1 the auxiliary series is divergent, and by proceed-
ing as before we may prove the second part of the proposition.

Example. Find whether the series

a; 1 ^ L3 x= 1.3 .5 x[

l
+ 2* 3

+ 2.4* 5
+ 2~i.d'T + '"

is convergent or divergent.

it 1
Here Lim —— =-; hence if x<l the series is convergent, and if x>l

un+l x"

the series is divergent.

u
If x= 1, Lim —— = 1. In this case

un+l

and

_ 1 - 3 - 5 (2w- 3) 1
M"~ 2 . 4 . 6 ...... (2n - 2) ' 2~/T=T

'

wn 2n(2n+l)
un+1 (2n - 1) (2n - 1)

'

'• "Urn J" (2n-l)2 '

hence when a; = 1 the series is convergent.

*302. T/ie series whose general term is un is convergent or di-

vergent, according as Lim ( n log —- j
> 1, or < 1.

Let us compare the given series with the series whose general

term is —-

.

n l

When p > 1 the auxiliary series is convergent, and in this

case the given series is convergent if

u /„ lv
-s- >
n+ I

1 + ij
;

[Art. 300.]

that is, if log —— > p log (1 h ) :

! ** P 7J
or if log — " > ' ^-5 +

'u ., « 2n2 " 3

71+ 1
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that is, if Lim In log —— ) >p.

Hence the first part of the proposition is established.

When p < 1 we proceed in a similar manner ; in this case the

auxiliary series is divergent.

Example. Find whether the series

22z2 3sx3 4*r4 55x5

is convergent or divergent.

„ un nnxn (n+ l)
Here —*- = — '- v

.

n+l /pW+1 7^

wn+l |n_ ' [n + l (n+l)** A lyV
H)'

.-. Lim 3l = -1

.

[Art. 220 Cor.l.
wn+1 <?*

Hence if a?<- the series is convergent, if #>- the series is divergent.

If:r=-,then ^St—
e un+l

•.log -n—= loge-wlog( 1 + -
)

_1 J_
~2n 3n8+ " '

. un 1 1

. Lim [ n log —— 1 = -

:

hence when x = - the series is divergent.

*303. If Lim -^- = 1, and also Liminf-^- - l)) = 1, the
wn+1 ) \un+ i J)

tests given in Arts. 300, 301 are not applicable.

To discover a further test we shall make use of the auxiliary

series whose general term is —- r- . In order to establish
n (log n) p

the convergency or divergency of this series we need the theorem
proved in the next article.
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*304. If $ (n) is positivefor all positive integral values of n
and continually diminishes as n increases, and if a be any posit ive

integer, then the two infinite series

</>(l) + <£(2) + </>(3) + ... + </>(n) + ...,

and a<£ (a) + a
2
<£(a

2

) + a3
</> (a

3

) + . . . + an

<£ (a
n
) + . .

.

,

are both convergent, or both divergent.

In the first series let us consider the terms

</>(«*+ 1), <f>(a
k
+ 2), <f>(a

k + S), <M«
i+1

) 0)

beginning with the term which follows </>(«*).

The number of these terms is ak+l - ak
, or ak(a- 1), and each

of them is greater than <£(a*
+1

); hence their sum is greater than
1

ak(a- 1) <f>(a
k+1

); that is, greater than x ak+l cf> (a
k+1

).

By giving to k in succession the values 0, 1, 2, 3,... we have

4>(2) + 4>(3)-f<M4) + ++W>^x«*W;
Co

<]>(a + 1) + <£(« + 2) + <f>(a+ 3)+ + <£(«*)> x a2
<f>(a

2

) ;

therefore, by addition, $! — <£(1) > S
2 ,

ct

where £, , S
2
denote the sums of the first and second series respec-

tively; therefore if the second series is divergent so also is the

first.

Again, each term of (1) is less than <£(«*), and therefore the

sum of the series is less than (a— 1) x ak
<j>(a

k

).

By giving to k in succession the values 0, 1, 2, 3... we have

<j>{2) + <£(3) + 4>(4) + + <£(«) < (a- 1) x <£(1);

<f>(a + I) + <f>(a + 2) + <f>(a + 3) + +<f>(a
2)<(a- 1) x a<f>(a);

therefore, by addition

4-+(l)<(«-l){4 + *(l)};

hence if the second series is convergent so also is the first.»'

Note. To obtain the general term of the second series we take </>(») the

general term of the first series, write an instead of n and multiply by a n
.
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*305. The series whose general term is —^ r— is convergent
n(logn) p u

if p > 1, and divergent if p = 1, or p < 1.

By the preceding article the series will be convergent or

divergent for the same values of p as the series whose general

term is

1 1 11
ft" \l c\y (\V X

a"(loga") p ' (n\oga) p ' (log a)' np
'

The constant factor 7= r_ is common to every term ; there-

fore the given series will be convergent or divergent for the same

values of p as the series whose general term is —- . Hence the

required result follows. [Art. 290.]

*306. The series whose general term is un is convergent or di-

vergent according as Lim \\\ (
—-— 1 ]

— 1 > log n > 1, or < 1.

Let us compare the given series with the series whose general

term is — -.
n (logny

When j) > 1 the auxiliary series is convergent, and in this

case the given series is convergent by Art. 299, if

u
n

(w + l){log(n+l)}'

M,+i n {log n) v

Now when n is very large,

log (n + l) = log n + log
(
1 + -

J
= log n + -

, nearly;

Hence the condition (1) becomes

(!)•

u . , V nj V n log n ,n + l N ' N O '

thatis, ^>(l + l)(l+P
uH+l \ nj \ nlogn log n) '

u i 1 P
that is, —- > 1 + - +

u ., ?i wlogw
n + l o
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1 ) > 1 + .
P

;

l0g?4

or <n CSr 1)- 1
}
10*"^

Hence the first part of the proposition is established. The
second part may be proved in the manner indicated in Art. 301.

Example. Is the series

22 22 .4 2 22 .42 .62

^32 ^3 2 .52 ^32 .52 .72

convergent or divergent?

Here A. = *£*. 1 + I +
*

(1).

ti
.-. Lt«i —*- =1, and we proceed to the next test.

Fromfl), »fe-l)=l+5 <
2>-

.-. Lim In ( -1- -1)1=1, and we pass to the next test.

*-» ffe- 1)- 1
}
108^'^

•••^"[ffe-
1)- 1

}
108 "]30'

since Lt/u —^— = [Art. 295]; hence the given series is divergent.
n

*307. We have shewn in Art. 183 that the use of divergent

series in mathematical reasoning may lead to erroneous results.

But even when the infinite series are convergent it is necessary to

exercise caution in using them.

For instance, the series

- JC %)C Ou Jb

+
4/2~J/3

+
474~^5

+ '"

is convergent when x=l. [Art. 280.] But if we multiply the
series by itself, the coefficient of x2n

in the product is

1 1 1
+

1
+

1
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Denote this by a
2n ; then since

1 1 J^

a„ >—;— , and is therefore infinite when n is infinite.
2" Jn '

If x=l, the product becomes

%-a
x
+a

3
- a

B f ... + a
gJ1
- a2n+1 + a

2>I+a
- ...,

and since the terms ol, a .,. a
ffl

._ ... are infinite, the series has
2h' 2/i+ 1' 2;i+2 '

no arithmetical meaning.

This leads us to enquire under what conditions the product

of two infinite convergent series is also convergent.

*308. Let us denote the two infinite series

a + a
x

x 4- a
2
x + a

3
x + . . . + a

2
x + . .

.,

b
Q
+ b^x + b

2
x2 + b

3
x3 + . . . + b

2n
x2n + . .

.

by A and B respectively.

If we multiply these series together we obtain a result of

the form
a<A + (

aA + a(A) x +
(
aJ>o + a

fii + afiz) x
2

+ ...

Suppose this series to be continued to infinity and let us

denote it by G ; then we have to examine under what conditions

C may be regarded as the true arithmetical equivalent of the

product AB.

First suppose that all the terms in A and B are positive.

Let A„ , B„ , C„ denote the series formed by taking the first
2/1

»

2«

'

2« JO
2w + 1 terms of A, B, C respectively.

If we multiply together the two series A 2ai B2ni the coefficient

of each power of x in their product is equal to the coefficient of

the like power of x in C as far as the term x2
" ; but in A

2n
B,

n

there are terms containing powers of x higher than x2n
, whilst

x2n
is the highest power of x in C

0n ; hence

^o B* > C
2 .

2/i 2/1 2/1

If we form the product A B the last term is a b x2n
; but

C
2n

includes all the terms in the product and some other terms
besides ; hence

C. >A B .

%n ii ii
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Thus C is intermediate in value between A B and A B ,

T
2 " • 1 /.

B B 2/» 2/i'

whatever be the value or n.

Let -4 and B be convergent series
;
put

A = A-X, B =B- Y.

where X and Y are the remainders after n terms of the series

have been taken; then when n is infinite X and Y are both
indefinitely small.

.-. A
n
B

H
= (A-X)(B-Y) = AB-BX-AY+XY'

}

therefore the limit of A B is AB. since A and B are botli finite.

Similarly, the limit of A
2n
B„

a
is AB.

Therefore C which is the limit of C
2n

must be equal to AB
since it lies between the limits of A B and A n B„ .

B B 2« 2;«

Next suppose the terms in A and B are not all of the same
sign.

In this case the inequalities A n Bn > C„ > A B are notI 2n 2b 2b b b

necessarily true, and we cannot reason as in the former case.

Let us denote the aggregates of the positive terms in the

two series by P
t
P' respectively, and the aggregates of the

negative terms by iV, N'; so that

A = P-N, B^F-N'.

Then if each of the expressions P, P\ JV, N' represents a con-

vergent series, the equation

AB = PF- NF- PN' + NN\
has a meaning perfectly intelligible, for each of the expressions

PP\ NF, PN\ NN' is a convergent series, by the former part
of the proposition ; and thus the product of the two series A and
B is a convergent series.

Hence the product of two series will be convergent provided
that the sum of all the terms of the same sign in each is a con-

vergent series.

But if each of the expressions P, N
y

P', N' represents a
divergent series (as in the preceding article, where also F = P
and N' = N), then all the expressions PF, NF, PN\ NN' are
divergent series. When this is the case, a careful investiga-

tion is necessary in each particular example in order to ascertain

whether the product is convergent or not.
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^EXAMPLES. XXI. b.

Find whether the following series are convergent or divergent

1 .r
2 1.3.5 #* 1.3.5.7.9 £«

1. 1+ 2*4 + 2.4.6'8 + 2.4.6.8.10' 12
+

3 3.6
2

3.6.9 ^ 3.6.9.12
2. 1 + ^+7. 10^ +7.10.13* +

7.10.13.16
A +

o 2
22

a 2 2 .42

G
22

. 42
. 62

o

3. ^+374^+3.4.5.6^+3.4.5.6.7.8*°+—
2# 32

.?
2 43^ 54^

4 n 1 1 1 h*'
|2 ^ |3 ^ |4 ,5

1 12 13 14

l 2 1 2 .32 1 2 .32 .5 2
2

* 22
+

22 .42
'r +

22 .42 .62^ + *

7 i ,

g(l-a)
, ( l + a)«(l-g)(2- g)

'• X "T
12 ~

"*"

l 2 . 22

a being a proper fraction.

(2 + q)(l+a)q(l-a)(2-,a)(3-q)
I 2

. 22
. 32

a+x (a + 2#)2 (a + 3ai)3

8
* IT*—12~ + "13"" +

9 . 1+^+^MM,
1 . y 1 . Z . y (y+1)

a(a+ l)(a+ 2)/30+l)(/3+ 2)

1.2.3.y(y+l)(y+ 2) '
"*"

10. x1 (log 2)*+ a?
3 (log 3)i+ a?

4 (log 4)*+

11. i +a+__^+—_-^ +

12
-

If^;
='^r^w^S^' where * is a positive

\

integer, shew that the series w
1
+ ?^

2+ «3+ is convergent if

^ _ a _ i js positive, and divergent if A - a - 1 is negative or zero



CHAPTER XXII.

Undetermined Coefficients.

309. In Art. 230 of the Elementary Algebra, it Avas proved
that if any rational integral function of x vanishes when x = a,

it is divisible by x — a. [See also Art. 514. Cor.]

Let p xn + p x
xn "

' +pjf
" 2 + +pn

be a rational integral function of x of n dimensions, which
vanishes when x is equal to each of the unequal quantities

«!> «*, %i «„•

Denote the function hy f(x); tlien since f(x) is divisible

by x - a
l

, we have

f(x)=:(x-a
l)(p x"-

i + ),

the quotient being of n — 1 dimensions.

Similarly, since f(x) is divisible by x -a,
7 , we have

2W
n~ X + = (x-aj-(pjf- +

)«

the quotient being of n — 2 dimensions; and

Proceeding in this way, we shall finally obtain after n di-

visions

f(x) =p (x - a) (x-a}(x-a
a)

(x- a
H).

310. If a rational integral function of\\ dimensions vanishes

for more than n values of the variable, the coefficient of each power

of the variable must be zero.

Let the function be denoted hyf(x), where

f(x) !>x" +p
)

x"~
x +p,c'-' + +pn ;
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and suppose tha,tf(x) vanishes when x is equal to each of the

unequal values a
lt

a2i a
3

a
n ; then

f(x) =Po (
x - ai) (

x ~ a
2) (

x ~ °0 (
x ~ a,)-

Let c be another value of x which makes f(x) vanish ; then

sincef(c) = 0, we have

Po (
c ~ a

i)
(°

~

a
*) (

G ~ a
s) (c-«J = 0;

and therefore p = 0, since, by hypothesis, none of the other

factors is equal to zero. Hencef (x) reduces to

2\x
n - x +p2

xn- 2
+ 2)3X

"~3+ +Pn -

By hypothesis this expression vanishes for more than n values

of x, and therefore p x
= 0.

In a similar manner we may shew that each of the coefficients

2>o, P3 , Vn must be equal to zero.

This result may also be enunciated as follows

:

If a rational integral function of n dimensions vanishes for
more than n values of the variable, it must vanish for every value

of the variable.

Cor. If the function f(x) vanishes for more than n values

of x, the equation f (x) — has more than n roots.

Hence also, if an equation of n dimensions has more than n
roots it is an identity.

Example. Prove that

(x - b) (x - c) (x - c) (x - a) (x - a) (x — b) _ 1

(a -b) (a- c) {b -c) (6 - a) (c-a) (c-b)~

This equation is of tivo dimensions, and it is evidently satisfied by each
of the three values a, 6, c ; hence it is an identity.

311. If two rational integral functions of n dimensions are

equal for more than n values of the variable, they are equal for
every value of the variable.

Suppose that the two functions

2) x
n +p

1
xn- 1

+2>
2
x"-

2 + +pH ,

qo
xn + q^"- 1 + q2

x- 2 + + qmt

are equal for more than n values of x ; then the expression

U>» - %) x'1

+ (Pi - ?i) x
"~ l

+ (p» - ad x
"~ 2

+ + (p* - ?.)
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vanishes for more than n values of x; and therefore, by the

preceding article,

that is,

2\ = %> Pi=9li> Pi^Vv l>n = <ln >

*

Hence the two expressions are identical, and therefore are

equal for every value of the variable. Thus

if two rational integral functions are identically equal, we may
equate the coefficients of the like powers of the variable.

This is the principle we assumed in the Elementary Algebra,

Art. 227.

Cor. This proposition still holds if one of the functions is

of lower dimensions than the other. For instance, if

p x" + pff~
l + pjf~ 2 + pjf~* + +pn

= q2
xn~ 2 + q3

xn~ 3 + +qn ,

we have only to suppose that in the above investigation qo
= 0,

q = 0, and then Ave obtain

^o=°> Pi=°> P2=vs > Ps=q3 > p,, = q»-

312. The theorem of the preceding article is usually referred

to as the Principle of Undetermined Coefficients. The application

of this principle is illustrated in the following examples.

Example, 1. Find the sum of the series

1.2 + 2.3 + 3.4+ +n(n+l).

Assume that

1.2 + 2. 3 + 3. 4 + ... + n(n + l)=A +Bn+Cn2 + Dn3+ Eni
+...,

where A, B, C, D, E,... are quantities independent of n, whose values have
to be determined.

Change n into n + 1 ; then

1. 2 + 2.3+...+?i(;i + l) + (?t + l) (n + 2)

=A+B(n + l) + C(n+l)* + D(n + l)3 + E(n + iy+....

By subtraction,

(n + 1) [n+2) =B+C {2n + l) + D (3}v> + 3}i + l) +E {±-n* + 6ri- + ±n + l)+ .. .

This equation being true for all integral values of n, the coefficients of the
respective powers of n on each side must be equal ; thus E and all succeeding
coefficients must be equal to zero, and

3D= 1; 3D + 2C= 3; D + C + B = 2;

1 2
whence 1) = -

•

, (7=1, B = - .

o o



256 HIGHER ALGEBRA.

Hence the sum =A +— + n2 + - n3
.

o o

To find A, put n = l; the series then reduces to its first term, and

2 = A + 2, or A = 0.

Hence 1 .2 + 2 . 3 + 3. 4 + ... + n(;i + l) = - n (n + 1) (n + 2).

Note. It will be seen from this example that when the nlh term is a
rational integral function of n, it is sufficient to assume for the sum a
function of n which is of one dimension higher than the wth term of the
series.

Example 2. Find the conditions that x3 +px2 + qx + r may be divisible by

x2 + ax + b.

Assume x3 +px2 + qx + r=(x + k) (x2 + ax + 6).

Equating the coefficients of the like powers of x, we have

k + a=p, ak + b = q, kb= r.

From the last equation k = -
; hence by substitution we obtain

b

r n ar
,

r + a=p, and — +b= q;

that is, r= b (p-a), and ar= b (q-b);

which are the conditions required.

EXAMPLES. XXII. a.

Find by the method of Undetermined Coefficients the ,sum of

1. l2+3*+ 5*+7*+...to n terms.

2. 1.2. 3 + 2. 3. 4 + 3. 4. 5 + .. .ton terms.

3. 1. 2 2+ 2.32+ 3.42 + 4.5 2 +...to n terms.

4. I 3+ 33 + 53 + V3+ . . .to n terms.

5. l 4+ 2* + 34 + 44 + ...to?i terms.

6. Find the condition that x3 -3px+ 2q may be divisible by a
factor of the form a?+%ax + a2

.

7. Find the conditions that ax3+ hv2 -\-cx + d may be a perfect cube.

8. Find the conditions that a2AA+ bx3+cx2+dx+f 2 may be a
perfect square.

9. Prove that ax2+ 2bxy+ cif-+ 2tlv+ 2ey+/ is a perfect square,
if b'

1= ac, d- = a/, e2= cf.
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10. If a.<
:i+ bx2+ cx+ d is divisible by x2 + h2

,
prove that <id= bc.

11. If 3tP— f>qx+4r is divisible by (x — c)2, shew that g*=r*,

12. Trove the identities :

a2 (x-b)(x— c) b2 (x-c)(x — a) c2 (x - a) (x - b) _ 2
( } (a-6)(«-c)

+
~(b-c){b-a)~

+
~Jc^aJ(c-b)

"

/ n
(y-^>)(^-c)<.y-cQ (ff-c)(#- eg) (.?-«)w (rt-6)(a-c)(a-J)"

t" (b-c)(b-d)(b-a)

(x - d) (x - a) (x ~b) (x - a) (x - b) (x - c)
+

{c-d){c-a)(c-b)
+
\d-a){d-b)\d-c)**

'

13. Find the condition that

ax2+ 2/ixy + by2
-f 2gx + 2fy+ c

may be the product of two factors of the form

jfctf+gy+r, jt/.t'+ ^'y+ r'.

14. If £= lx + my+ nz, r)= nx+ ly+ mz, £=mx+ n//+ l~, and if the

same equations are true for all values of x, y, z when £, 77, £ are inter-

changed with x
t y, 2 respectively, shew that

l
2+2mn = l, m 2 + 2ln = 0, n2+ 2lm=0.

15. Shew that the sum of the products -// - /• together of the n
quantities a, a2

, a3,
,..an is

(
«y + 1 -l)(tt*- + a -l)...(a»-l) i(„-r)(»-r+l).

(a -1) (a2 - 1).. .(a*-'- 1)
a

313. If the infinite series a + a
2
x + a.,x

2 + a
3
x3 + is equal

to zerofor every finite value of x for which the series is convergent,

tit en each, coefficient must be equal to zero identically.

Let the series be denoted by S, and let S\ stand for the ex-

pression a
l

+ a
2
x + a

:i

x2 + ; then S = a + xS
t

, and therefore,

l>y hypothesis, a + xS
t
= for all finite values of x. But since S

is convergent, #, cannot exceed some finite limit; tlierefore by
taking x small enough xS

x

may be made as small as we please.

In this case the limit of & is a ; but S is always zero, therefore

a
Q
must be equal to zero identically.

Removing the term a , we have xS
x
= for all finite values of

x; that is, a
x
+ a

2
x + ajc

2 + vanishes for all finite values of x.

Similarly, we may prove in succession that each of the

coefficients a n a.,, a is equal to zero identically.

H. ir.A. 17
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314. If tivo infinite series are equal to one another for every

finite value of the variable for which both series are convergent, the

coefficients of like powers of the variable in the two series are equal.

Suppose that the two series are denoted by

a + a
x
x + a x2 + a

3
x3 +

and A + A
x
x + A

2
x2 + Aj? +

;

then the expression

«o " A o
+

(«i " A i )
x +

(
a

2
- A

2)
°°

2

+ (« - Aa)
°f +

vanishes for all values of x within the assigned limits ; therefore

by the last article

a -A = O
t
a.-A^Q, a

B
-A

a
= 0, a

3
-A

a
= 0,

that is, « = ^ > °i-^n a 2 = A 2 ,
a.

d
= A

3 , ;

which proves the proposition.

2 + x2

Example 1. Expand -= „ in a series of ascending powers of x as far

as the term involving x5 .

2 + X2

Let r—

—

'-—2 = a + a
x
x + a

2
x'

2 + a.jx? + ...,

where a , fl
a , a.2 , a

:i
,... are constants whose values are to be determined; then

2 + x2— (1 + x - x2
)
(aQ + Oj a; + a

2
ar + o

a
re
3 + . .

.

)

.

In this equation we may equate the coefficients of like powers of x on
each side. On the right-hand side the coefficient of xn is an + au_1

- an_2 ,

and therefore, since x2 is the highest power of x on the left, for all values of

?t>2 we have

this will suffice to find the successive coefficients after the first three have

been obtained. To determine these we have the equations

a = 2, a
1
+ a = 0, a.

2 + a
1
-a = l;

whence a = 2, ^=-2, a2
=5.

Also a 3 + a
2
-a

1
= 0, whence a

3
= -7;

a4+ a3
~~ a2 = 0, whence a4= 12

;

and a5+ a±-a3
= 0, whence a

5
= - 19

;

thus ,

2 + X~
„= 2 - 2x + 5x2 - 7.t3 + 12x4 - 19a5 + . .

.

l+ ic-a;2
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Example 2. Prove that if n and r are positive integers

*-.fr-y+«fez3
(
.-y- -fr-?)fr-«>

fr
~+ .„

£ I

3

is equal to if r be less than n, and to |w if r= n

We have

= xn + terms containing higher powers of x. . .(1).

Again, by the Binomial Theorem,

(g*-l)n=c»w -ne(»-l)ai+^_(±Ll)e(n-2)*_
j (

2 ).

By expanding each of the terms e
nx

, e(n
~l)X

y
... we find that the coefficient

of xr in (2) is

n r (»-l)r n(n-l) (n-2) r w(m-1)(w-2) (n-3)*
1

|r [r j2 |r |3 r

and by equating the coefficients of xr in (1) and (2) the result follows.

Example 3. If y = ax + bx2 + ex3 + ,

express x in ascending powers of y as far as the term involving y
3

.

Assume x=py + qy
2 + ry3 + ,

and substitute in the given series ; thus

y= a{py + qy* + ry3 +...) + b(py + qy
2 +...y2 + c{2>y + qif+...yt +....

Equating coefficients of like powers of y, we have

an= 1 ; whence p = -
.

a

aq + bp-= ; whence q =—5 .

a6

a r + 2bpq + cp3 — ; whence r= —= ,

.

a5 a 1

m, V &'V" (2&- - ac) yThus # = •'---4- + - ?—

—

This is an example of Reversion of Series.

Cor. If the series for ?/ be given in the form

y= k + ax + bx2+ ex? + ...

put y-k= z;

then z— ax + bx- + ex3 + . .

.

;

from which x may be expanded in ascending powers of z, that is of y - k.

17—2
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EXAMPLES. XXII. b.

Expand the following expressions in ascending powers of x as far

1+2^; l-&g l+x
1_^_^.2- "' i_#_6#2- * 2+.r+ .r2'

4
3 + * 5

l
-

.

' 2 - x — x2 1 + ax — ax2 — .r
3

a -4- b v
6 Find « and b so that the nth term in the expansion of 7- --,

(l-.r)-

may be (Sn-2)xn ~ 1
.

7. Find a, b, c so that the coefficient of xn in the expansion of

a+ bx+ cx2
,

,
,—

I

^— may be n-+ l.

(l-.r)3 J

8. If y
2+%=# (3/+ 1), shew that one value of y is

|.r+ s.r-js SA +

9. If cxz+ ax -y = 0, shew that one value of x i

«

y e?/
3 3c2

;/
5 12c3

;/
7

a a4 a7 «'°

Hence shew that x= -00999999 is an approximate solution of the

equation x3 + 100.? -1 = 0. To how many places of decimals is the

result correct ?

10. In the expansion of ( 1 + x) ( 1 + ax) ( 1 + a\c) ( 1 + a\v) , the

number of factors being infinite, and a < 1, shew that the coefficient of

r
. I \ n

hr(r-l)
X 1S (l-a)(l-a2)(l-«3

) (l-O
11. When a < 1, find the coefficient of xn in the expansion of

(1 - ax) (1 —a2x) (1 — dAx) to inf.

'

12. If n is a positive integer, shew that

(1) nn+1 -n(n-l)n+1+
n^~ 1' (n-2)*+1 - =jn\n+.l

;

(2) nn -(n+l)(n-l)n + K——^- (n-2)«- =1;

the series in each case being extended to n terms ; and

(3) l"-»2»+
7t^~ 1

< 3a- =(-l)w \n;

(4) (n+p)n -n(n+p-l)n +—^—

—

' (n+p-2)n - = \n;

l±
'—

the series in the last two cases being extended to n+ 1 terms.


