ENGINEERING MATHEMATICS TEST 3

(LINEAR ALGEBRA, PARTIAL DIFFERENTIAL EQUATIONS)

Number of Questions: 25

Time: 60 min.

Directions for questions 1 to 25: Select the correct alternative from the given choices.

- 1. If A is a square matrix of order 5 with $A^{-1} = A^{T}$ and non-negative determinant, then the determinant of A is ___
 - (A) 0 (B) 1 (D) 5
 - (C) 2
- **2.** For two matrices A and B, if AB = A and BA = B, then which of the following statements is/are correct?
 - I. *A* is an idempotent matrix.
 - II. *B* is an idempotent matrix.
 - (A) I only
 - (B) II only
 - (C) Both I and II
 - (D) Neither I nor II

3. Consider the matrix
$$A = \begin{bmatrix} 1 & a & bc \\ 1 & b & ca \\ 1 & c & ab \end{bmatrix}$$
. Which of the fol-

lowing is NOT equal to the determinant of A?

(A)
$$\begin{vmatrix} 1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} \end{vmatrix}$$
 (B) $\begin{vmatrix} a+bc & a & 1+a \\ b+ca & b & 1+b \\ c+ab & c & 1+c \end{vmatrix}$
(C) $\begin{vmatrix} 0 & a-b & bc-ac \\ 0 & b-c & ca-ab \\ 1 & c & ab \end{vmatrix}$ (D) $\begin{vmatrix} 1 & a+1 & a^{2}+a \\ 1 & b+1 & b^{2}+b \\ 1 & c+1 & c^{2}+c \end{vmatrix}$

- 4. For a non-singular square matrix A, if $A^3 = A$, then A must be .
 - (A) a nilpotent matrix
 - (B) an idempotent matrix
 - (C) an involutory matrix
 - (D) None of these
- 5. If A is a matrix of order 6×9 with rank 5, then which of the following is true?
 - (A) All the rows of A are linearly independent.
 - (B) 5 columns of A are linearly independent.
 - (C) AA^{T} is invertible.
 - (D) $A^{T}A$ is invertible.

6. The rank of the matrix
$$P = \begin{bmatrix} 1 & 2 & 4 & -3 \\ 2 & -3 & 5 & -4 \\ 4 & 1 & 13 & -10 \\ 3 & -8 & 6 & -5 \end{bmatrix}$$
 is _____.
(A) 1 (B) 2
(C) 3 (D) 4

- 7

- 7. The value of x_3 in the solution of the system of linear equations $x_1 + 2x_2 + 2x_3 = 4$, $2x_1 - 2x_2 - x_3 = -3$, $4x_1 + x_2$ $+2x_3 = 3$ is — (A) 1 (B) -1 (C) 2 (D) -2
- 8. For a homogeneous system of linear equations AX = Owith four equations in four unknowns, if the number of linearly independent solutions is one, then the rank of A is

(A)
$$\overline{1}$$

(B) 2
(D) 4
(B) 2
(D) 4
9. If $A = \begin{bmatrix} 1 & 10 & 16 & -20 \\ 0 & -1 & 159 & 237 \\ 0 & 0 & 1 & -431 \\ 0 & 0 & 0 & 1 \end{bmatrix}$; then the

determinant of $A^9 - 7A^5 + 4A$ is _____ (A) 4 (B) -4 (C) 16 (D) -16

- 10. If the characteristic equation of a 2×2 matrix A is $\lambda^2 - 4\lambda + 1 = 0$, then the trace and determinant of A respectively are ____ (A) -1 and 4 (B) 1 and -4
 - (C) 4 and 1 (D) 4 and -1
- 11. If λ_1 and λ_2 are the eigenvalues of a 2 × 2 non-singular matrix A, then the eigenvalues of ad joint of A are

(A)
$$\lambda_1$$
 and λ_2
(B) λ_1^2 and λ_2^2
(C) $\lambda_1 + \lambda_2$ and $\lambda_1 - \lambda_2$
(D) $\lambda_1 \times \lambda_2$ and $\frac{\lambda_1}{\lambda_2}$

12. If A is a 3×3 matrix with the characteristic equation $\lambda^3 - 5\lambda^2 + 2\lambda - 3 = 0$, then $3A^9 - 15A^8 + 6A^7 - 11A^6 + 3A^8 + 3A$ $10A^5 - 4A^4 + 10A^3 - 20A^2 + 8A - 9I$ is equal to .

	[1	0	0		2	0	0]
(A)	0	1	0	(B)	0	2	0
(A)	0	0	1	(B)	0	0	2
(C)	3	0	0]	(D)	[4	0	0
(C)	0	3	0	(D)	0	4	0
	0	0	3		0	0	4

13. Which of the following is NOT an eigenvector of the

matrix
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 3 & -1 & 4 \end{bmatrix}$$
?

Engineering Mathematics Test 3 | 2.17

(A)
$$\begin{bmatrix} 3 \\ -3 \\ -4 \end{bmatrix}$$

(C)
$$\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

(D)
$$\begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$$

- 14. If the system of linear equations 2x + 3y + 4z = 1 5x - y + z = 4 3x + ay - 3z = 3has a unique solution, then the value of a + 4
 - (A) must be equal to 0,
 - (B) should not be equal to 0
 - (C) can be any real number,
 - (D) can be any rational number
- **15.** If a_1 , b_1 , c_1 , d_1 , a_2 , b_2 , c_2 and d_2 are any non zero real numbers, then which of the following types of solution is NOT possible for the system of linear equations.

$$a_1x + b_1y + c_1z = d$$
$$a_2x + b_2y + c_2z = d$$

- (A) Unique solution
- (B) No solution
- (C) Infinitely many solution
- (D) None of these
- 16. The partial differential equation of
 - z = f(x + at) g(x at) is _____.

(A)
$$\frac{\partial^2 z}{\partial t^2} = a^2 \frac{\partial^2 z}{\partial x^2}$$
 (B) $\frac{\partial z}{\partial t} = a \frac{\partial z}{\partial x}$
(C) $\frac{\partial^2 z}{\partial t^2} = \frac{\partial^2 z}{\partial x^2}$ (D) $\frac{\partial^2 z}{\partial t^2} + \frac{\partial^2 z}{\partial x^2}$

- 17. The first order partial differential equation by eliminating the arbitrary function from $z = f(x^3 - y^3)$ is
 - (A) p + q = 0(B) yp + xq = 0(C) $y^2p + x^2q = 0$ (D) $2y^2p + 3x^2q = 0$
- **18.** The general solution of the partial differential equation $x^3 (y-z) p + y^3(z-x)q = z^3(x-y)$ is

(A)
$$\phi\left(xyz, \frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right) = 0$$

(B) $\phi\left(\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2}, \frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right) = 0$
(C) $\phi\left(\frac{1}{x} - \frac{1}{y} - \frac{1}{z}, \frac{1}{x^2} + \frac{1}{y^2} - \frac{1}{z^2}\right) = 0$
(D) $\phi\left(\frac{1}{x^2} - \frac{1}{y^2} - \frac{1}{z^2}, \frac{1}{x} - \frac{1}{y} + \frac{1}{z}\right) = 0$

19. The solution of the partial differential equation
$$xy^2z^2p + x^2yz^2q = x^2y^2z$$
 is

(A)
$$x^2 + y^2 = \phi (x^2 - y^2)$$

(B) $x^2 + z^2 = \phi (x^2 - z^2)$
(C) $x^2 - y^2 = \phi (y^2 - z^2)$
(D) $v^2 - z^2 = \phi (x^2 - v^2 - z^2)$

20. The solution of
$$(p - q)(z - x p - y q) = 1$$
 is _____

(A)
$$z = ax - by + \frac{1}{a+b}$$
 (B) $z = ax - by$
(C) $z = ax + by$ (D) $z = ax + by + \frac{1}{a-b}$

21. If $u(x, y) = X(x) \cdot Y(y)$ be the solution of the partial differential equation $4 \frac{\partial u}{\partial x} + 5 \frac{\partial u}{\partial y} = 0$, which is obtained by

solving it by the method of separation of variables, then X(x) (the function of *x* only in u(x, y)) is _____ [Note: Here *c* and *k* are arbitrary constants]

(A)
$$X(x) = ce^{(kx)} x^2$$

(B) $X(x) = ce^{\left(\frac{4x}{x}\right)}$
(C) $X(x) = ce^{\left(\frac{k}{4}\right)x}$
(D) $X(x) = ce^{(-5k)} x^2$

22. Which of the following second order partial differential equations is an elliptic equation?

(A)
$$3\frac{\partial^2 u}{\partial x^2} + 4\frac{\partial^2 u}{\partial x \partial y} - 5\frac{\partial^2 u}{\partial y^2} + 7\frac{\partial u}{\partial x} - \frac{\partial u}{\partial y} = 7x^2$$

(B) $3\frac{\partial^2 u}{\partial x^2} - 4\frac{\partial^2 u}{\partial x \partial y} + 5\frac{\partial^2 u}{\partial y^2} - \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 6x^2y$
(C) $-3\frac{\partial^2 u}{\partial x^2} + 4\frac{\partial^2 u}{\partial x \partial y} + 5\frac{\partial^2 u}{\partial y^2} + 4x\frac{\partial u}{\partial x} - 7y\frac{\partial u}{\partial y} = 0$
(D) $\frac{\partial^2 u}{\partial x^2} + 2\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} - 2\frac{\partial u}{\partial x} + 5\frac{\partial u}{\partial y} = 6xy^2$

23. The Fourier cosine series of the function $f(x) = \frac{1}{2}$, $0 \le x \le 1$ is

24. The Fourier series of $f(x) = e^{2x}$ in the $\frac{1}{4} \frac{a_0}{2}$ interval $(0, 2\pi)$ is

$$f(x) = + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx , \text{ then the value of}$$

$$\frac{a_0}{2} \text{ is}$$
(A) $\frac{e^{4\pi} - 1}{4\pi}$
(B) $\frac{e^{2\pi} - 1}{2\pi}$
(C) $\frac{e^{4\pi} - 1}{2\pi}$
(D) $\frac{e^{2\pi} - 1}{4\pi}$

2.18 | Engineering Mathematics Test 3

25. The Fourier series of the function

The Fourier series of the function

$$f(x) = \begin{cases} -2 \operatorname{for} - \pi < x < \frac{-\pi}{2} \\ 0 \operatorname{for} \frac{-\pi}{2} < x < \frac{\pi}{2} \\ 2 \operatorname{for} \frac{\pi}{2} < x < \pi \end{cases}$$
(A)
$$\frac{1}{n\pi} \left[\sin \frac{n\pi}{2} - \cos n\pi \right]$$
(B)
$$\frac{4}{n\pi} \left[\cos \frac{n\pi}{2} - \cos n\pi \right]$$
(C)
$$\frac{1}{4n\pi} \left[\cos n\pi - \cos \frac{n\pi}{2} \right]$$
is
$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx \text{, then } b_n =$$
(D)
$$\frac{4}{n\pi} \left[\sin \frac{n\pi}{2} - \sin n\pi \right]$$

Answer Keys

1. B	2. C	3. B	4. C	5. B	6. B	7. A	8. C	9. D	10. C
11. A	12. C	13. D	14. B	15. A	16. A	17. C	18. B	19. C	20. D
21. C	22. B	23. B	24. A	25. B					

HINTS AND EXPLANATIONS

1. Given $A^{-1} = A^T$ and det of A is non-negative $\therefore A A^T = A^T A = I_5$ \Rightarrow Det of $(A A^T) =$ Det of I_5 $\Rightarrow A A^T = I_5 $ $\Rightarrow A A^T = 1$ $\Rightarrow A . A = 1 (\because A = A^T)$ $\Rightarrow A ^2 = 1 \Rightarrow A = \pm 1$
$\therefore \text{ The determinant of } A = 1.$ (:: A is non-negative) Choice (B) 2. Given $AB = A$ and $BA = B$ Consider $BA = B$
$\Rightarrow A (BA) = AB$ $\Rightarrow (AB)A = A (\because AB = A)$ $AA = A \Rightarrow A^{2} = A$ $\Rightarrow A \text{ is an idempotent matrix} \qquad \rightarrow (1)$ Consider $AB = A$ $\Rightarrow B (AB) = BA$
$\Rightarrow (BA)B = B (\because BA = B)$ $\Rightarrow BB = B \Rightarrow B^{2} = B$ $\Rightarrow B \text{ is an idempotent matrix} \rightarrow (2)$ $\therefore \text{ From (1) and (2), both I and II are correct.}$ Choice (C)
3. Given $A = \begin{bmatrix} 1 & a & bc \\ 1 & b & ca \\ 1 & c & ab \end{bmatrix}$
Consider the determinant given in option (B)
$\begin{vmatrix} a+bc & a & 1+a \end{vmatrix} = \begin{vmatrix} a & a & 1+a \end{vmatrix} = \begin{vmatrix} bc & a & 1+a \end{vmatrix}$
b+ca b $1+b = b$ b $1+b + ca$ b $1+b$
$\begin{vmatrix} c+ab & c & 1+c \end{vmatrix} \begin{vmatrix} c & c & 1+c \end{vmatrix} \begin{vmatrix} ab & c & 1+c \end{vmatrix}$
$\begin{vmatrix} a+bc & a & 1+a \\ b+ca & b & 1+b \\ c+ab & c & 1+c \end{vmatrix} = \begin{vmatrix} a & a & 1+a \\ b & b & 1+b \\ c & c & 1+c \end{vmatrix} + \begin{vmatrix} bc & a & 1+a \\ ca & b & 1+b \\ ab & c & 1+c \end{vmatrix}$ $= 0 + \begin{vmatrix} bc & a & 1 \\ ca & b & 1 \\ ab & c & 1 \end{vmatrix} + \begin{vmatrix} bc & a & a \\ bc & a & a \\ ca & b & 1 \\ ab & c & c \end{vmatrix}$

$$= \begin{vmatrix} bc & a & 1 \\ ca & b & 1 \\ ab & c & 1 \end{vmatrix} + 0$$
$$= -1 \begin{vmatrix} 1 & a & bc \\ 1 & b & ca \\ 1 & c & ab \end{vmatrix}$$

$$=$$
 -Det of $A \neq$ Det of A

- \therefore The determinant given in option *B* is NOT equal to det of A. Choice (B)
- 4. Given A is non-singular and $A^3 = A$

$$\Rightarrow AA^2 = A$$

$$\Rightarrow A^{-1}(AA^2) = A^{-1}A$$

$$\Rightarrow (A^{-1}A)A^2 = A^{-1}A$$

$$\Rightarrow A^2 = I$$

 \Rightarrow A must be an involutory matrix. Choice (C)

5. Given *A* is a matrix of order 6×9 .

Rank of A = 5

 \therefore Maximum number rows/columns of A that are linearly independent = 5.

$$\therefore$$
 Option (B) is TRUE. Choice (B)

6. Given matrix is
$$P = \begin{bmatrix} 1 & 2 & 4 & -3 \\ 2 & -3 & 5 & -4 \\ 4 & 1 & 13 & -10 \\ 3 & -8 & 6 & -5 \end{bmatrix}$$

 $R_2 \rightarrow R_2 - 2R_1, R_3 - 4R_1 \text{ and } R_4 \rightarrow R_4 - 3R_1$
 $\sim \begin{bmatrix} 1 & 2 & 4 & -3 \\ 0 & -7 & -3 & 2 \\ 0 & -7 & -3 & 2 \\ 0 & -14 & -6 & 4 \end{bmatrix}$

Engineering Mathematics Test 3 | 2.19

8. Given the system of equations AX = O has

$$R_{3} \rightarrow R_{3} - R_{2} \text{ and } R_{4} \rightarrow R_{4} - 2R_{2}$$

$$\sim \begin{bmatrix} 1 & 2 & 4 & -3 \\ 0 & -7 & -3 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$R_{2} \rightarrow \frac{-1}{7}R_{2}$$

$$\therefore P \sim \begin{bmatrix} 1 & 2 & 4 & -3 \\ 0 & 1 & 3/7 & -2/7 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Which is in Row Echelon form.

:. The rank of P = the number of non-zero rows in its Row Echelon form = 2. Choice (B)

7. Given system of equations is

 $x_1 + 2x_2 + 2x_3 = 4$ $2x_1 - 2x_2 - x_3 = -3 \rightarrow (1)$ $4x_1 + x_2 + 2x_3 = 3$ It can be written in matrix form as $AX = B \rightarrow (2)$

Where $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & -2 & -1 \\ 4 & 1 & 2 \end{bmatrix}$; $X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ and $B = \begin{bmatrix} 4 \\ -3 \\ 3 \end{bmatrix}$

Consider the augmented matrix

$$[A/B] = \begin{vmatrix} 1 & 2 & 2 & 4 \\ 2 & -2 & -1 & -3 \\ 4 & 1 & 2 & 3 \end{vmatrix}$$

$$R_2 \rightarrow R_2 - 2R_1 \text{ and } R_3 \rightarrow R_3 - 4R_1$$

$$\sim \begin{bmatrix} 1 & 2 & 2 & 4 \\ 0 & -6 & -5 & -11 \\ 0 & -7 & -6 & -13 \end{bmatrix}$$

$$R_3 \rightarrow 6R_3 - 7R_2$$

$$\therefore [A/B] \sim \begin{bmatrix} 1 & 2 & 2 & 4 \\ 0 & -6 & -5 & -11 \\ 0 & 0 & -1 & -1 \end{bmatrix}$$

Hence the system of equations that has same solution as that of AX = B is

$$\begin{bmatrix} 1 & 2 & 2 \\ 0 & -6 & -5 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ -11 \\ -1 \end{bmatrix}$$

$$\Rightarrow x_1 + 2x_2 + 2x_3 = 4$$

$$-6x_2 - 5x_3 = -11$$

$$-x_3 = -1 \Rightarrow x_3 = 1.$$
 Choice (A)

Number of unknowns = n = 4Number of equations = 4 \therefore A is a 4 × 4 matrix Also given the number of linearly independent solutions = 1. We know that the number of linearly independent solutions of a system of homogeneous linear equations. AX = O is = n - rWhere n = the number of unknowns and r = the rank of A. $\therefore n-r=1$ $\Rightarrow 4-r=1$ \Rightarrow r = 4 - 1 = 3 \therefore The rank of A = 3Choice (C) 9. Given A = $\begin{vmatrix} 1 & 10 & 10 & 20 \\ 0 & -1 & 159 & 237 \\ 0 & 0 & 1 & -431 \end{vmatrix}$ The eigenvalues of A are 1, -1, 1 and 1. If $\lambda = -1$ is an eigenvalue of A, then $(-1)^9 - 7(-1)^5 +$ 4(-1) = 2 is an eigenvalue of $A^9 - 7A^5 + 4A$. Also if $\lambda = 1$ is an eigenvalue of A then $(1)^9 - 7(1)^5 + 4(1) = -2$ is an eigenvalue of $A^9 - 7A + 4A$ \therefore The eigenvalues of $A^9 - 7A^5 + 4A$ are -2, 2, -2 and -2. \therefore The determinant of $A^9 - 7A^5 + 4A =$ Product of the eigenvalues of $A^9 - 7A^5 + 4A = (-2)(2)(-2)(-2)$ = -16.Choice (D) **10.** Given the characteristic equation of a 2×2 matrix A is $\lambda^2 - 4\lambda + 1 = 0$ Let λ_1 and λ_2 be the eigenvalues of *A*. \therefore Trace of A =sum of the eigenvalues of A $= \lambda_1 + \lambda_2 = (-(-4) = 4)$ Determinant of A = Product of the eigenvalues of $A = \lambda_1 \cdot \lambda_2 = 1$. Choice (C)

11. Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 be a 2 × 2 matrix with λ_1 and λ_2 as its

eigenvalues.

The characteristic equation of A is

$$\begin{vmatrix} a - \lambda & -b \\ -c & a - \lambda \end{vmatrix} = 0$$

2.20 | Engineering Mathematics Test 3

 $\Rightarrow (d-\lambda)(a-\lambda)-bc=0$ ---- (2) As (1) and (2) are one and the same and λ_1 and λ_2 being the roots of (1), λ_1 and λ_2 will be the roots of (2). \therefore The eigenvalues of $\operatorname{adj}(A)$ are λ_1 and λ_2 . Choice (A) **12.** The characteristic equation of A is $\lambda^3 - 5\lambda^2 + 2\lambda - 3 = 0$... By Cayley Hamilton theorem, we have $A^3 - 5A^2 + 2A - 3I = 0$ ----- (1) Consider $3A^9 - 15A^8 + 6A^7 - 11A^6 + 10A^5 - 4A^4 + 10A^3 - 20A^2$ + 8A - 9I $= 3A^{6}(A^{3} - 5A^{2} + 2A - 3I) - 2A^{6} + 10A^{5} - 4A^{4} + 10A^{3}$ $-20A^{2}+8A-9I$ $= 3A^{6} \times 0 - 2A^{3}(A^{3} - 5A^{2} + 2A - 3I) + 4A^{3} - 20A^{2}$ + 8A - 9I(From (1)) = $0 - 2A^3 \times 0 + 4(A^3 - 5A^2 + 2A - 3I) + 3I$ $(From (1)) = 4 \times 0 + 3I$ (From (1)) $= 3I = 3\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ Choice (C)

13. Given
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 3 & -1 & 4 \end{bmatrix}$$

The eigenvalues of A are 1, 3 and 4

If
$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
 is an eigenvector of *A*, then *x* should satisfy

any one of the three conditions. AX = x, AX = 3X and AX = 4X

From the options given, it can be easily observed that the vectors given in options (A), (B) and (C), will satisfy one of these three conditions.

Consider the vector given in option (D),

$$AX = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 3 & -1 & 4 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 6 \\ -2 \end{bmatrix} \neq \lambda \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$$

For, $\lambda = 1, 2$ or 3
 \therefore Its not an eigenvector of A Choice (D)

14. Given system of linear equations is

2x + 3y + 4z = 1 5x - y + z = 4 3x + ay - 3z = 3 ------ (1) It can be written in matrix form as AX = B

Where
$$A = \begin{bmatrix} 2 & 3 & 4 \\ 5 & -1 & 1 \\ 3 & a & -3 \end{bmatrix};$$

$$X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix} \text{ consider the augmented matrix}$$
$$[A|B] = \begin{bmatrix} 2 & 3 & 4 & 1 \\ 5 & -1 & 1 & 4 \\ 3 & a & -3 & 3 \end{bmatrix}$$
$$R_2 \rightarrow 2R_2 - 5R_1, R_3 \rightarrow 2R_3 - 3R_1$$
$$\begin{bmatrix} 2 & 3 & 4 & 1 \\ 0 & -17 & -18 & 3 \\ 0 & 2a - 9 & -18 & 3 \end{bmatrix}$$
$$R_3 \rightarrow R_3 - R_2$$
$$[A|B] \sim \begin{bmatrix} 2 & 3 & 4 & 1 \\ 0 & -17 & -18 & 3 \\ 0 & 2a + 8 & 0 & 0 \end{bmatrix}$$

The given system of equations has a unique solution, if P(A) = p([A/B]) = 3 (= The no. of unknowns) This is possible only if $2a + 8 \neq 0$ $\Rightarrow a + 4 \neq 0$. Choice (B)

15. Given system of equations is $a_1x + b_1y + c_1z = d_1$ (1) $a_2x + b_2y + c_2z = d_2$ It can be written in matrix form as AX = B

Where
$$A = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{bmatrix}$$
; $x = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ and $B = \begin{bmatrix} d_1 \\ d_2 \end{bmatrix}$

Here two possibilities arise

- (i) $P(A) \neq P(A/B]$ In this case, (1) has no solution
- (ii) P (A) = P ([A/B]) < 3(= The no. of unknowns) In this case, (1) has infinitely many solutions. So, the given system (1) do not have a unique solution. Choice (A)

16.
$$z = f(x + at) - g(x - at)$$

$$\frac{dz}{\partial x} = f^{1}(x+at) - g^{1}(x-at)$$
$$\frac{\partial^{2}z}{\partial x^{2}} = f^{11}(x+at) - g^{11}(x-at)$$
$$\frac{\partial z}{\partial t} = af^{1}(x+at) + ag^{1}(x-at)$$
$$\frac{\partial^{2}z}{\partial t^{2}} = a^{2}f^{11}(x+at) - a^{2}g^{11}(x-at)$$
$$\frac{\partial^{2}z}{\partial t^{2}} = a^{2}\frac{\partial^{2}z}{\partial x^{2}}$$

Choice (A)

17. Given
$$z = f(x^3 - y^3)$$

Let $x^3 - y^3 = u$
 $z = f(u)$
 $\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} = f(u) \cdot 3x^2$
 $\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} = -f(u) \cdot 3y^2$
 $y^2 \frac{\partial z}{\partial x} + x^2 \frac{\partial z}{\partial y} = f(u) \cdot 3x^2 \cdot y^2 - f^1(u) \cdot 3x^2 \cdot y^2 = 0$

 \therefore The first order partial dE is $y^2p + x^2q = 0$

Choice (C)

18. $x^{3}(y-z) p + y^{3} (z-x)q = z^{3}(x-y)$ The subsidiary equation of the given differential equation is

using the multipliers $\frac{1}{x^2}$, $\frac{1}{y^2}$ and $\frac{1}{z^2}$ each fraction of

(1) is equal to $\frac{\frac{1}{x^2}dx + \frac{1}{y^2}dy + \frac{1}{z^2}dz}{0}$

 $\Rightarrow \quad \frac{1}{x^2}dx + \frac{1}{y^2}dy + \frac{1}{z^2}dz = 0$

On integrating the above, we get

using the multipliers $\frac{1}{x^3}, \frac{1}{y^3}$ and $\frac{1}{z^3}$ each of the frac-

tion (1) equal to
$$\frac{\frac{1}{x^3}dx + \frac{1}{y^3}dy + \frac{1}{z^3}dz}{0}$$

On integrating both the sides, we get

From (2) and (3) the general solutions is

$$\varphi\left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}, \frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2}\right) = 0.$$
 Choice (B)

19. $xy^2z^2p + x^2yz^2q = x^2y^2z$ (1) The subsidiary equations of (1) are

Considering first two fractions of (2) we have x dx = y dy.

On integrating we get $x^2 = y^2$ or $x^2 - y^2 = C_1$ (3)

Engineering Mathematics Test 3 | 2.21

20. Given
$$(p-q)(z - x p - yq) = 1$$

 $z = x p + yq + \frac{1}{p-q}$

This is a clairaut equation and its solution is

$$z = ax + by + \frac{1}{a-b}$$
 Choice (D)

21. Given u = x(x), y(y) ------ (1) is the solution of the PDE $4 \frac{\partial u}{\partial x} + 5 \frac{\partial u}{\partial y} = 0$ ------ (2)

Obtained by solving (2) by the method of separation of variables

$$\therefore \quad \frac{\partial u}{\partial x} = x^1 y \text{ and } \frac{\partial u}{\partial y} = xy^1$$

where $x^1 = \frac{dx}{dx}$ and $y^1 = \frac{dY}{dy}$

$$\therefore (2) \text{ becomes} 4x^{1}y + 5xy^{1} = 0$$

$$\Rightarrow \frac{4x^{1}}{x} + 5\frac{y^{1}}{y} = 0$$

$$\Rightarrow \frac{4x^{1}}{x} = -5\frac{y^{1}}{y} = k \text{ (say) where } k \text{ is a constant}$$

$$\Rightarrow \frac{4x^{1}}{x} = k \text{ and } \frac{-5y^{1}}{y} = k$$

$$\Rightarrow x^{1} = \frac{kx}{4} \qquad y^{1} = \frac{-ky}{5}$$

$$\Rightarrow x^{1} - \frac{kx}{4} = 0 \Rightarrow y^{1} + \frac{ky}{5} = 0$$

$$\Rightarrow \frac{dX}{dx} = \frac{kx}{4} \Rightarrow \frac{dx}{x} = \frac{k}{4} dx$$

$$\Rightarrow \int \frac{dx}{dx} = \frac{k}{4} \int dx \Rightarrow \frac{k}{4} x + c^{1}$$

$$\Rightarrow x = ce^{\frac{kx}{4}} + c^{1} = e^{\frac{kx}{4}}c^{1}$$

$$\Rightarrow x = ce^{\frac{kx}{4}}; \text{ where } c = e^{c^{1}}$$

$$\therefore x (x) = ce^{\frac{kx}{4}}. \text{ Choice (C)}$$

22. A PDE is of the form

$$Au_{xx} + Bu_{xy} + Cu_{yy} + F(x, y, u, u_x, u_y) = 0$$
 ----- (1)
is elliptic, if $B^2 - 4AC < 0$
From the PDE in the options, consider the PDE in
option (B)

2.22 | Engineering Mathematics Test 3

Comparing it with (1), we have A = 3, B = -4 and C = 5 $\therefore B^2 - 4AC = (-4)^2 - 4 \times 3 \times 5 = -44 < 0$ $\Rightarrow B^2 - 4AC < 0$ Hence the PDE given in option (B) is elliptic Also, it can be easily observed that the PDE given in options (A), (C) and (D) do not satisfy the property, $B^2 - 4AC < 0$. Choice (B)

23. The coefficients of Fourier cosine series are given by

$$a_{0} = \frac{2}{1} \int_{0}^{1} f(x) dx \text{ and}$$

$$a_{n} = \frac{2}{1} \int_{0}^{1} f(x) \cos\left(\frac{n\pi x}{1}\right) dx$$

$$\therefore \quad a_{0} = \frac{2}{1} \int_{0}^{1} \frac{1}{2} dx = x \Big]_{0}^{1} = 1$$

$$a_{n} = \frac{2}{1} \int_{0}^{1} \frac{1}{2} \cos(n\pi x) dx = \int_{0}^{1} \cos(n\pi x) dx$$

$$= \frac{\sin(n\pi x)}{n\pi} \Big]_{0}^{1} = 0$$
The product of the index is $f(x) = \frac{1}{2}$

 \therefore The required series is $f(x) = \frac{1}{2}$. Choice (B)

24. In the Fourier series of e^{2x} ; a_0 is given by $\frac{1}{\pi} \int_{0}^{2\pi} f(x) dx$

$$a_{0} = \frac{1}{\pi} \int_{0}^{2\pi} e^{2x} dx = \frac{1}{2\pi} \left[e^{2x} \right]_{0}^{2\pi}$$
$$= \frac{1}{2\pi} \left[e^{4\pi} - 1 \right] \frac{a_{0}}{2} = \frac{e^{4\pi} - 1}{2 \times 2\pi} = \frac{e^{4\pi} - 1}{4\pi}.$$
 Choice (A)

25. In the Fourier series of
$$f(x)$$
, b_n is given by $\frac{1}{\pi}$

$$\int_{-\pi}^{\pi} f(x) \sin nx dx$$

$$b_n = \frac{1}{\pi} \left[\int_{-\pi}^{\frac{-\pi}{2}} (-2) \sin nx dx + \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} 0 \sin nx dx + \int_{\frac{\pi}{2}}^{\pi} 2 \sin nx dx \right]$$

$$= \frac{2}{\pi} \left[\frac{\cos nx}{n} \right]_{-\pi}^{\frac{-\pi}{2}} + \frac{2}{\pi} \left[\frac{-\cos nx}{n} \right]_{\frac{\pi}{2}}^{\pi}$$

$$= \frac{2}{\pi} \left[\frac{\cos n\frac{\pi}{2}}{n} - \frac{\cos n\pi}{n} - \frac{\cos n\pi}{n} + \frac{\cos n\frac{\pi}{2}}{n} \right]$$

$$= \frac{4}{n\pi} \left[\cos \frac{n\pi}{2} - \cos n\pi \right].$$
Choice (B)