

Practice Problems

(b) Momentum becomes zero

(d)

[RPET 2003]

Perform Brownian motion

Problems based on Pressure

On colliding in a closed container the gas molecules

(a) Transfer momentum to the walls

(c) Move in opposite directions

1.

2.	The relation between the gas pressure P and average kinetic energy per unit volume E is								
		כן	CBSE PMT 1993; UPSEAT 2000;	RPMT 2000; RPET 2001; MP PET 2003]					
	(a) $P = \frac{1}{2}E$	(b) $P = E$	(c) $P = \frac{3}{2}E$	(d) $P = \frac{2}{3}E$					
3.	Kinetic theory of	gases provide a base for		[AIEEE 2002]					
	(a) Charle's law		(b) Boyle's law						
	(c) Charle's and I	Boyle's law	(d)	None of these					
4.	At constant volum	ne, temperature is increased. '	Then	[CBSE PMT 1993; JIPMER 2000]					
	(a) Collision on w time will increase		(b)	Number of collisions per unit					
	(c) Collisions wil	l be in straight line	(d) Collisions will n	ot change					
5.	Kinetic theory of	gases was put forward by		[RPMT 1999]					
	(a) Einstein	(b) Newton	(c) Maxwell	(d) Raman					
6.	Which of the follo	owing statements about kineti	c theory of gases is wrong	[AMU 1995]					
	(a) The molecules of a gas are in continuous random motion								
	(b) The molecules	s continuously undergo inelas	tic collisions						
	(c) The molecules	s do not interact with each otl	her except during collisions						
	(d) The collisions	amongst the molecules are of	f short duration						
7.	The pressure exer	rted by the gas on the walls of	the container because						
	(a) It loses kineti	(a) It loses kinetic energy							
	(b) It sticks with	the walls							
	(c) On collision w	vith the walls there is a chang	ge in momentum						
	(d) It is accelerat	ed towards the walls							
8.		of gases, a molecule of mass linear momentum of the mole		with a wall of vessel with velocity V .					
	(a) 2 <i>mV</i>	(b) <i>mV</i>	(c) - mV	(d) Zero					
9.		th density $ ho$ and $ar{c}$ as the roos as whole with velocity v , the		s molecules contained in a volume. If e gas is					
	(a) $\frac{1}{3} \rho \bar{c}^2$	(b) $\frac{1}{3} \rho (\bar{c} + v)^2$	(c) $\frac{1}{3} \rho (\bar{c} - v)^2$	(d) $\frac{1}{3} \rho (\bar{c}^2 - v)^2$					
10.	The kinetic energ	y of a perfect gas is 60 <i>joules</i>	and its volume is 3 litres, th	en its pressure will be					

	(a) $2 \times 10^4 \ N \ / m^2$	(b) $4 \times 10^4 \ N / m^2$	(c) $\frac{4}{3} \times 10^4 \ N/m^2$	(d) $\frac{2}{3} \times 10^4 \ N / m^2$
l 1.	The mass of a gas mole	ecule is $4 \times 10^{-30} kg$. If 10^{23} n	nolecules strike per secon	and at $4 m^2$ area with a velocity
	$10^7 m/s$, then the pressu	ire exerted on the surface wil	l be	
	(a) 1 Pascal	(b) 3 Pascal	(c) 2 Pascal	(d) 4 Pascal
12.				t one atmospheric pressure. The cules on the container walls will
	(a) 4:1	(b) 1:4	(c) 1:16	(d) 16:1
		P roblems based on	Ideal gas equation	
► I	Basic level			
13.	In the relation $n = \frac{PV}{RT}$, r	1 =		
	(a) Number of molecule	s (b) Atomic number	(c) Mass number	(d) Number of moles
14.	A balloon contains 1500 temperature and 2 atmo		4 atmospheric pressure.	The volume of helium at $-3^{\circ}C$
	(a) $1500 m^3$	(b) $1700 m^3$	(c) $1900 m^3$	(d) $2700 m^3$
15.	_	at a pressure 76 <i>cm</i> of <i>Hg</i> and erature attained by the gas is	temperature 27° is heated	d till its pressure and volume are
	(a) 927°C	(b) 900°C	(c) 627°C	(d) 327°C
ւ6.	The pressure and tempe	erature of an ideal gas in a cl	osed vessel are 720 pka a	and 40°C respectively. If $\frac{1}{4}$ th of
	the gas is released from pressure of the gas is	n the vessel and the temper [EAMCET (Med.) 2000]	ature of the remaining g	gas is raised to $353^{\circ}C$, the final
	(a) 1440 <i>kPa</i>	(b) 1080 <i>kPa</i>	(c) 720 <i>kPa</i>	(d) 540 <i>kPa</i>
17.		the vessel and temperature	= = = = = = = = = = = = = = = = = = = =	erature 27°C. Half of the mass of creased to 87°C. The pressure of
				[EAMCET (Engg.) 2000]
	(a) 5 atm	(b) 6 atm	(c) 7 atm	(d) 8 atm
ı 8.	S.I. unit of universal gas			
	(a) <i>cal</i> /° <i>C</i>	(b) J/mol	(c) $J mol^{-1} K^{-1}$	(d) <i>J/kg</i>
19.	_	sure and volume of an ideal ga		
	(a) A constant	l to ita tampanatuna	(b) Approx. equal to the	_
20.	(c) Directly proportiona	-	(d) Inversely proportion	emperature T , the mass of each
20.	_	ession for the density of gas is		_
	(a) mKT	(b) <i>P/KT</i>	(c) P/KTV	(d) Pm/KT
21.	The gas equation $\frac{PV}{T} = 0$	constant is true for a constant	mass of an ideal gas unde	ergoing [MP PET 1992]

Kinetic	theory	of gase	95 15

will

Pressure will become three

[MP PMT/PET 1988]

remain

(d) Any type of change

Pressure

23.	applying pressure its volume is reduced to 4.48 <i>litre</i> , then the resulting pressure will be					
	(a) 20 atms	(b) 10 atms	(c) 5 atms	(d) 2.5 atms		
24.	At 100 <i>K</i> and 0.1 atmost doubled, its temperature		of helium gas is 10 litr	res. If volume and pressure are		
	(a) 400 K	(b) 127 K	(c) 200 K	(d) 25 K		
25.	The molecular weights	of O_2 and N_2 are 32 and 28	respectively. At $15^{\circ}C$, the	e pressure of 1 gm O_2 will be the		
	same as that of 1 $gm\ N_2$	in the same bottle at the temp	perature			
	(a) - 21°C	(b) 13°C	(c) 15°C	(d) 56.4°V		
26.	lasting a few hours, the atmosphere, temperature	ne extra oxygen needed by t	them corresponds to 30,0	y mountaineers that for one trip 2000 cc at sea level (pressure 1 der has capacity of 5.2 <i>litre</i> , the		
	(a) 3.86 atm	(b) 5.00 atm	(c) 5.77 atm	(d) 1 atm		
27.	In order to double the s be made how many time	_	ules (keeping temperatur	e fixed), the final pressure must		
	(a) Halved	(b) 1/4th	(c) 1/8th	(d) 1/16th		
28.	A vessel contains 1 mo	le of O_2 gas (molar mass 3:	2) at a temperature T . T	he pressure of the gas is P. An		
	identical vessel containi	ing one mole of He gas (molar	mass 4) at temperature 2	T has a pressure of		
	(a) P/8	(b) <i>P</i>	(c) 2P	(d) 8 <i>P</i>		
29.	The volume of gas at p quantity of gas in gm-ma		mperature 27°C is 83 <i>litr</i>	res. If $R = 8.3 \ J/mol/K$, then the		
	(a) 15	(b) 42	(c) 7	(d) 14		
30.	A gas at absolute tempe number of molecules per		$ imes 10^{-10} \ N/m^2$. Boltzmann co	onstant = $k = 1.38 \times 10^{-23} J/K$. The		
	(a) 100	(b) 10^5	(c) 10 ⁸	(d) 10 ¹¹		
31.		is double that of A and gas in A in the two containers will then	•	ture and pressure than that in A .		
	(a) $\frac{N_B}{N_A} = \frac{1}{1}$	(b) $\frac{N_B}{N_A} = \frac{2}{1}$	$(c) \frac{N_B}{N_A} = \frac{4}{1}$	(d) $\frac{N_B}{N_A} = \frac{1}{2}$		
32.	_	essel at a constant temperatur fter some time the pressure is	-	nospheres an volume 4 <i>litre</i> . Due As a result, the		
	(a) 20% of the gas has e	escaped out	(b) 25% of the gas has e	escaped out		
	(c) 20% of the gas rema	ains in the vessel	(d) 25% of the gas rema	ins in the vessel		

(c) Isobaric change

A box contains n molecules of a gas. How will the pressure of the gas be effected, if the number of molecules is

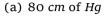
(b)

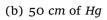
(d)

(a) Isothermal change (b) Adiabatic change

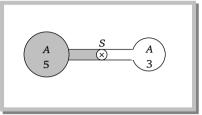
22.

made 2n


unchanged


times

(a) Pressure will decrease

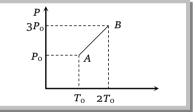

(c) Pressure will be doubles

33. A vessel *A* of volume 5 *litre* has a gas at pressure of 80 *cm* column of *Hg*. This is joined to another evacuated vessel *B* of volume 3 *litre*. If now the stopcock *S* is opened and the aperture is maintained at constant temperature then the common pressure will become

(d) None of these

34. Inside a cylinder, closed at both ends, is a movable piston. On one side of the piston is a mass m of a gas, and on the other side a mass 2m of the same gas. What fraction of volume of the cylinder will be occupied by the larger mass of the gas when the piston is in equilibrium? The temperature is the same throughout

35. A vessel has 6g of oxygen at pressure P and temperature 400 K. A small hole is made in it so that O_2 leaks out. How much O_2 leaks out if the final pressure is P/2 and temperature 300 K


36. Pressure versus temperature graph of an ideal gas is as shown in figure. Density of the gas at point A is ρ_0 . Density at B will be

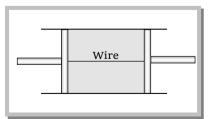
(a)
$$\frac{3}{4}\rho_0$$

(b)
$$\frac{3}{2}\rho_0$$

(c)
$$\frac{4}{3}\rho_0$$

(d) $2\rho_0$

►► Advance level


37. A cylindrical tube of uniform cross-sectional area A is fitted with two air tight frictionless pistons. The pistons are connected to each other by a metallic wire. Initially the pressure of the gas is P_0 and temperature is T_0 . Atmospheric pressure is also P_0 . Now the temperature of the gas is increased to $2T_0$, then tension in the wire will be

(a)
$$2P_0A$$

(b)
$$P_0A$$

(c)
$$\frac{P_0 A}{2}$$

(d) $4P_0A$

38. One mole of an ideal gas undergoes a process $P = \frac{P_0}{1 + \left(\frac{V_0}{V}\right)^2}$. Here P_0 and V_0 are constants. Change in

temperature of the gas when volume is changed from $V = V_0$ to $V = 2V_0$ is

(a)
$$-\frac{2P_0V_0}{5R}$$

(b)
$$\frac{11P_0V_0}{10R}$$

(c)
$$-\frac{5P_0V_0}{4R}$$

(d)
$$P_0V_0$$

Problems based on Vander Waal gas equation

39. Every gas (real gas) behaves as an ideal gas

(b) At low temperature and high pressure

	(c) At normal temperate	ure and pressure	(d) None of these	
ĮO.	Triple point temperatur	e for water is nearly		
	(a) 273.16 <i>K</i>	(b) 373.16 <i>K</i>	(c) 100°C	(d) 444.6°C
. 1.	The vapour of a substan	ce behaves as a gas		[CPMT 1987]
	(a) Below critical temper	erature	(b)	Above critical temperature
	(c) At 100°C		(d) At 1000°C	
Į2.	Critical temperature is t	_		[RPET 1987]
	_	s cannot be liquified only by i		
	_	s can be liquified only by incr		
	_	annot be liquified only by inc	creasing pressure	
	(d) None of these	ennas to associat in all three nl	bacca in conilibrium who	n the substance is et[MED DDW 400-1
!3 ∙	_	_	<u>-</u>	n the substance is at[MP PET 1985]
	(a) Boyle temperature	(b) Critical temperature	(c) Triple point	(d) Dew point
14.	The constant 'a' in the e	equation $\left(P + n^2 \frac{a}{V^2}\right)(V - nb) = n$	RT for a real gas has unit	t of
	(a) $N - m^{-4}$	(b) $N - m^{-2}$	(c) $N - m^2$	(d) $N - m^4$
ŀ 5∙	The deviation of gases f	rom the behaviour of ideal ga	as is due to	
	(a) Colourless molecule	S	(b) Covalent bonding o	f molecules
	(c) Attraction of molecu	ıles	(d)	Absolute scale
լ6.	The liquefaction of idea	l gas is possible		
	(a) Only at low tempera	ature	(b)	Only at high temperature
	(c) Only at very low ten	mperature	(d)	None of these
		D roblems based o	on Various speeds	
! 7•	speed v_{av} obey the relati	ionship		bable speed v_{rmp} , and the average
	$(a) v_{av} > v_{rms} > v_{mp}$	$(b) v_{rms} > v_{av} > v_{mp}$	$(c) v_{mp} > v_{av} > v_{rms}$	(d) $v_{mp} > v_{rms} > v_{av}$
լ8.	The rms speed of gas mo			[MNR 1995; MP PET 2001]
	(a) $2.5\sqrt{\frac{RT}{M}}$	(b) $1.73\sqrt{\frac{RT}{M}}$	(c) $2.5\sqrt{\frac{M}{RT}}$	(d) $1.73\sqrt{\frac{M}{RT}}$
١9٠	At a given temperature	if V_{rms} is the root mean square	are velocity of the molecu	les of a gas and V_s the velocity of
	sound in it, then these a	are related as $\left(\gamma = \frac{C_P}{C_v} \right)$		
	(a) $V_{ms} = V_s$	(b) $V_{rms} = \sqrt{\frac{3}{\gamma}} \times V_s$	(c) $V_{rms} = \sqrt{\frac{\gamma}{3}} \times V_s$	(d) $V_{rms} = \left(\frac{3}{\gamma}\right) \times V_s$

On any planet, the presence of atmosphere implies (C_{rms} = root mean square velocity of molecules and V_e = 50. escape velocity)

[RPMT 1996; JIPMER 2000]

(a)
$$C_{ms} \ll V_e$$

(b)
$$C_{rms} > V_e$$

(a) At high temperature and low pressure

(c)
$$C_{rms} = V_e$$

(d)
$$C_{rms} = 0$$

To what temperature should the hydrogen at room temperature (27°C) be heated at constant pressure so that 51. the rms velocity of its molecules become double of its previous value

(a) 1200° <i>C</i>	(b) 927° <i>C</i>			
	,	(c) 600°C	(d) 108°C	1
		ities of hydrogen molecule and		De[AMU (Engg.) 200
(a) $\sqrt{2}:1$	(b) $1:\sqrt{2}$	(c) 1:2	(d) 2:1	
If the molecular weight velocity v_1 and v_2 with		M_1 and M_2 , then at a temper	ature the ratio of	root mean square
			[MP PMT 198	89, 96; DPMT 2001]
(a) $\sqrt{\frac{M_1}{M_2}}$	(b) $\sqrt{\frac{M_2}{M_1}}$	(c) $\sqrt{\frac{M_1 + M_2}{M_1 - M_2}}$	(d) $\sqrt{\frac{M_1 - M_2}{M_1 + M_2}}$	•
According to the kine	etic theory of gases, at al	osolute temperature		
(a) Water freezes		(b) Liquid helium fr	reezes	
(c) Molecular motion	ı stops	(d)	Liquid hydrog	gen freezes
The temperature of a becomes	an ideal gas is increased	from $27^{\circ}C$ to $927^{\circ}C$. The roof	t mean square spee	ed of its molecules
			[NCERT 198	3; CBSE PMT 1994]
(a) Twice	(b) Half	(c) Four times	(d) One-fourt	th
At what temperature $127^{\circ}C$	e the molecules of nitrog [MP PMT 1994]	gen will have the same <i>rms</i> ve	elocity as the mole	cules of oxygen at
(a) 77°C	(b) 350°C	(c) 273°C	(d) 457°C	
The root mean square	e velocity of a gas molec	tule of mass m at a given temperature m	erature is proportio	onal to [CBSE PMT
(a) <i>m</i> °	(b) <i>m</i>	(c) \sqrt{m}	(d) $\frac{1}{\sqrt{m}}$	
A gas is allowed to ex	xpand isothermally. The	root mean square velocity of t	the molecules	[MP PMT 1986]
(a) Will increase		(b) Will decrease		
(c) Will remain unch	anged	(d)	Depends on tl	he other factors
	=	n mol of a gas in a container at	rest of 300 <i>K</i> is	
(a) $2 \times \sqrt{3R \times 300} gm \times 6$	cm / sec	(b) $2 \times 3 \times R \times 300 \ gm$	× cm / sec	
(c) $1 \times \sqrt{3R \times 300} gm \times d$	cm / sec	(d) Zero		
If the respective vel <i>km/sec</i> will be	ocities of three molecu	les of a gas are $\sqrt{7}$,4 and 5	km/sec., then the	ir <i>rms</i> velocity in
(a) $\frac{2+\sqrt{7}}{3}$	(b) $\frac{4}{\sqrt{3}}$	(c) 4	(d) $4\sqrt{3}$	
_	nolecules of a gas at tem articular direction will b	nperature T is v_{rms} . Then the rese	oot mean square of	the component of
(a) $v_{ms} / \sqrt{3}$	(b) $\sqrt{3} v_{rms}$	(c) $v_{rms} / 3$	(d) $3v_{rms}$	
	P roblems l	based on Kinetic energy		
	-	of gas, what will happen to t		

(a) Both will increase

(b) Kinetic energy increases but the temperature remains unchanged

(c) Kinetic energy increases while the temperature decreases(d) Kinetic energy is unchanged while the temperature increases

Kin	etic	theory	οf	gases	40
IIIII	Cuc	tile of A	OΙ	gases	49

63.		th negligible coefficient volu K to 600 K , the average K.E.	-	helium (a mo	onoatomic į	gas). When		
	(a) Halved	(b) Unchanged	(c) Doubled	(d) Incre	ased by fact	for $\sqrt{2}$		
64.	At 0 K which of the fo	ollowing properties of a gas w	vill be zero					
	(a) Kinetic energy	(b) Potential energy	(c) Vibrational energy	(d) Densi	ty			
65.	The ratio of mean kin	etic energy of hydrogen and	oxygen at a given temperatı	ıre is				
		[NCE	RT 1981; MP PET 1989, 99; MP	PMT 1994, 2	000, 03; Pb.	PMT 2000]		
	(a) 1:16	(b) 1:8	(c) 1:4	(d) 1:1				
66.	The average kinetic e	nergy of a gas molecule at 27	°C is $6.21 \times 10^{-21} J$. Its avera	ge kinetic en	ergy at 127	°C will be		
				[MP PMT	/PET 1998; <i>A</i>	MIMS 1999]		
	(a) $52.2 \times 10^{-21} J$	(b) $5.22 \times 10^{-21} J$	(c) $10.35 \times 10^{-21} J$	(d) 11.35	$\times 10^{-21} J$			
67.	At 27°C temperature	, the kinetic energy of an id	eal gas is E_1 . If the temper	erature is in	creased to	327° <i>C</i> , the		
	kinetic energy would	be						
						PMT 1996]		
	(a) $2E_1$	(b) $\frac{1}{2}E_1$	(c) $\sqrt{2}E_1$	(d) $\frac{1}{\sqrt{2}}E_1$	l			
68.	The kinetic energy pe	r gm mol for a diatomic gas a	at room temperature is	•-	[M	P PET 1991]		
	(a) 3 RT	(b) $\frac{5}{2}RT$	(c) $\frac{3}{2}RT$	(d) $\frac{1}{2}RT$				
69.	The ratio of mean kin	etic energy of hydrogen and	nitrogen at temperature 300	o <i>K</i> and 450	K respectiv	ely is[MP PET 1		
	(a) 3:2	(b) 2:3	(c) 2:21	(d) 4:9				
70.	If the volume of a gas will	s is doubled at constant press	sure, the average translation	nal kinetic e	nergy of its	molecules		
	(a) Be doubled	(b) Remain same	(c) Increase by a facto	$r\sqrt{2}$ (d)	Become	four times		
		Problems bas	sed on Boyle's law					
71.	A graph is drawn for	a given mass of a gas at cons	tant temperature between <i>P</i>	V and P. the	curve will	be[CPMT 2002]		
	(a) Parabola		(b) Straight line inclin	ed at an ang	le of 45°			
	(c) Straight line para	llel to axis of P	(d) Straight line parall	(d) Straight line parallel to PV axis				
72.	The relationship betw	veen pressure and the density	of a gas expressed by Boyle	e's law, $P = R$	KD holds tri	ie[JIPMER 2002		
	(a) For any gas under	any conditions	(b) For some gases und	(b) For some gases under any conditions				
	(c) Only if the temper	rature is kept constant	(d) Only if the density	(d) Only if the density is constant				
73.	Boyle's law holds for	an ideal gas during		[.	AFMC 1994;	KCET 1999]		
	(a) Isobaric changes	(b) Isothermal changes	(c) Isochoric changes	(d) Isotoi	nic changes			
74.	At a given temperatur	re, the pressure of an ideal ga	as of density $ ho$ is proportion	al to	[MF	PMT 1999]		
	(a) $\frac{1}{\rho^2}$	(b) $\frac{1}{\rho}$	(c) ρ^2	(d) ρ				
75 .	For Boyle's law to hol	d the gas should be			[4	CPMT 1978]		
	(a) Perfect and of cor	stant mass and temperature	(b) Real and of constar	nt mass and	temperatur	e		
	(c) Perfect and at cortemperature but varia	nstant temperature but variab Able mass	ole mass (d)	Real a	and at	constant		

10% at a constant temperature

	(a) 8.1%	(b) 9.1%	(c) 10.1%	(d) 11.1%	
77.	The figure shows §	graphs of pressure versus d	ensity for an ideal gas at two	o temperatures T_1 and	T_2
			<i>P</i> ↑	, T.	
	(a) $T_1 > T_2$,T ₂	
	(b) $T_1 = T_2$				
	(c) $T_1 < T_2$			$\longrightarrow p$	
	(d) Nothing can be	e predicted		-	
		P roblems	based on Charle's law		
78.	Volume of gas become	ome four times if			[RPET 2001]
		pecome four times at consta	nt pressure (b)	Temperature	become one
	(c) Temperature to constant pressure	pecomes two times at consta	ant pressure (d)	Temperature b	ecomes half at
79.	A perfect gas at 29 be [MP PET 1991]	7°C is heated at constant p	ressure so as to triple its vo	lume. The temperature	e of the gas will
	(a) 81°C	(b) 900°C	(c) 627°C	(d) 450°C	
80.	4 moles of an id temperature will b	_	stant pressure it is heated	to double its volume	, then its final
					[MP PET 1990]
	(a) 0° <i>C</i>	(b) 273°C	(c) 546°C	(d) 136.5°C	
81.	The volume of a g will be	as at 20°C is 200 <i>ml</i> . if the [MP PET 1986]	temperature is reduced to -	-20°C at constant press	sure, its volume
	(a) 172.6 ml	(b) 17.26 ml	(c) 192.7 ml	(d) 19.27 ml	
82.	A litre of an ideal	gas at 27°C is heated at a co	onstant pressure to 297°C. The	hen the final volume is	approximately [NCE
	(a) 1.2 litres	(b) 1.9 litres	(c) 19 litres	(d) 2.4 litres	
		Problems ba	sed on Gay Lussac's la	ıw	
83.		perature 250 <i>K</i> is contained se in its pressure will be	ed in a closed vessel. If the	e gas is heated throu	gh 1K, then the
	(a) 0.4%	(b) 0.2%	(c) 0.1%	(d) 0.8%	
84.	-	of a gas at pressure <i>P</i> and voten its pressure will be	olume V is 27° C . Keeping its	s volume constant if its	temperature is
	(a) 2P	(b) 3 <i>P</i>	(c) 4P	(d) 6P	
85.		-	perature $T_{ m o}$ at sea level and The absolute temperature T	-	_
	(a) Equal to $T_0/3$		(b) Equal to $3/T_0$		
	(c) Equal to T_0		(d) Cannot be dete	ermined in terms of T_0	from the above
	data				

By what percentage should the pressure of a given mass of a gas be increased so as to decrease its volume by

[AIIMS 1998]

[CPMT 1995]

(d) 16:14

(d) $(1/3)\times10^{23}$

(c) $10^{-11} \times 6 \times 10^{23}$ (d) $2.68 \times 10^{19} \times 10^{-11}$

(b) Faster in liquids than in solids and gases

(d) Faster in gases than in liquids and solids

(d) 0.80

(d) $22400 \times 6 \times 10^{23}$

Problems based on Avogadro's law

If Avogadro's number is 6×10^{23} , then approximate number of molecules in 1 cm^3 of water will be

(b) 32:27

(b) 6×10^{23}

(b) 2.68×10^{19}

(b) 2.4×10^6

(b) 0.61

The number of molecules per cc of a gas at STP is

(a) Faster in solids than in liquids and gases

(c) Equal to solids, liquids and gases

86.

87.

88.

89.

90.

91.

(a) 1:1

(a) 1×10^{23}

(a) 2.68×10^{17}

(a) 2400

(a) 0.46

The rate of diffusion is

At N.T.P., sample of equal volume of chlorine and oxygen is taken. Now ratio of number of molecules[RPET 2000]

The residual pressure of a vessel at $27^{\circ}C$ is $1\times10^{-11} \, N/m^2$. The number of molecules per cc in this vessel is

Problems based on Grahms law

Ratio of rate of diffusion of H_2 gas and O_2 gas is 1 : 4. Ratio of their molecular weights is

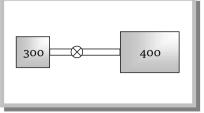
(c) 2:1

(c) 22.4×10^{23}

(c) 6×10^{23}

	(a) 16:1	(b) 4:1	(c) 1:16	(d) 1:4		
		P roblems based	l on Dalton's law			
> 1	Basic level					
92.	m_3 and the number of containers are P_1, P_2 a pressure P of mixture N	f molecules in their respecting P_3 respectively. All the g	we containers are N_1, N_2 ases are now mixed and	es of the molecules are m_1, m_2 and and N_3 . The gas pressure in the put in one of the containers. The (d) $P > (P_1 + P_2 + P_3)$		
93.	-	perature of two different gase me and temperature, the pres	•	olume $\it V$ for each. They are mixed		
94.	(a) $P/2$ (b) P (c) $2P$ (d) $4P$ 94. A container encloses two ideal gases. Two moles of the first gas are present, with molar mass M_1 . Molecules of the second gas have a molar mass $M_2 = 3M_1$, and 0.5 mole of this gas is present. The fraction of total pressur attributable to the second gas is					
	(a) $\frac{1}{2}$	(b) $\frac{1}{3}$	(c) $\frac{1}{5}$	(d) $\frac{1}{4}$		
>>	Advance level					
95.		20 <i>litre</i> is filled with a mixtunt the ratio of masses of H_2 a		The pressure is 2 atm. If the mass		

(c) 0.75


96. A contains an ideal gas at a pressure of 5.0×10^5 Pa and at a temperature 300 K. it is connected by a thin tube to container B with four times the volume of A. B contains the same ideal gas at a pressure of 1.0×10^5 Pa and at a temperature of 400 K. the connecting valve is opened. The final pressure of the system is

(c) 350 kPa

(d) 250 kPa

Problems based on Law of equipartition of energy

97.	Mean	kinetic	energy	per	degree	of f	reed	lom (of ga	is mo	lecul	es i	S

(a) $\frac{3}{2} KT$

(b) *KT*

(c) $\frac{1}{2} KT$

(d) $\frac{3}{2}RT$

98. The translatory kinetic energy of a gas per gm is

[DPMT 2002]

(a) $\frac{3}{2} \frac{RT}{N}$

(b) $\frac{3}{2} \frac{RT}{M}$

(c) $\frac{3}{2}RT$

(d) $\frac{3}{2}NKT$

99. A monoatomic gas molecule has

(a) Three degrees of freedom

(b) Four degrees of freedom $\,$

(c) Five degrees of freedom

(d)

Six degrees of freedom

100. The degrees of freedom of a triatomic gas is

[CBSE 1999]

(a) 2

(b) 4

(c) 6

(d) 8

101. The kinetic energy, due to translational motion, of most of the molecules of an ideal gas at absolute temperature T is [Roorkee 1994]

(a) kT

(b) k/T

(c) T/k

(d) 1/kT

102. The number of translational degrees of freedom for a diatomic gas is

(a) 2

(b) 3

(c) =

(d) 6

103. A polyatomic gas with *n* degrees of freedom has a mean energy per molecule given by

[CBSE PMT 1992]

(a) nkT/N

(b) $nkT/2N_A$

(c) nkT/2

(d) 3kT/2

104. A gas has volume V and pressure p. The total translational kinetic energy of all the molecules of the gas is

(a) $\frac{3}{2}$ pV only if the gas is monoatomic

(b) $\frac{3}{2}pV$ only if the gas is diatomic

(c) $> \frac{3}{2} pV$ if the gas is diatomic

(d)

 $\frac{3}{2}pV$ in all cases

Problems based on Mean free path

105. If the pressure in a closed vessel is reduced by drawing out some gas, the mean free path of the molecules[CPMT 1973]

(a) Is decreased

(b) Is increased

(c) Remains unchanged gas

(d) Increases or decreases according to the nature of the

106. The correct relation connecting C_{ms} , λ and collision frequency *NC* is

(a) $N_c = \frac{C_{rms}}{\lambda}$

(b) $N_c = \frac{\lambda}{C_{--}}$

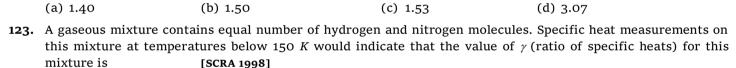
(c) $N_c = \lambda C_{rms}$

(d) $N_c = \lambda^2 C_{rms}$

107.	The mean free path of	gas molecules depends on (d	d = molecular diameter)	
	(a) <i>d</i>	(b) d^2	(c) d^{-2}	(d) d^{-1}
108.	Mean free path of the	molecules of a gas depends of	on absolute temperature T	as
	(a) <i>T</i>	(b) T^{-1}	(c) T^2	(d) T^4
		Problems base	ed on Specific heat	
▶ E	Basic level	·	_	
109.	Universal gas constan	t is		
	(a) C_P/C_v	(b) $C_p - C_v$	(c) $C_p + C_v$	(d) C_v / C_p
110.	The specific heat of an	ideal gas is		
	(a) Proportional to T	(b) Proportional to T^2	(c) Proportional to T^3	(d) Independent of T
111.	If the degree of freedo	om of a gas are f , then the ra	atio of two specific heats (C_p / C_v is given by
			[MP PMT 1990;	MP PET 1995; BHU 1997; MP PMT 2001]
	(a) $\frac{2}{f} + 1$	(b) $1 - \frac{2}{f}$	(c) $1 + \frac{1}{f}$	(d) $1 - \frac{1}{f}$
112.	The value of C_{ν} for one	e mole of neon gas is		[MP PMT 2000]
	(a) $\frac{1}{2}R$	(b) $\frac{3}{2}R$	(c) $\frac{5}{2}R$	(d) $\frac{7}{2}R$
113.	The specific heat of a	gas at constant pressure is g	reater than that of the sam	ne gas at constant volume because [UPSEA
	(a) At constant pressu	re work is done in expandin	g the gas against constant	external pressure
	(b) At constant volum	e work is done when pressur	re increases	
	(c) The molecular agi	tation increases at constant _l	pressure	
	(d) The molecular agi	tation decreases at constant	volume	
114.	The specific heat of 1 [UPSEAT 2000]	mole of an ideal gas at const	ant pressure (C_p) and at co	instant volume (C_{v}) which is correct
	(a) C_p of hydrogen gas	s is $\frac{5}{2}R$	(b)	C_{ν} of hydrogen gas is $\frac{7}{2}R$
	(c) H_2 has very small	values of C_p and C_v	(d) $C_p - C_v = 1.99 cal / m$	$nole - K$ for H_2
115.	In gases of diatomic m	nolecules, the ratio of the two	o specific heats of gases C_i	$_{\nu}$, $/C_{\nu}$ is [EAMCET (Med) 1995]
	(a) 1.66	(b) 1.40	(c) 1.33	(d) 1.00
116.	When an ideal monor increases the internal	_	stant pressure, the fracti	on of heat energy supplied which
	(a) $\frac{2}{5}$	(b) $\frac{3}{5}$	(c) $\frac{3}{7}$	(d) $\frac{3}{4}$
117.	If R is gas constant an	d C_p and C_v are specific hea	ats for a solid per mole, the	en for the solids [CPMT 1977]
	(a) $C_p - C_v = R$	(b) $C_p - C_v \ll R$	(c) $C_p - C_v = 0$	(d) $C_p - C_v$ is negative
118.		rygen is heated from 0°C to 1 cific heat of oxygen at consta		s internal energy changes by 420 J .
		(b) $10.5 J-K^{-1} mol^{-1}$		(d) $42 \ J - K^{-1} \ mol^{-1}$

119.	If U represents the internal energy of one mole of a gas and T is the absolute temperature, then the molar specific heat of the gas at constant pressure is										
	(a) $\frac{dU}{dT}$	(b) $\frac{dU}{dT} + R$	(c) $\frac{dU}{dT} - R$	(d) $R - \frac{dU}{dT}$							
>>	Advance level										
120.	The ratio of specific heat of a gas at constant pressure to that at constant volume is γ . The change in internal energy of a mass of gas when the volume changes from V to $2V$ at constant pressure P is										
	(a) $\frac{R}{\gamma - 1}$	(b) PV	(c) $\frac{PV}{\gamma-1}$	(d) $\frac{\gamma PV}{\gamma - 1}$							
121.	A sample of ideal gas (γ	= 1.4) is heated at constant p	ressure. If an amount of	100 <i>I</i> heat is supplied to the gas.							

121. A sample of ideal gas (γ = 1.4) is heated at constant pressure. If an amount of 100 J heat is supplied to the gas, the work done by the gas is


(d) 36.23 J

[IIT-JEE 1986; RPMT 1996; AIEEE 2002]

(a)
$$42.12 J$$
 (b) $56.28 J$ (c) $28.57 J$

Problems based on Mixture

122. If one mole of a monoatomic gas $(\gamma = 5/3)$ is mixed with one mole of diatomic gas $(\gamma = 7/5)$, the value of γ for the mixture is

(a) 3/2 (b) 4/3 (c) 5/3 (d) 7/5

124. Two ideal gases at temperature T_1 and T_2 are mixed. There is no loss of energy. If the masses of molecules of the two gases are m_1 and m_2 and number of their molecules are n_1 and n_2 respectively, the temperature of mixture will be

(a)
$$\frac{T_1 + T_2}{n_1 + n_2}$$
 (b) $\frac{T_1}{n_1} + \frac{T_2}{n_2}$ (c) $\frac{n_2 T_1 + n_1 T_2}{n_1 + n_2}$ (d) $\frac{n_1 T_1 + n_2 T_2}{n_1 + n_2}$

125. Two moles of a monoatomic gas are mixed with one mole of a diatomic gas. The γ for mixture is

(a)
$$\frac{5}{3}$$
 (b) $\frac{7}{5}$ (c) $\frac{4}{3}$ (d) $\frac{17}{11}$

126. A mixture of n_1 moles of monoatomic gas and n_2 moles of diatomic gas has $\gamma = 1.5$, then

(a)
$$n_1 = 2n_2$$
 (b) $2n_1 = n_2$ (c) $n_1 = n_2$ (d) $2n_1 = 3n_2$

${\mathcal A}$ nswer Sheet (Practice problems)

1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
a	d	С	b	С	b	С	a	a	С
11.	12.	13.	14.	15.	16.	17.	18.	19.	20.
С	a	d	d	a	b	b	С	С	d
21.	22.	23.	24.	25.	26.	27.	28.	29.	30.
d	С	b	a	a	a	С	С	С	b
31.	32.	33.	34.	35.	36.	37•	38.	39.	40.
b	a	b	С	С	b	b	b	a	a
41.	42.	43.	44.	45.	46.	47•	48.	49.	50.
b	a	С	d	С	d	b	b	b	a
51.	52.	53.	54.	55.	56.	57•	58.	59.	60.
b	a	b	С	a	a	d	С	d	С
61.	62.	63.	64.	65.	66.	67.	68.	69.	70.
a	a	С	a	d	С	a	b	b	a
71.	72.	73.	74.	75.	76.	77•	78.	79.	80.
С	С	b	d	a	d	a	a	С	b
81.	82.	83.	84.	85.	86.	87.	88.	89.	90.
a	b	a	С	a	a	d	b	a	d
91.	92.	93.	94.	95.	96.	97•	98.	99.	100.
a	С	С	С	a	a	С	b	a	С
101.	102.	103.	104.	105.	106.	107.	108.	109.	110.
a	b	С	d	b	a	С	a	b	d
111.	112.	113.	114.	115.	116.	117.	118.	119.	120.
a	b	a	d	b	b	b	С	b	С
121.	122.	123.	124.	125.	126.				
С	b	d	d	d	С				