Exercise 16.4

Chapter 16 Vector Calculus Exercise 16.4 1E
Consider the following line integral:
@{_(x—y]d\% (x+y)dy
Taking advantage of trigonometry, there is a standard parameterization of the curve which is
the perimeter of a circle centered at the origin with radius 2.
x=2cosd
y=2sind
With ( < @ < 2. the corresponding differentials are as follows:

dx =-2sinfd@
dy =2cosfdf

Substitute into the integral.
i= [de + Qdy

2;

i

(-—2(2cosl9 2sin@)sin ﬁd8+2(20058+25m6‘]c058) (e}

=

1;

3

(—4sm6’c05t‘?+ 4sin® @ +4dcos’ 0+ 4snn6'ccs6')d9

cl—.

Combine like terms, factor, and simplify the trigonometric identities to get a simple integral to
evaluate.

I=4Tld9
[

=4jel
=[8]

With Green's Theorem, this line integral can also be worked as a double integral.

Green’'s Theorem:

I= [de + Ody

H[a‘“’ 2 s

Here, D is the region bounded counterclockwise by C.

The parameterization in part (a) was counterclockwise, so Green's Theorem should give the
same result.

Compute the integrand.

=2

Use Green's Theorem to set up the integral.

.'=j;jsz

Here, D is the circle of radius 2.

Since the integrand is constant and the formula for the area of acircle is 4= 7. thereis a
shortcut easier than computing the integral.

1=2(x-2%)

=[8al
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Consider:

23
‘15-‘0"‘1"‘” Y'a¥ where C is a triangle with vertices (0. 0). (1. 0) and (1. 2).

]

Evaluate.

The following is the figure:
e
T (1,2)

G,

O w0

(a)
C consists of line segments with parametric equations:

C: y=0,x=1021<1
C: x=ly=t 0s¢=s2
C: x=1-t,y=2-2,0<1<1

Then !-_ry dv + _'rzy'.'d_}-' = I_xy dx + _rzysaﬁ—‘ + I xy dx + _'fzy"dy
i G

&)
+I xydy+ .r2y3a'y
G
For C. dv=0,dx=dlt
1
ree+x*y dy = | (0)de+(0) et
Now ;[X} e I[{ Jar)
=0
For C,, dv=0,dv=dt

I.rydx+x:y"‘d1—'=j!{U]dr+(l):‘"(l}d!

&

A 4



For C,. dy=-2dt,dx=~dt

And Ixya’.ﬂ X’ yidy =.I[(l—.f]lz(l—r)(—i)a'H(I—.'}:E-:[l—r)a (-2)dt

j;'[(—z](l —t)' ~16(1-1)' |

[-i-( =i "‘—(I—;] } (J--""fi\'zi‘

. L W+l )

2 2 3

iy N 0 S il
__Io

3
Therefore, Ixycir+.t Vdy= 0+4——
:

_|2

3

On comparing (ﬁ«"yd““h\'!)‘!dJ’with @Pdr'Qd.Vwe have
o o

P=xyand O =x"y'
Then a—sz and @=2ny
v ax

By Green'’s theorem:

qSParx Qdy = J’j(@—%]m

Here in this case D={(x,y): 0<x<1, 0<y <2x}

1 2x

Then tﬁxydx+x1y3 dy = j‘ f [2erJ —x)dyd.r
(L1}

:n_‘...

!r 2y° ~l ab*

] 2 Y

I[Ey 'J’]:; dx |: _F.\'"c.fr 5 A

n+1)

:JL'[Sx4 —Z.r]d.r

[ SR S

The above is simplified to,

=j[8.r5 ~2x)dx

0

1 arel Y
=[i‘- %= ‘_2_1.-‘) j-.r”cf\' EE.
3 3 4 n+l |

4 2

3 3

| 1
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(&) To evaluate the line integral, use the formulas
8

JoF @yyin= [ s yenx@a ()

And

[y = ra@. e @)

We must split the path C into three pieces. The first piece 12 the arc of the

parabola y = x°, from (0, O to (1, 1). We can parametrize this path by
x=f

2

y=t

With ¢ ranging from 0 to 1. From thiz parametrization we get the derivatives
x'(f) =1

¥l =2

Tsing equation (1) along this piece of the curve, we have

PR T L T

§ A= [ ©FE e
(£t

)

And using equation (2) we have

b ony = [ @) Qe
=ﬁ@ﬂm

2

3]

)
|

&
7

1
4
7

1
0

0

(R

2o the line integral {)szyzdx—i-.xydy along thiz piece of the path 12 1/ 7+ 2/5=15/35.

The next piece 15 the top of the curve, the line segment from (1, 1) to (0, 1), We can
parametrize this as
x=i

y=1

With ¢ ranging from 1 to 0. Hote that the limits must be in this order so we continue to
traverse the curve counterclockwise, From thiz parametrization we get the derivatives

x=1
yhig)=0
Using equation (1) along this line segment, we have

hfﬁm:f@%ﬁmﬂ

And using equation (2) we hawve
0
iy = [ D0
==
=0 the line integral i)cxzyzdx+xydy along this piece of the path 13 -1/ 34+0==-1/ 3.



The third piece is the left side of the curve. This 15 a vertical line from (0, 13 to (0, 07
We can parametrize it as

x=10

y=i

WWith £ ranging from 1 to 0. Notice again that the limits must be in this order 30 we
continue to traverse the curve counterclockwise. From this parametrization we get the

derivatives
x5 =0

rig=1

Tzing equation (1) along this line segment, we hawve

LT L
(fjcf yidx = L (0% (2% (Ol
=0
And using equation (2] we have

0
oy = [ (O
=0
=0 the line integral tf)cx;ygdx+xydy aleng this piece of the path 15 0.
The total value of the line integral 1z the addition of all the pieces, or

19 1 22
i O
35 03

by Green’s Theorem 15
Icde+Qdy: ”{E—ﬁ

onox
To apply Green’s Theorem to this integral, find the limits of integration for the region
enclosed by the curve. In the y the region ranges from y=x* to y=1. The x limits are 0
and 1.
The integrand comes frem P =2y and Q= xy. Take the necessary partial derivatives:

82 _
E—}’
ar
i
= ¥

Therefore, applying Green’s Theorem to the integral leads to:
§_ 2y + aydy = IDTQ =Sy i

Hold x constant and integrate in terms of 3

i)c 2ydn+ xydy = Inl ng (v — 22y dveix

Integrate in terms of x

11 2
tf)cxgygdx+xydy =_|-u(§—x2 —?-i-xﬁ}'x

Az expected, this 15 the same value reached in part (a).
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vl 1
Consider the integral, I-‘U" dx+2X ydy Here, Cis the triangle with vertices.
’
({]*D},[E,Eﬁ], and (2*4}.
Use Green's theorem to evaluate the line integral.

Recollect Green's theorem.

Green’s Theorem:

0 P
[ Pdx+Qdy = {!’[ﬂ—?—% 4

Here, P=xy’, and O =2xy

Find the partial derivatives.
Differentiate Q with respect to x.

Q(x.y)=2x"y
LY
—= = dxv
ox ’
Differentiate @ with respectto y.
P(x,y)=x"
oP

—=2xy

Sketch the region of the curve with vertices, (0,0),(2,2,), and (2,4).

F Y
stV

L




Find the limits of the region.

From the region, observe the following:
Change in x—axisis0Oto 2.

Change in y-axisis y=xtoy=2x.

By the Green's theorem,

(4oxy = 20y Jelvelx

L

I.ryzdx +2x vy = j'
o

C

=

[ 4 4
| (L
7 3

[
| 4

=3.4

=12

Hence, the value of the line integral is .
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I(y +e“'?)dx+ (2x+cosy2:ldy
c

Where C is the region bounded by parabolas y = 2 and x = »*

H H H
x° and  x=y y=x

2
y=x

(0,0)

On comparing with _[ Fdr+0dy we have

P=y+e‘ﬁ
Q= 2x+cosy?
Then ﬁ=l
v
And @z 2
Jx

By Green's theorem

80 ar
lPaEx+Qdy: [!(E—a}dﬂ

Here Dz{(x,y:l: D=y=1, ygixsﬁ}

Then _I-(y +e"§)dx+ (2x+ cos yz) v
o

(E—I)dx dy

1l
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Usze Green’ s Theorem:
] Pax+Qdy = H Lo
¢ ah g By
In this case, P(x,¥) =" and O(x,») = 2x° . Find the appropriate partial derivatives and

the limits of integration of the region, and plug into Green’s Theorem to find the solution
to the line integral.

Find the relevant p attial derivatives:

Oix,») =2z
28] 3
e _ g

ax <
P(x,p)=y*
%z 4y*

7

Find the limits of integration of the region. The region iz an ellipse; the limits in ¥ can be
the positive and negative halves of the ellipse, which we get by solving the ellipse
ecuation for ¥

x2+2_y2=2
X
—+3y =1
5 ¥

2

x
B O
a4 2

]

The top and bottom halves of the ellipse, and therefore the v limits, are y=£.[1— % :

The x limits will be the most extreme values of x. Zince the standard form of this ellipse

15 ? +~y2 =1, the wertices in the x-direction, and therefore the imits in x, arex = i\/@.

Therefore, applying Green’s Theotem to the integral leads to:

[ dx+ 2y = I_i; _“F_m(zf — 457 Yl

S
=J"ﬁ y_"'_ \ 1)
-El 2 g

dx
- iz
2 2 2
[fﬁ{iﬂ — (";)"2) —(1-(xhz? —[7(1_ (xz)rz) —(1-(x")/ 2)2}(;;
/3
I_ﬂde

[0
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Caonsider the line integral
"-'f' 3 he 3 5
J‘} ax=xay where C is the circle x* 4 y* =4
L
Evaluate the above integral by using the green’s theorem.
Green's theorem states that let C be a positively oriented, and let D be the region bounded by
C. if Pand Q have continuous partial derivatives on an open region that contains D, then

?ﬁf'caw+gcq1r=jj[%-%Jff.4

[}

On comparing f.“ dx = x"dy yith _[} 2de+Qdy e have

[ i
P=y" and 0 =—x'
Then

0 ) 0\ 5
t—P=3}-'“ and (F\—Qz—l\'“

&y o



By Green's theorem

Here in polar co — ordinates

x=rcosf and y =rsind

And
¥4y =y
4= p2 Since ¥ +yi=4
r=3

Therefore the region is

D={(r.8), 0<r<2 0<@<2r)

Then the line integral becomes

[yide-x'dy=[[(-3x* -3y* ) A

€ [}

= —3jj{x2 +J;1}dA Since x'.‘ +J«'2 i rz
n

= —3Tir2 rdrdf
i

ir 2
— -EJ dﬁ{jr" a’ri| Apply integration
(1] 0

4 = _n+l
=-3(0)" T | use the formula fx"afr S
4 ) n+l

= -3(2,?-{:-)[% - 0] Apply limits

=-3(27)(4)

- Simplify

Thus

J e~y =[]
]
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Let us first graph of the given region.

L




In polar coordinates, D iz givenby 2 =7 = 3 and 0 = 8 = 2w Also,

E = % = 3x° - (—3_);2) or @ = ﬁ = 3x" +3y° Onreplacing x with 7 cos & and
dx oy gx v

ywithrsin 8, we get 3

E

pl

Evaluate the outer integral

g2

i
1957
2

195
Thus, the integral evaluates to bl )
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Consider the vector field function:
F(x,y)= (y COS X = XVSIn X, Xp + xcos 1)
Thus, P(x,y)=ycosx—xysinx and Q(x,y)=xy+xcosx.
The region p enclosed by ( is the triangle and ¢ has negative orientation.

Sketch the region.

0,0 1 2A2,0)

Use Green's Theorem to evaluate j‘ F-dr.
&

Green’s Theorem:

Let ¢ be a positively oriented, piecewise-smooth, simple closed curve in the plane and let p
be the region bounded by ¢, If P and O have continuous partial derivatives on an open
region that contains [, then

L_Pd\‘ + Qdy = H[@ - E]CM

o o oy



Clearly. P and Q have continuous partial derivatives on an open region that contains D.

.
Compute ﬁ — E
dx  ay
400 e —(xy+xcos 't‘)——(_} o5 X — xysin x)
ox 6} o ay
= {y + cosx— xsinx)—(cosx—xsinx)
= }J
a0 A
Thus, ﬁ—i—P V.
oy Oy

The curve (¢ moves from (014] to (2,{}], thus the equation of the line passing through the

points (0,4) to (2,0) is

4-10
y—4= x-0
e )
y—4=-2x
y=4-2x

S0 0=x<2,0=y<4-2x

Apply Green's Theorem:

24-2¢
H — - —|dd = j I ydvdx since C is negatively oriented
0\ a)} o 0
7 Rl g P
3 ; x
- —J CA elx Since, I.t"ci\' - +C
2 n+l

oL

=_} (4-2x) 'dx

Evaluate the outer integral.

ﬂ'(-— - fﬂf}m =——j:(4—_-2x—}l-dx

ox

22 6 6
1 64
o e O —
2 6
...
3

Therefore, the value of the integral LF ~dris —E,
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Tse Green’ s Theorem. For a positively oriented curve O,

ap
Iﬁdﬁgdy:ﬂ[%_a

In this case, P{x, ¥} is the i-component of F, meaning P(x, 31 =" +3*, and O(x,)) is

the j-component of F, meaning O(x,v) =& +x°. Find the appropriate partial derivatives

and the limits of integration of the region, and plug into Green’s Theorem to find the
solution to the line integral.



Find the relevant partial derivatives:
Oix=e? +x°

Ez 2x

%

Plx )=+
®_,

gy

Find the limits of integration of the region. The y-values range from 0 to cosx and the x-
values range from —7/ 2 tor{ 2, so these are the limits of the region iny and x. Motice
that the curve is negatively oriented, however, we are traversing it clockwise instead of
counterclockwise. Therefore we must add a negative to the double integral in Green’s
Theorem.

Lpplying Green’s Theorem to the integral leads to:
a2 prosy _ xi 2 05K
—I I (2x—2y)a’ydx— _I._m(ny ¥ )[l ax

-zrzdo
a3 2
=—I (2xcosx—cos x—U)dx

—=/2
] [M“_M}ﬁ
-2 2

In the last step we have used the trigonemetric identity cos® x = (14+cos 22172,
Zplit the integral up acrosz the addition sign. Integrate the first integral using integration
by parts, given by the formula Iudv =uv— I (v Let

H=2x
dv =rcos xdx
du = 2dx

v=zinx
Thiz assignment for integration by parts gives us

_I_‘fz(zx.:os *ix=— [(2x)(sin e j_”ism x(2)dx]

s [(2(m DY) (stn (s 2)) — (270 2))(sin(—7r/ 20— 2(— cos x)[iJ

=—[7(Y + (= 1) = 2(~ cos(7ri 2) + cos(—r! 2))]
=0

Evaluate the second integral:

Ixm (l+cosdx) 1 sifn 2%
- _—  Hr=—| x4+ —
-ai2 2 2 2

xid

—xi2

{7 sinm o osin(—m
- =+ e
2 2 2 2 2
- Lizvoy
2
i
2
The rezult from Green’s Theorem 12 the sum of these two integrals, or
o |
n+—_=|—

2 |2
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Consider the vector field

F(x,y)=(y—cosy,xsiny} ... (1)

Use green’s theorem to evaluate JFF"“"_ here ( is circle (x—3}2 +[y 4.4)2 =4 oriented
%

clock wise.

Recall Green's Theorem

Let ¢ be a positively oriented, piecewise-smooth, simple closed curve in the plane and let D
be the region bounded by C_ If P and ' have continuous partial derivatives on an open region
that contains D, then

a0 opP

ide+Qdy=g[E—a A ... (2)

Sketch the region D bounded by the circle (x__",f & [y +4)’ =4 oriented clock wise.

¥
A

1 2 3 4 5 B

Consider vector field
F(x,y)=(y—cosy)i+xsinyj
Compare this vector field to F(x,y) =Pi+Qj-

So we have
P=y—cosy
0 O=xsmy

Differentiate P partially with respectto y.

g=£l:y—c::o:::=,y]
oy oy
=1+siny

Differentiate Q partially with respect fo x,

".a -
Pé%z%{xsiny)
0 =siny
=]
Substitute -af-zhsiny and E-Q- =sinyin EQ_E_P
cy ax x @y
=
£:‘-Q-—-ci'x—:'=s'n1_y—[|+siny]
& oy
20 _ap_

-2 =

o oy

“



Use equation (1), to evaluate the integral }-F-dr
v

J.F -dr —I((y cos y ) dx + xstr"j’)

_H[ < (xsin y}—é(}'—cosy]]d,d

=j' dA
il

Evaluate the integral IdA.
ir

First change the Cartesian coordinates into polar coordinates, by substituting

x=3+2cos0 and y = -4+ 2sin @ , then the bounded region D is

={(;-.3];0 <r<2and0 <@ < 2}

[

x

| [2ke

(1]

= 26|

= 2(27-0)
= 47

The irategral is
f F-dr:j' dA
. Iy
=4r

Therefore the required integral is

J'F-dr=47¢
!
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Consider the following vector field

F(x,y}:(ﬁ,ian"x} ...... (1)

Use green’s theorem to evaluate }-F-dr_ here ( is triangle from
b

(0,0)to (1,1) to (0.1) to(0,0).
Green's Theorem:

Let ¢ be a positively oriented, piecewise-smooth, simple closed curve in the plane and let D
be the region bounded by C_If P and { have continuous partial derivatives on an open region
that contains D, then

fPa{HQa{v ﬂ[@—ﬁ}m



Compare the vector field (1) with F(x,y}: Pi+Qj-
The functions are,

P=4x"+1

Q=tan'x
The line integral can be written as follows
[¥-dr = [ Pax+ Oy

& o

-[(2-Z)u
s\ de oy

I([«.l'xl +1)dx+(tan" x}nﬂ—')
5

[ o) 5 ()

-
o

-

=Hf]+1‘“ s (D)

Sketch the triangular region is follows:

-

(0, 1) 14 (1,1

(0, 1) 1I

The region D consists of three lines and the orientation is clockwise. Thus. the value of the
integral should be negative of the value from using Green’s theorem.



The equation of the line segment from (0,0) to (1,1) is,
y=0=1(x-0)
J’J — _"
And it will be the upper limit for y.
Here, xlimits are from y=0to x=yand ylimitsare from y=0to0 y=1.

From (2},

Continue to the above,

=%—%[In(l +_1-=2)1

F

=I—E[In[l+])—ln(l+())]

=£—l|t12
4 2

Thus, the value of integral _"F-dr = 3—-lln2,
b 4 2
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ﬁ(x,y): x(x+y);+xy23
The path followed by the particle 15 positively oriented and so we can use Green’s
theorem to find the work done in moving particle along C.

5
0,1)

(0,0) (L.0)

The work done iz given by_[ﬁ.d?
o

Here ﬁlix,y)z x(x+y)f+xy2}

Then i)ﬁ.d?z i)x(x+y)dx+ 0t dy
o E



On comparing with tf) Pdz+0dy we have
o

P=x'4xmpand Q="
BF _— @= 4

Then a—x . ¥
By Green's theorem
a0 ar
Fdx+Qdy= (———Jdﬂ
prarscar- (-2
Here Dz{(x,y); 0=x=1 Oi-fyi-’»l—x}

[ Fil

1z
0
SN Y
12 2 3 12
o1
12

Hence |work done 1z —%2
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Consider the force field
F (x,¥)=<x,x 430" >
And semicircle = Ja=st
Squaring on both sides
P =d=xt
X +yi=4

The path of the particle is positively oriented so use Green's theorem to find the work done in
moving particle along C.

(0.2)

2.0) ©0,0) X))




The work done is given by @Fﬁ
=

Here F(x,y)=<x x*+30° >

Then @Fﬁzi’xdx"'(-"j*h}’z)@
L5 L5

On comparing with ‘I)de"‘Q@
ok

P=x
Then taking partial derivative with respectto y
ar

=0
ay

And
0=x'+3y°

Take partial derivative with respectto x
90 3y 3y
cx

Green’'s Theorem:

Let (¢ be a positively oriented, piecewise-smooth, simple closed curve in the plane and let p
be the region bounded by . If Pand(Q have continuous partial derivatives on an open
region that contains f, then

50 P
%Spdx:fgay:g[a_f—%]dﬁ

Take Polar Coordinates

x=rcost
y=rsind
Then
X ayt=pl
dA = dxdy = rdrdf

Now

X +yi=4And x? 4yt =p?

=4
Fi=2
And

2cosf=2 2cosdd=-2
cos@=1 cosf=-1
g=0 d=r

Here D in polar co — ordinates is

D={(r,0): 0<r<2,0<0<x}



Then by using Green's Theorem,

@Pc."x+Qc{1-'=H[€Q o J 14
(& [

o gy
(j) xdv+ (.r" +3x)° ] dy

c

= [[1(3x* +3y*) -0} au

0

= J;Ii{.\': +3° )a‘A

¥

= Iffi!‘:,rdr‘d()

oo

it
—T[JO}[SJ dr

~(x-0)(3(16)-0
=12

Hence Work done on this particle is m
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The area 15 given by

A= i)xdy
o

For the cyeloid, the curve C 1z negatively oriented

v

o

Then the area will be
A= —ifl xdy
b7

‘Where 7 1z same as C but having opposite ortentation 1e. C7 15 positively
oriented.

Since x=f—siné, y=1-cost

s
Then A=—I[i—sini)[sini)dﬁ

20
ésmﬁ—sm i dﬁ

-l
2a
1
{smz—zcosz——z +Zsm 2z:|

0
—3m)

=37

That is area under an arch of cycloid 15
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Using the Green's Theorem the formula for the area of a region is:
I
A=—| xdv— ydx
o=
Given,

x =5cos! —cos(5¢)

y=>5sins—sin(5r)
Apply the formula and find the area,

A= J'.vc:{v— wlx

-

= %-I(S cost — cos(ii))(ﬁcus; - 5{:05(5.’)}13’.’ - (SSin r— sin(ﬁ.’])(—Ssinr + SSin(Sr}}a’r

(25cos® 1 —30cosrcos(5t) + Scos® (5¢) ) df —(~25sin’ ¢ + 30sin #sin(5¢) — Ssin® (5¢) )t

A
lIZSCﬂsl {—30costcos(5t) + Scos’ (5) + 25sin® 1 — 30sinssin (5¢) + Ssin® (5¢) dt
24

Simplity the integral and solve it

A=Y 25006 - 30cosrcos( 5t )+ Scos” (5) + 28sin’ ¢t = 30sinrsin(5e) + Ssin® (5r)dr Simplify,
- plify

= %J'I 25¢c0s” 1 + 25sin’ 1) + Seos” (5r) + Ssin’ (5¢)) - 30¢cos r cos(5t) - 30sinssin(5e) + d Apply upper and lower limits,
-t

= %J'{ESJ +(5) - 30cosrcos{ 5r) - 30sinssin(5) + dt integrating trig functions over full period equal to zero,
=
l i

=3 j 30t

-0

Complicated line integral can be rewritten into a double integral of simpler forms such that it
can be solved in fewer and easier steps.
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(A
If C 15 the line segment connecting the point [xl,yl) to [xz,ygjl then the
parametric equations of C are:
x= [ixz —xljﬁ+x1
y={y—n)t+n
e 0D=¢=l

Then dey—ydx
o

{(xz - 7‘1)5+x1} (yz _J’lj_[(y:a _J’lj‘f"'yl} (7‘2 _xl)df’

l:xz _x1)|:yg —yljlf,+x1|:_y2 _)’1)_(.)’2 _yl)(xz _x1)_y1 (xz _x1)dz

] ()’2 _.J’1) -5 (xz X xl)df'

(xLyz = xﬁylj dt

1
NV~ xzyl) (5)0

Wa T &

1l
A O ey i Moy et Moy 5 Py i

Il
)



(B)

Az we know by Green' s theorem if C 15 a closed path
then [ xdy - ydx = || 2dxdy = 24(D)

o o
. 1 .

=0 to find the area of the polygon we need to inte grate E'I- (x dy—ydx) around its

boundary. Butthis integral can be split into n integrals along the line segments

from (X1J"1:| to (xl +13 +1)

1
ie Az—dey—ydx
2

Where Cy is the line segment from (x,04) to (x;, %) and Cz is the line segment
from[x;, %) to (x5, )5) and Cy is the line segment from (x,,», ) to [x.04)

By using part (&)
[ xay-ydr=zy,-mn

=]

I XdV — Yo = 5y — Y,
&

[ xay = yax=xn-xp,

Cﬂ

1
Hence A= 5[(751)’2 =2 (s — xn )+ +|:xmyl—xLyx)j|

Hence proved

(c)

(1.3)
(0,2)

(-1,1) (2,1)

(0,0)

Tsing part (B
A=g[{om—2(0)+}{(2J(3}—um}+{mtz)—ot3)}
H(O) (1)~ (D2} H(-D ()~ () (1)} ]

=%[0+5—1+2—0+0+2+0—0]

Chapter 16 Vector Calculus Exercise 16.4
Let D be a region bounded by a simple closed path C in the xy-—plane. Use Green's Theorem
we need to prove that the coordinates of the centroid (TT) are

z 1 2 = I - . : i F
X —ﬂl.a dy and also ¥ —’—fj_r- dy where 4 isthe areaof p.

P sl



The centroid is the same as the center of mass when the density 2 is constant. Referring to
the formula the mass mequals pA4 .So the density cancels in the center of mass formula, and
it becomes this formula for the centroid:

hﬂxafydx i ;=%£ydxaﬁf.

This can be interpreted as saying the coordinates of the centroid are the mean, or average
values of x and ¥y onD.

So we now have a double integral formula for (};) and a suggestion in the problem that the

centroid can also be computed from line integrals on the boundary using Green's theorem. So
we just plug in Green's theorem into these line integrals to convert them to double integrals
and see what we get.

- 1

xzzlxdydx

I:i”di

f=”idz{ ,,,,,, (1)
And

;=%jydrd}’
pfyas

y=ﬂ§aﬂ4 ...... (2)

Where A is the area of the region D

From Green's theorem,

éx oy
Comparing (1) and (3), for getting ¥ . we have
oA s
& &y A
There are several possibilities
Xy ...
P(x,y)=0 P(xy)=-= P(x,y)=—=
x o
Q=5 N7 oey)=0
On choosing pP=(and Q:%, we find that
% = (Pdx+Qdy)
-
| 2
"i (0)dx+ '?;'{'J@
2
=@[’Y_]dy
o\24
1
=—aox'dv
2ad
Now comparing (2) and (3), for getting 7. we have
R
a &y A



There are several possibilities

P(x.y) 53 P(x,y)=0 P(x,y) =

e N R

Q(xy)=0  Q(xy)== 0(xy)=2%
,IL,Z

and 0=0,

On choosing P =—
24

We find that

F=rj‘>[de+Qc{v]

Chapter 16 Vector Calculus Exercise 16.4 24E

Suppose that G is the curve that encloses the triangle a triangle that has vertices (0,0). (a,0)
.and (ab)where a and b are positive.

The objective is to find the coordinates (E,}_’) of the centroid of the triangle.
- I 2 -~ ] 2 e "
Use the formulas X =—:j§.r dvand ¥ =——(j>y dx, where A is the area of the triangle.
24 . 24 4

First, sketch the triangle that has vertices (0,0}: (r.r.O)_. and (a,b) as shown in the below
figure:

Since the curve is broken into 3 curves C,. C,.and C,. E=21—A (ﬁxzdy+lf)x=d}’+4)x3dy .
O, €

First parameterize the line segment C,
r(t)={xg+ 1 (x, = x )y + 1y, = 3, )
=(0+1(a—0).0+1(0-0))

= (a.’,{})

Soon C,. r(t)={at,0)where 0<r<l.



Now parameterize segment C,.
r(f): (xn +!{xl = xu)s)”n ++’(.V| =Y )}
=({a+t{a—a).0+1(b—0))

= (a,br}

Soon C,, r(r)={a,br)where p<s<1.

Now parameterize segment C,.
r(")z (xu +"'(":l _xu)sJ"u 'H(J’l _.Vo»
=(a+1(0—a).b+1(0-b))

= {a—- at, b -b.f)

Soon C,. r(t)={a—at.b—bt)where g<r<1.

MNow calculate the x-coordinate of the centroid. Recall that the area of a triangle is
%(base](hcight]. Since this triangle has a base of a and a height of b, the area of the triangle

is A:E
2

Now calculate f:ﬁ cﬁx’dyﬂﬁx!q’yﬂj}xﬁy using the parameterization of each curve.
| L G

"y

=ab[i],
a’b[1-0]
=a'h
(ﬁxzajzz x(6)y'(1)ar

(a—ar) (~b)dr

(—a’b+2a°bt - a’b* ]d:

Il

I
Ly S——

2 AT
=| -a’bt+2a'b——a‘h—
2 3

=0

= |i—4:a'3:b(])+2:1'351%z - azb%z—{)}

5 ,, ah
=|z2pyp—22
[a " 3]



MNow put all of these together

So the x-coordinate of the centroid is 2_‘1_
3

- c,

Now calculate y = —ﬁ[cﬁyldxﬂﬁ}:zdxﬂﬁy:dx by computing the individual line integrals
oot

first

r?yidxzjyz(!]x’{i‘]dr

(¥

I
—_—

=
S
—

o
h-

Vi (e)x' ()

(bry (0

D
‘“M
Il

D Ot—— S le—— O S e—

V() (1)t

@y’@
(b=bt)' (~a)dt

(—ab2 +2ab’t—ab’t )d.-'

Il

I
O ey D Ry, ) Ry

2 3 #=]
=|captryapt s —apt
5 3

= [—ab’* (1)+2ab’ g— ab’ (—]311 - 0]

ab’
3

Now put all of these together to get

y= —ﬁ[cﬁyzﬂ& +<ﬁy’dx+r:‘|‘>y2cir:|
P, o Fa
! ab’

ples

2

=2
3

Since ¥y =%. the coordinates of the centroid of the triangle are [2?“,%] E
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Consider a plane lamina with constant density p(x,y)= poccupies a region in the
xy—plane bounded by a simple closed path

Show that its moments of inertia about the axes are
= PE _P2L 3
i, = 3(32}: dx Il,.——3<§3.r dx
Mow, recall the moment of inertia of the lamina about the y—axis and y - axis are
I =J.Jy3p{.r,_|-')dzf
o
And fﬂ,:ﬂ.\:zp(x,y)dA
il
Recall the Green's theorem

gSPa*x+Qdy j]'[”g ap]dﬂ ...... 1)

Now. compare —gtfy"drwith c{)de+Qa}'
C c
Thus,

Pz_g_,ﬁ 0=0

P, a0
L ay 2y
Vi o

These values substitute in (1), it becomes

éy dx = (ﬁ[——y )d‘c + Ocy Rewrite
= ﬂ( —(=p" )d From Green's Theorem
[fpvias
i
=1

2 3
Therefore, [ =|-—= dx|.
3‘-1”’

Now, show that 7, =£(§.‘<‘3 dx
37

Compare —cﬁx dx with ‘jtv’-pd“‘QdV

Thus,
P o3
-l {} ==X
Q 3
oFP &[0]
—=0 — = px
r x O
These values substitute in (1), it becomes
2 S P g :
?Efx dx —ci(ﬂ]dx+ 37 d Rewrite
= H(,ﬂx2 —U]dA From Green's Theorem
il
=pr"'dz!
[
- § ,‘_\'

Therefore, I, = E{i}x‘ dx|.
3

o
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Asweknowfxz—gi)yzdx and!yzgtjszdy

Mow the parametric equations of circular disk C of radius a with constant
density o are

x=acosi y=asund 0=i=27

Then Ix=—£(£)y3dx
3¢

2z
= %_! ICa sinz)3 (—asinz)dz

ix
=k I atsintedt
39

- = S
sinfrosi+—f——sin 2¢f
3 18 G

4
= ﬂ[o +2(2n)-0+0- 0+0}
3| 8
4

Chapter 16 Vector Calculus Exercise 16.4

Consider a positive oriented circle C7 with center as the origin and @ as radius such that
" lies inside . Let D be the region bounded by & and & Then,

Pdr+Qdy + [ Pdx+0ay = [[| 2 -2 ]aa,
| B s | Wi gi= ||

ol
1_ .2
We b - TF dP=_*® gy (E_g}m
e have (x2+y2)2 ar (x2+y2)2 in L[ FRS
@_ ﬁ ~ 2x(x2— 3y2) ~ 2xI:x2— 3y2:l
II aa = || A
2 ax Ay £ (x2+y2)3 |:x2+y2)3
=10

Thus, we get Lde + Ody = .[-c Pdx + Jdy. This means that .[cF cdr = .[_cF dr .

Letrify=aquosiitasindy, 0 = ¢ = 27 Then, r'(ﬁ) = —gani+acost.
Find F{r(s)).

2lacosd)asind asind) — (acos 8V
i) = 2o Olesed) | (asnd)'~ faceso]

|:[a Cos 9)2+|:a sin 5':]2] I:(a c055)2+ (a sin 9)2]2

2a® cos sin & a’ (Siﬂ29 - cog 5')
i+ -

B at B ]
Y e, 3 2
2ros8sin &, (51!1 & — cos 9:] .
= 3 1+ 5 j
a a

How, evaluate F (r [ﬁ)) 3 r’(ﬁ:] :

2coszsini|:—asin!,) (Sinjﬁ o= Cosgi)(acosf.:l

Flr(t)) r'(e) = . + 4

o [#]

—JcosEsinc £ + costsintf — cos ¢

[

—cosfsins — cos ¢

43



Find [[F-dr = [ _Far givenby ["F(r(e)) r'(t)d:.
_ b e

Pindj-;z cosfan™ i — cos” i

j- i .I-h—cosf,sinzf,— cos%ﬂ,3

[y a

@
t 2x
sing
& Iy

0

i
&

Thus, we get ICF - dr as |§|

Chapter 16 Vector Calculus Exercise 16.4
Tse Green's Theorem. For a positively oriented curve O,

80 ar
[Cde+Qdy: Q(E_E

In this case, P(x,)) is the i-component of F, meaning P(x,y) = x* + 3, and O(x,») is

the j-component of F, meaning O(x,¥) = 3x—»*. Find the appropriate partial derivatives
and plug into Green’s Theorem to find the solution to the line integral,

Find the relevant p artial derivatives:
Qlx,y)=3x-y"

X _,

x

Plxy)=x"+y

_=1

&

Plug into Green’s Theorem:

(%5 Jumfo-a
=[] (2aa

Pl

Chapter 16 Vector Calculus Exercise 16.4
Consider the vector field F{_r._r} = M
X4y

MNeed to show that _[F""" ={ for every simple closed path that does not pass through or

C
enclose the origin.
Let p be region bounded by ¢ which is shown below:

1.'

M

C

And clearly p is a simple closed path that does not pass through or enclose the origin.



Y j+———j=Pi+0j
r+y x4y

Since F(x,y)=

Find the partial derivatives:

[5[0 NG X
e T e 2
ox  axl x4y

1 2x

_ 1 237
X"+ ('1734_1 ]1
_—rz—y:+2_51
()
—x' 437

Apply Green's Theorem, we have

[¥-dr = [ Pdx+Qdy
! J
(-5
W e
(2

Therefore, j F-dr =0}

Chapter 16 Vector Calculus Exercise 16.4 30E

To prove Green’s theorem, we first prove two equations:

_[1%&
o e

And  [Par=-|| &

b n
Expressing D as a type II region

Dz[(x,y): c=y=d }zl(y)ExEthg (y)]
Where by and ho are continuous functions

4 Ry}
Then L[%dﬂ =_[£_!;.) %[X,y} dxdy

=T[Q(’Q‘2 ).y )- (), ») ]dy (1)

I3

Let Cbe the union of the four curves O, C,, 5 and C,



dl

On Cg we take ¥ as the parameter and write parametric equations as
x=hz|:_y) y=y c=y=d

Thus [ @(xy)dy = I O ().5)dy
o [+

How C4 12 in the direction opposite to Cz. Then we can write parametric equations
for Cq as

x=h1|:y) Y=y ciZy=d
Then IQ(x,y)dy=—_[ Q(L}’)dy

o el
d

=—[ o (»). 7}y

[

On C and Cs 7 15 constant so dy = 0 and
[elxy)ar=0=[Q(xy)dy

Henee _[IQ (x,y)d_y= _[ Q[;,y)der [ Q[x,y)dy+ _[ Q(x,y:ldy
o [ [} a3
+I Q[x,y)dy
y

)

Ol (v).y)dv=[ @[ (y), »)ay
) )

&

:
]

[o(t (). v}-2 (b (). 7) ]y @
Comparing (1) and (2): -
[o(xy)ar= H%dﬂ SO

Now on expressing 0 as atype 1 region
Dz[[x,y): aszx=h gl[x)SyE gz[x)}
Where g and g2 are continuous

(%)
Then ”%dﬂz igI ﬁ[;':,_y):;f;a‘aix

5 )
= i [P(xga(2)) - P(xg(x)) Jdx  —oormmmreeeeeee ()
We express C as I~ o, O, O and
¥
i Yl X)
0 a b X

On Cy we take  as parameter and writer parametric equations as



x=x, ¥y= gl(x:l, a=x=h
s
Thus IPI:x,y)dxz _I-P[x,gl(x):ldx
[} -3

Where C3 iz in the opposite direction of C then we can write the parametric
ecuations of Cs as:

W= yzgg(x), a=x<h
Therefore [ P(x.y)dx=— [ P(xy)dx

Cy -G

F x,_yj dx

(
P(x, =) (x)) dx

a
B
On Cs and Cyq = 13 a constant, so dz =0 and

_[ P[x,y)dxz 0= I P(x,y)dx
= G

Hence IP[x,y)dx: IP[X,y)dx-l—I Plxyidx+ _[ Plx,y)dx
& 2 z, &
+_[ P(x,y) dx
Cy

Pl[x, gl(x)jldx—:i-P[x, = (x):ldx

a

[2s 6i(a))-Plx ga()]dx
On comparing (4) and (3)

[P(x.r)dx= —Hgdﬂ e (6)

B
Now on adding (5% and {(6)

lP[x,y)dx+Q|:x,y)dy= H{%—?—i}dﬁl

"Which 15 Green’s theorem

Fi g O Fr Py

Chapter 16 Vector Calculus Exercise 16.4

=tart with the left side of the equation and keep equating until the right side 15 reached.
The integral

L[ dxdy

1s equal to the area over region £ We also have a formula for area involving line
integrals, namely

A= (f)c xcdy

MNow we convert to the wv-plane using some unknown transformation x(p, v, y(u,vi. To
find &y, we take the total differential The formula for the total differential is

dz = de+%dy
x &

So1n this case, we can find the total differential gy from y(u,v) as

dy = @du+@dv
due oY

The transformation will alzo convert the curve along which we are integrating, 8 to

some curve in the wv-plane—call it 45 —that bounds some region 5. We make all of
these substitutions:

[ =g,
R
=cj>§sx(u,v)(%du+%va ______ (1}

= [x@du +x@dv]
LY Y



Mow we apply Green's Theorem, which 1s:

[ Bax+oar=|| L.
& o O iy
We are inu and v instead of x and ¥, but (1) 1z recognizable as the left side of Green’s

&

Theorem, with F = x% and (J = xg. We take the relevant partial derivatives, this time

in terms of'u and v instead of x and .

For both partial derivatives we will need to apply the Product Rule, which states that the
derivative of a product equals the derivative of the first factor times the second factor
pluz the first factor times the derivative of the second factor.

dy
:x_
e &

2
OfM g e e )
du e chuch
P:xay

e
2
BP_Bxay_l_x &y

& va | oviu

Plug the partial derivatives into Green’s Theorem:

2 2
i) [x@du+x@dv]=” B_x@_i_xa_y_a_x@_x L A AN
e85y v NP Oudv dvdw vk

Since mized partials are equal under the conditions we are in, we can cancel them out to
get:

jsj (a_x 2N i]dudv

e B v du
But this 1z exactly
dr &
H & & dudv
AL
b TR
Otherwise known as H %)ﬁudv . which iz exactly what we were trying to getto. We
4 | Pl v
have now successfully proven that
H dxdy = H M dudv
& HCERY
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