

Significant Digit and Rounding off Numbers, Fundamental concepts Basic Level

1.	The	number 3.14150 rounded	d to 3	decimals is				[MP PET 2000]
	(a)	3.14	(b)	3.141	(C)	3.142	(d)	None of these
2.	The	number of significant dig	gits in	0.003050 is				
	(a)	7	(b)	6	(C)	4	(d)	None of these
3.	The	number of significant dig	gits in	20.035 is				
	(a)	3	(b)	5	(C)	4	(d)	None of these
4.	The	number of significant dig	gits in	20340 is				
	(a)	4	(b)	5	(C)	3	(d)	None of these
5.	The	number 0.0008857 when	n rour	nded off to three significant di	gits	yields		
	(a)	0.001	(b)	0.000886	(C)	0.000885	(d)	None of these
6.	The	number 3.68451 when ro	ounde	ed off to three decimal places	becc	omes		
	(a)	3.68	(b)	3.684	(C)	3.685	(d)	None of these
7.	The	number of significant dig	gits in	the number 0.00452000 is				
	(a)	3	(b)	5	(C)	8	(d)	None of these
8.	Whe	en a number is approxima	ated	to <i>n</i> decimal places by choppi	ng c	ff the extra digits, then th	e ab	solute value of the relative error
	doe	es not exceed						
	(a)	10^{-n}	(b)	10^{-n+1}	(C)	$0.5 \times 10^{-n+1}$	(d)	None of these
9.	Whe	en the number 6.878652	is rou	unded off to five significant fig	ures,	, then the round off error	is	
	(a)	- 0.000048	(b)	-0.00048	(C)	0.000048	(d)	0.00048
10.	The	number 0.0009845 wher	n roui	nded off to three significant di	gits	yields		[DCE 1998]

	(a) 0.001	(b) 0.000987	(C)	0.000985	(d)	None of these						
11.	A decimal number is choppe	ed off to four decimal places, then t	the a	bsolute value of the relati	ve ei	rror is not greater than [DCE 1996]						
	(a) 10 ⁻²	(b) 10 ⁻³	(C)	10 ⁻⁴	(d)	None of these						
12.	If e_1 and e_2 are absolute er	rrors in two numbers n_1 and n_2 res	spect	ively due to rounding or t	runc	tation, then $\left \frac{e_1}{n_1} + \frac{e_2}{n_2} \right $						
	(a) Is equal to $e_1 + e_2$		(b)	Is less then $e_1 + e_2$								
	(c) Is less then or equal to	$e_1 + e_2$	(d)	ls greater then or equal	to e	$e_1 + e_2$						
13.	3. In general the ratio of the truncation error to that of round off error is											
	(a) 1:2	(b) 2:1	(C)	1:1	(d)	None of these						
14.	The equation $e^{-2x} - \sin x + 1$	= 0 is of the form										
	(a) Algebraic	(b) Linear	(C)	Quadratic	(d)	Transcendental						
15.	The root of the equation x^2	$3^{3}-6x+1=0$ lies in the interval										
	(a) (2, 3)	(b) (3, 4)	(C)	(3, 5)	(d)	(4, 6)						
16.	The root of the equation x^3	-3x - 5 = 0 in the interval (1, 2) is										
	(a) 1.13		(b)	1.98								
	(c) 1.54		(d)	No root lies in the interv	al (1,	2)						
17.	The equation $f(x) = 0$ has re-	epeated root $a \in (x_1, x_2)$, if										
	(a) $f'(a) < 0$	(b) $f'(a) > 0$	(C)	f'(a) = 0	(d)	None of these						
18.	The root of the equation $2x$	$1 - \log_{10} x = 7$ lies between										
	(a) 3 and 3.5	(b) 2 and 3	(C)	3.5 and 4	(d)	None of these						
19.	For the equation $f(x) = 0$, if	f(a) < 0, f(b) > 0, f(c) > 0 and $b > 0$	>c tł	nen we will discard the val	ue o	f the function $f(x)$ at the point						
	(a) <i>a</i>	(b) <i>b</i>	(C)	С	(d)	Anyone out of <i>a, b, c</i>						
20.	The positive root of the equa	ation $e^x + x - 3 = 0$ lies in the inter-	rval									
	(a) (0, 1)	(b) (1, 2)	(C)	(2, 3)	(d)	(2, 4)						
21.	The positive root of the equa	ation $x^3 - 2x - 5 = 0$ lies in the interval	erval									
	(a) (0, 1)	(b) (1, 2)	(C)	(2, 3)	(d)	(3, 4)						
22.	One real root of the equatio	$x^3 - 5x + 1 = 0$ must lie in the ir	nterva	al								
	(a) (0, 1)	(b) (1, 2)	(C)	(-1, 0)	(d)	(-2, 0)						

23. The number of positive roots of the equation $x^3 - 3x + 5 = 0$ is

[MP PET 1998]

166 Numerical Methods

	(a) 1	(b) 2	(c) 3	(d) None of these	
24.	Let $f(x) = 0$ be an equivalent	quation and x_1, x_2 be two re	eal numbers such that $f(x_1)f(x_2) < 0$,	then	[MP PET 1989, 1997]
	(a) At least one root	of the equation lies in the ir	nterval (x_1, x_2)		
	(b) No root of the ed	quation lies in the interval (x	(x_1, x_2)		
	(c) Either no root or	more than one root of the e	equation lies the interval (x_1, x_2)		
	(d) None of these				
25.	Let $f(x) = 0$ be an equivalent	quation let x_1, x_2 be two real	al numbers such that $f(x_1)f(x_2) > 0$, t	hen	
	(a) At least one root	t of the equation lies in (x_1, x_2)	<i>x</i> ₂)		
	(b) No root of the ed	quation lies in (x_1, x_2)			
	(c) Either no root or	an even number of roots lie	$e in (x_1, x_2)$		
	(d) None of these				
26.	If for $f(x) = 0$, $f(a) <$	0 and $f(b) > 0$, then one rc	bot of $f(x) = 0$ is		
	(a) Between <i>a</i> and <i>b</i>	7	(b) One of from <i>a</i> and	b	
	(c) Less than <i>a</i> and g	greater than <i>b</i>	(d)	None of these	
27.	If $f(a)f(b) < 0$, then a	n approximate value of a rea	al root of $f(x) = 0$ lying between <i>a</i> and	d <i>b</i> is given by	
	(a) $\frac{af(b) - bf(a)}{b - a}$		(b) $\frac{bf(a) - af(b)}{b - a}$		
	(c) $\frac{af(b)-bf(a)}{f(b)-f(a)}$		(d) None of these		
				Successive bis	ection methoa
		(Basic Level		
28.	One root of $x^3 - x - x$	4 = 0 lies in (1, 2). In bisectic	on method, after first iteration the root	lies in the interval	
	(a) (1, 1.5)	(b) (1.5, 2.0)	(c) (1.25, 1.75)	(d) (1.75, 2)	
29.	A root of the equation times is	n $x^3 - x - 1 = 0$ lies betwee	en 1 and 2. Its approximate value as ob	tained by applying bisecti	on method 3
					[MP PET 1993]
	(a) 1.375	(b) 1.625	(c) 1.125	(d) 1.25	
30.	A root of the equation times, is	on $x^3 - x - 4 = 0$ lies betwee	een 1 and 2. Its approximate value, as	obtained by applying bi	section method 3

	(a) 1.375	(b) 1.750	(c) 1.975	(d) 1.875							
31.	Performing 3 iterations of bi	isection method, the smallest positi	ive approximate root of equat	ion $x^3 - 5x + 1 = 0$ is [MP PET 1996]							
	(a) 0.25	(b) 0.125	(c) 0.50	(d) 0.1875							
32.	A root of the equation x^3 –	3x-5=0 lies between 2 and 2.5.	Its approximate value, by app	lying bisection method 3 times is							
	(a) 2.0625	(b) 2.3125	(c) 2.3725	(d) 2.4225							
33.	If for the function $f(x) = 0$,	f(a) < 0 and $f(b) > 0$, then the values	ue of x in first iteration is								
	(a) $\frac{a+b}{2}$	(b) $\frac{b-a}{2}$	(c) $\frac{2a-b}{2}$	(d) $\frac{2b-a}{2}$							
34.	Using successive bisection r	method, a root of the equation x^3	$x^3 - 4x + 1 = 0$ lies between 1 a	nd 2, at the end of first interaction, it							
	lies between			[DCE 1996]							
	(a) 1.62 and 1.75	(b) 1.5 and 1.75	(c) 1.75 and 1.87	(d) None of these							
35.	The nearest real root of the	equation $xe^{x} - 2 = 0$ correct to tw	o decimal places, is								
	(a) 1.08	(b) 0.92	(c) 0.85	(d) 0.80							
				Regula-Falsi methoo (
	Basic Level										

36. By the false position method, the root of the equation $x^3 - 9x + 1 = 0$ lies in interval (2, 4) after first iteration. It is

- (a) 3 (b) 2.5 (c) 3.57 (d) 2.47
- **37.** The formula [where $f(x_{n<1})$ and $f(x_n)$ have opposite sign at each step $n \ge 1$] of method of False position of successive approximation to find the approximate value of a root of the equation f(x) = 0 is [MP PET 1995, 97]

(a)
$$x_{n+1} = x_n - \frac{f(x_n) - f(x_{n-1})}{f(x_n)} (x_n - x_{n-1})$$

(b) $x_{n+1} = x_n - \frac{f(x_n)}{f(x_n) - f(x_{n-1})} (x_n - x_{n-1})$
(c) $x_{n+1} = x_n + \frac{f(x_n) + f(x_{n-1})}{f(x_n)} (x_n - x_{n-1})$
(d) $x_{n+1} = x_n + \frac{f(x_n)}{f(x_n) + f(x_{n-1})} (x_n - x_{n-1})$

38. By false positioning, the second approximation of a root of equation f(x) = 0 is (where x_0, x_1 are initial and first approximations respectively) [MP PET 1996; DCE 2001]

(a)
$$x_0 - \frac{f(x_0)}{f(x_1) - f(x_0)}$$
 (b) $\frac{x_0 f(x_1) - x_1 f(x_0)}{f(x_1) - f(x_0)}$ (c) $\frac{x_0 f(x_0) - x_1 f(x_1)}{f(x_1) - f(x_0)}$ (d) $x_0 - \frac{f(x_0)}{f(x_1) - f(x_0)}$

39. A root of the equation $x^3 - 18 = 0$ lies between 2 and 3. The value of the root by the method of false position is

168 Numerical Methods

42. If successive approximations are given by $x_1, x_2, x_3, \dots, x_n, x_{n+1}$, then Newton-Raphson formula is given as [MP PET 1993, 95]

(a)	$x_{n+1} = x_n + \frac{f(x_{n+1})}{f'(x)}$	(b) $x_{n+1} = x_n + \frac{f(x_n)}{f'(x_n)}$
(C)	$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$	(d) $x_{n+1} = x_n - \frac{f'(x_n)}{f(x_n)}$

43. Newton-Raphson method is applicable only when

(a) $f(x) \neq 0$ in the neighbourhood of actual root $x = \alpha$ (b) $f'(x) \neq 0$ in the neighbourhood of actual root $x = \alpha$

[MP PET 2001]

- (c) $f''(x) \neq 0$ in the neighbourhood of actual root $x = \alpha$ (d) None of these
- 44. Newton-Raphson processes has a

(a) 1.909

48.

(a) Linear convergence (b) Quadratic convergence (c) Cubic convergence (d) None of these

45. The condition for convergence of the Newton-Raphson method to a root α is

(a) $\frac{1}{2} \frac{f'(\alpha)}{f''(\alpha)} < 1$ (b) $\frac{f'(\alpha)}{f''(\alpha)} < 1$

(b) 1.904

(c) $\frac{1}{2} \frac{f'(\alpha)}{f''(\alpha)} > 1$ (d) None of these

46. The real root of the equation $x^3 - x - 5 = 0$ lying between -1 and 2 after first iteration by Newton-Raphson method is

47. A root of the equation $x^3 - 4x + 1 = 0$ lies between 1 and 2. Its value as obtained by using Newton-Raphson method is

(a) 1.775 (b) 1.850 (c) 1.875 (d) 1.950

The value of x_0 (the initial value of x) to get the solution in interval (0.5, 0.75) of the equation $x^3 - 5x + 3 = 0$ by Newton-Raphson method, is

(c) 1.921

(d) 1.940

(a) 0.5 (b) 0.75 (c) 0.625 (d) None of these

49.	If a and $a + h$ are two conse	cutive approximate roots of the eq	uation $f(x) = 0$ as obtained by	y Newtons method, then h is	s equal to							
				[MI	P PET 1999]							
	(a) $f(a) / f'(a)$	(b) $f'(a) / f(a)$	(c) $-f'(a) / f(a)$	(d) $-f(a) / f'(a)$								
50.	The Newton-Raphson metho	od converges fast if $f'(\alpha)$ is (α is th	e exact value of the root)		[DCE 1998]							
	(a) Small	(b) Large	(c) 0	(d) None of these								
		Advance	e Level									
51.	If one root of the equation $f(x) = 0$ is near to x_0 , then the first approximation of this root as calculated by Newton-Raphson											
	method is the abscissa of the point where the following straight line intersects the <i>x</i> -axis [MP											
	(a) Normal to the curve $y =$	$f(x)$ at the point $(x_0, f(x_0))$										
	(b) Tangent to the curve y	$= f(x)$ at the point $(x_0, f(x_0))$										
	(c) The straight line throug	h the point $(x_0, f(x_0))$ having the g	gradient $\frac{1}{\alpha}$									
		· · · / · // · · · ·	$f'(x_0)$									
	(d) The ordinate through the	The point $(x_0, f(x_0))$										
52.	A root of the equation x^3 –	3x - 5 = 0 lies between 2 and 2.5.	Its value as obtained by using	Newton-Raphson method,	IS							
	(a) 2.25	(b) 2.33	(c) 2.35	(d) 2.45	2							
53.	After second iteration of New	wton-Raphson method, the positiv	e root of equation $x^2 = 3$ is (aking initial approximation	$(\frac{3}{2})$							
				[MI	P PET 1996]							
	(a) $\frac{3}{2}$	(b) $\frac{7}{4}$	(c) $\frac{97}{56}$	(d) $\frac{347}{200}$								
54.	If one root of the equation	$x^{3} + x^{2} - 1 = 0$ is near to 1.0, then	by Newton-Raphson method	the first calculated approxim	nate value							
	of this root is			[MI	P PET 1998]							
	(a) 0.9	(b) 0.6	(c) 1.2	(d) 0.8								
55.	The approximate value of a	root of the equation $x^3 - 3x - 5 =$	= 0 at the end of the second	iteration by taking the initia	al value of							
	the roots as 2, and by using	Newton-Raphson method, is		[A]	CBSE 1990]							
	(a) 2.2806	(b) 2.2701	(c) 2.3333	(d) None of these								
56.	Newton-Raphson method is	s used to calculate $\sqrt[3]{65}$ by solvin	g $x^3 = 65$. If $x_0 = 4$ is taken	as initial approximation the	n the first							
	approximation x_1 is			I	[AMU 1999]							
	(a) 65/16	(b) 131/32	(c) 191/48	(d) 193/48								
57.	Starting with $x_0 = 1$, the new	xt approximation x_1 to $2^{1/3}$ obtain	ned by Newton's method is		[DCE 1997]							

58.	Appro	oximate v	alue of	$\int_{x_0}^{x_0+nh} y dx k$	y Trapez	oidal rul	e, is								[N	IP PET 19	93, 97]
	[Whe	re $y(x_i) =$	y_i, x_{i+1}	$-x_i = h$,	i = 0, 1, 2	, <i>n</i>]											
	(a) -	$\frac{h}{2}[y_0 + y_n]$	$+2(y_1 + 2)$	$y_2 + y_3 +$	$+y_{n-1}$	1)]			(b) $\frac{h}{3}[y_0 + y_n + 4(y_1 + y_3 + y_5 + \dots + y_{n-1}) + 2(y_2 + y_4 + \dots + y_{n-1})]$								_2)]
	(c) -	$\frac{h}{4}[y_0 + y_n]$	$+2(y_1 +$	$y_3 + y_5 +$	$+y_{n-1}$	$(y_1) + 4(y_2)$	+ y ₄ +	$+y_{n-2}$)	$(y_{n-2})](d) = \frac{h}{2}[y_0 + y_2 + y_4 + \dots + y_n) + 2(y_1 + y_3 + y_5 + \dots + y_{n-1})]$								
59.	Trape	ezoidal rul	le for ev	aluation	of $\int_{a}^{b} f(x)$) <i>dx</i> requ	uires the	e interval (<i>a, b</i>) to be divided into [DCE 1994; MP								4; MP PE ⁻	T 1996]
	(a) 2 <i>n</i> sub-intervals of equal width									2 <i>n</i> +	1 sub-inter	vals of e	qual	width			
	(c) A	Any numb	er of su	b-interva	als of equ	ual width			(d)	3 <i>n</i> s	ub-intervals	of equa	l wid	th			
60.	The v	alue of <i>fl.</i>	x) is aive	en onlv a	x = 0, -1	$\frac{1}{2}, \frac{2}{2}, 1, N$	Which of	the fo	llowi	na ca	n be used to	o evalua [.]	te ſ ¹	f(x)dx app	proximat	elv	
			, <u>g</u>			3'3'				9			J	, (,			T 40001
	(a) T	-	ماسيام						(b) Simpson rule								1 1999]
	(a) I	rapezoid	ai ruie						(d) None of these								
	(c) T	rapezoid	al as we	ll as Sim	pson rule	è			(d) None of these								
61.	A rive	er is 80 <i>m</i>	<i>etre</i> wid	e. Its de	oth <i>d me</i>	<i>etre</i> and o	correspo	nding o	distar	nce <i>x</i>	<i>metre</i> from	one bar	nk is g	given belov	v in table	ĩ	
	<i>X</i> :	0	10	20	30	40	50	60		70	80						
	<i>y</i> :	0	4	7	9	12	15	14		8	3						
	Then	the appro	oximate	area of	cross-sec	tion of r	iver by T	rapezo	idal ı	ule, is	5					[MP PE ⁻	T 1994]
	(a) 7	'10 <i>sq.m</i>		(b) 730 s	sq.m			(C)	705	sq.m		(d)	750 <i>sq.m</i>			
62.	A cur	ve passes	throug	h the po	ints giver	n by the	following	g table									
	<i>x</i> :	1	2	3	4	5	-										
	<i>y</i> :	10	50	70	80	100											
	By Tra	apezoidal	rule, th	e area b	ounded l	oy the cu	irve, the	<i>x</i> -axis a	and t	he lin	es <i>x</i> = 1, <i>x</i> =	= 5, is					
	(a) 3	310		(b) 255				(C)	305			(d)	275			
63.	From	the follow	wing tab	le, usinc	g Trapezo	oidal rule	, the area	a boun	ded	by the	e curve, the	<i>x</i> -axis a	nd th	e lines $x =$	7.47, <i>x</i> =	= 7.52, is	
	X	: 7.47	7.48	7.49	7.50	7.51	7.52	2		-							

Numerical Methods 171

	f(x): 1.93 1.95 1.	98 2.01 2.03 2.06			
	(a) 0.0996	(b) 0.0896	(c) 0.1096	(d)	0.0776
64.	Let $f(0) = 1$, $f(1) = 2.72$, then	the trapezoidal rule gives approxi	mate value of $\int_0^1 f(x) dx$		[MP PET 1999; DCE 2001]
	(a) 3.72	(b) 1.86	(c) 1.72	(d)	0.86
65.	By Trapezoidal rule, the valu	the of $\int_0^1 x^3 dx$ considering five sub-	intervals, is		
	(a) 0.21	(b) 0.23	(c) 0.24	(d)	0.26
		Advance	e Level		
66.	The approximate value of \int_{Γ}	$\int_{1}^{9} x^2 dx$ by using Trapezoidal rule wi	th 4 equal intervals is		[EAMCET 2002]
	(a) 243	(b) 248	(c) 242.8	(d)	242.5
67.	Taking $n = 4$, by trapezoidal	rule, the value of $\int_0^2 \frac{dx}{1+x}$ is			[DCE 1999, 2000]
	(a) 1.1125	(b) 1.1176	(c) 1.118	(d)	None of these
68.	With the help of trapezoidal	rule for numerical integration and	the following table		
	<i>x</i> : 0 0.25	0.50 0.75 1			
	<i>f</i> (<i>x</i>): 0 0.0625	0.2500 0.5625 1			
	The value of $\int_0^1 f(x) dx$ is				[MP PET 1996]
	(a) 0.35342	(b) 0.34375	(c) 0.34457	(d)	0.33334
69.	If for $n = 3$, the integral $\int_{1}^{10} x^2$	^{3}dx is approximately evaluated by	Trapezoidal rule $\int_{1}^{10} x^3 dx = 3 \left[$	$\frac{1+10}{2}$	$\left[\frac{1}{\alpha}^{3}+\alpha+7^{3}\right]$, then $\alpha=$
					[MP PET 2000]
	(a) 3 ³	(b) 4 ³	(c) 5 ³	(d)	6 ³
70.	By trapezoidal rule, the valu	e of $\int_{1}^{2} \frac{1}{x} dx$, (using five ordinates) is nearly		[DCE 1994]
	(a) 0.216	(b) 0.697	(c) 0.921	(d)	None of these
					Simpson's one third rule
		Basic	Level		

71.	The value of $\int_{x_0}^{x_0+nh} dx$, <i>n</i> is even number, by Simpson's one-third									is			[MP PET 1995]		
	(a)	$\frac{h}{3}[(y_0 + y_n)]$	$()+2(y_1)$	+ y ₃ +	$ + y_{n-1}$	$+4(y_2 + y_2)$	+ y ₄ +	$ + y_{n-2}$)] (b)	$\frac{h}{3}[(y_0+y_n)+4(y_0)]$	$y_1 + y_3 + \dots + y_n$	$(-y_{n-1}) + 2(y_2 + y_4 +$	$ + y_{n-2})]$		
	(c)	$\frac{h}{3}[(y_0+y_n)]$	$()-2(y_1 +$	+ y ₃ +	$ + y_{n-1}$)	$+4(y_2 +$	+ y ₄ +	$ + y_{n-2}$)] (d)	(d) None of these					
72.	Simps	son's one	-third ru	ule for e	evaluatio	$\int_{a}^{b} f(x)$	<i>)dx</i> req	uires the	interv	al [<i>a, b</i>] to be divi	ded into		[DCE 1999]		
	(a) A	An even n	umber (of sub-	intervals	of equa	al width	(b)	(b) Any number of sub-intervals						
	(c) A	Any numb	er of su	b-inter	vals of e	qual wi	dth		(d)	An odd number	of sub-inter	vals of equal width			
73.	Simps	son rule f	or evalu	ation o	$\int_{a}^{b} f(x) dx$	<i>lx</i> requ	ires the	(<i>a, b</i>) to	o be divided into		[Haryana CEE	1993; DCE 1994]			
	(a) 3	<i>n</i> interva	ls		(b) 2 <i>n</i>	+ 1 inte	rvals		(C)	2 <i>n</i> intervals	(d)	Any number of int	tervals		
74.	То са	lculate ap	proxim	ate valu	ue of π b	y Simps	son's rul	e, the ap	proxim	nate formula is			[MP PET 2000]		
	(a)	$\int_0^1 \left(\frac{1}{1+x^2}\right)$	$\int dx$, $n =$	= 16	(b) $\int_{0}^{1} ($	$\left(\frac{1}{1+x^2}\right)$	$\int dx, n =$	- 9	(C)	$\int_0^1 \left(\frac{1}{1+x}\right) dx , n$	=11 (d)	$\int_0^1 \left(\frac{1}{1+x}\right) dx , n = 0$	9		
75.	In Sin	npson's o	ne-thirc	l rule, t	he curve	y = f(x)) is assu	med to b	be a				[MP PET 2001]		
	(a) C	Circle			(b) Par	abola			(C)	Hyperbola	(d)	None of these			
76.	A rive	er is 80 fee	et wide.	The de	pth <i>d</i> (ir	n feet) c	of the riv	ver at a d	istance	of x feet from or	ne bank is gi	ven by the following	g table		
	<i>x</i> :	0	10	20	30	40	50	60	70	80					
	<i>y</i> :	0	4	7	9	12	15	14	8	3					
	By Sir	npson's r	ule, the	area of	the cros	ss-sectio	on of th	e river is							
	(a) 7	'05 sq. fee	et		(b) 690) sq. fee	et		(C)	710 sq. feet	(d)	715 sq. feet			
77.	A cur	ve passes	throug	h the p	oints giv	en by t	he follo	wing tabl	le						
	<i>x</i> :	1	1.5	2	2.5	3	3.5	4							
	<i>y</i> :	2	2.4	2.7	2.8	3	2.6	2.1							
	By Sir	npson's r	ule, the	area bo	ounded l	by the c	curve, th	ne <i>x</i> -axis	and th	e lines $x = 1$, $x = 4$	4, is				
	(a) 7	.583							(b)	6.783					
	(c) 7	.783							(d)	7.275					
78.	Using	Simpson	i's $\frac{1}{3}$ ru	lle, the	value of	$\int_{1}^{3} f(x)dx$	lx for th	ne followi	ing dat	a, is					
	<i>x</i> :	1	1.5	2	2.	5 3	3								
	f(x)	: 2.1	2.4	2.2	2 2.8	8 3	3								

				[MP PET 1993]
	(a) 55.5	(b) 11.1	(c) 5.05	(d) 4.975
79.	By the application of Simpso	on's one-third rule for numerical int	tegration, with two subinterval	is, the value of $\int_0^1 \frac{dx}{1+x}$ is [MP PET 1996]
	(a) $\frac{17}{24}$	(b) $\frac{17}{36}$	(c) $\frac{25}{35}$	(d) $\frac{17}{25}$
80.	By Simpson's rule, the value	of $\int_{-3}^{3} x^4 dx$ by taking 6 sub-interva	ls, is	
	(a) 98	(b) 96	(c) 100	(d) 99
81.	If $\int_{a}^{b} f(x) dx$ is numerically int	egrated by Simpson's rule, then in	any pair of consecutive sub-in	ntervals by which of the following
	curves, the curve $y = f(x)$ is a	pproximated		[MP PET 1998]
	(a) Straight line	(b) Parabola	(c) Circle	(d) Ellipse
82.	If by Simpson's rule $\int_0^1 \frac{1}{1+x}$	$\frac{1}{x^2}dx = \frac{1}{12}[3.1 + 4(a+b)]$ when the	e interval [0, 1] is divided into	b 4 sub-intervals and a and b are the
	values of $\frac{1}{1+x^2}$ at two of it	s division points, then the values o	f <i>a</i> and <i>b</i> are the following	[MP PET 1998]
	values of $\frac{1}{1+x^2}$ at two of it (a) $a = \frac{1}{1.0625}, b = \frac{1}{1.25}$	s division points, then the values o (b) $a = \frac{1}{1.0625}, b = \frac{1}{1.5625}$	f <i>a</i> and <i>b</i> are the following (c) $a = \frac{1}{1.25}, b = 1$	[MP PET 1998] (d) $a = \frac{1}{1.5625}, b = \frac{1}{1.25}$
83.	values of $\frac{1}{1+x^2}$ at two of it (a) $a = \frac{1}{1.0625}, b = \frac{1}{1.25}$ If $e^0 = 1, e^1 = 2.72, e^2 = 7.39$	s division points, then the values o (b) $a = \frac{1}{1.0625}, b = \frac{1}{1.5625}$, $e^3 = 20.09$ and $e^4 = 54.60$, then	f <i>a</i> and <i>b</i> are the following (c) $a = \frac{1}{1.25}, b = 1$ by Simpson's rule, the value of	[MP PET 1998] (d) $a = \frac{1}{1.5625}, b = \frac{1}{1.25}$ of $\int_{0}^{4} e^{x} dx$ is
83.	values of $\frac{1}{1+x^2}$ at two of it (a) $a = \frac{1}{1.0625}, b = \frac{1}{1.25}$ If $e^0 = 1, e^1 = 2.72, e^2 = 7.39$	s division points, then the values o (b) $a = \frac{1}{1.0625}, b = \frac{1}{1.5625}$, $e^3 = 20.09$ and $e^4 = 54.60$, then	f <i>a</i> and <i>b</i> are the following (c) $a = \frac{1}{1.25}, b = 1$ by Simpson's rule, the value of	[MP PET 1998] (d) $a = \frac{1}{1.5625}, b = \frac{1}{1.25}$ of $\int_{0}^{4} e^{x} dx$ is [MP PET 1994, 95, 2001, 02]
83.	values of $\frac{1}{1+x^2}$ at two of it (a) $a = \frac{1}{1.0625}, b = \frac{1}{1.25}$ If $e^0 = 1, e^1 = 2.72, e^2 = 7.39$ (a) 5.387	s division points, then the values o (b) $a = \frac{1}{1.0625}, b = \frac{1}{1.5625}$, $e^3 = 20.09$ and $e^4 = 54.60$, then (b) 53.87	f <i>a</i> and <i>b</i> are the following (c) $a = \frac{1}{1.25}, b = 1$ by Simpson's rule, the value of (c) 52.78	[MP PET 1998] (d) $a = \frac{1}{1.5625}, b = \frac{1}{1.25}$ of $\int_{0}^{4} e^{x} dx$ is [MP PET 1994, 95, 2001, 02] (d) 53.17
83. 84.	values of $\frac{1}{1+x^2}$ at two of it (a) $a = \frac{1}{1.0625}, b = \frac{1}{1.25}$ If $e^0 = 1, e^1 = 2.72, e^2 = 7.39$ (a) 5.387 If (2, 6) is divided into four in	s division points, then the values o (b) $a = \frac{1}{1.0625}, b = \frac{1}{1.5625}$, $e^3 = 20.09$ and $e^4 = 54.60$, then (b) 53.87 htervals of equal region, then the a	f <i>a</i> and <i>b</i> are the following (c) $a = \frac{1}{1.25}, b = 1$ by Simpson's rule, the value of (c) 52.78 pproximate value of $\int_{2}^{6} \frac{1}{x^{2} - x}$	[MP PET 1998] (d) $a = \frac{1}{1.5625}, b = \frac{1}{1.25}$ of $\int_{0}^{4} e^{x} dx$ is [MP PET 1994, 95, 2001, 02] (d) 53.17 dx using Simpson's rule, is
83. 84.	values of $\frac{1}{1+x^2}$ at two of it (a) $a = \frac{1}{1.0625}, b = \frac{1}{1.25}$ If $e^0 = 1, e^1 = 2.72, e^2 = 7.39$ (a) 5.387 If (2, 6) is divided into four in	s division points, then the values o (b) $a = \frac{1}{1.0625}, b = \frac{1}{1.5625}$, $e^3 = 20.09$ and $e^4 = 54.60$, then (b) 53.87 htervals of equal region, then the a	f <i>a</i> and <i>b</i> are the following (c) $a = \frac{1}{1.25}, b = 1$ by Simpson's rule, the value of (c) 52.78 pproximate value of $\int_{2}^{6} \frac{1}{x^{2} - x}$	[MP PET 1998] (d) $a = \frac{1}{1.5625}, b = \frac{1}{1.25}$ of $\int_{0}^{4} e^{x} dx$ is [MP PET 1994, 95, 2001, 02] (d) 53.17 dx using Simpson's rule, is [EAMCET 2002]
83. 84.	values of $\frac{1}{1+x^2}$ at two of it (a) $a = \frac{1}{1.0625}, b = \frac{1}{1.25}$ If $e^0 = 1, e^1 = 2.72, e^2 = 7.39$ (a) 5.387 If (2, 6) is divided into four in (a) 0.3222	s division points, then the values o (b) $a = \frac{1}{1.0625}, b = \frac{1}{1.5625}$, $e^3 = 20.09$ and $e^4 = 54.60$, then (b) 53.87 htervals of equal region, then the a (b) 0.2333	f <i>a</i> and <i>b</i> are the following (c) $a = \frac{1}{1.25}, b = 1$ by Simpson's rule, the value of (c) 52.78 pproximate value of $\int_{2}^{6} \frac{1}{x^{2} - x}$ (c) 0.5222	[MP PET 1998] (d) $a = \frac{1}{1.5625}, b = \frac{1}{1.25}$ of $\int_{0}^{4} e^{x} dx$ is [MP PET 1994, 95, 2001, 02] (d) 53.17 (d) 53.17 [EAMCET 2002] (d) 0.2555
83. 84. 85.	values of $\frac{1}{1+x^2}$ at two of it (a) $a = \frac{1}{1.0625}, b = \frac{1}{1.25}$ If $e^0 = 1, e^1 = 2.72, e^2 = 7.39$ (a) 5.387 If (2, 6) is divided into four in (a) 0.3222 If $h = 1$ in Simpson's rule, the	s division points, then the values o (b) $a = \frac{1}{1.0625}, b = \frac{1}{1.5625}$ $, e^3 = 20.09$ and $e^4 = 54.60$, then (b) 53.87 htervals of equal region, then the a (b) 0.2333 e value of $\int_1^5 \frac{dx}{x}$ is	f <i>a</i> and <i>b</i> are the following (c) $a = \frac{1}{1.25}, b = 1$ by Simpson's rule, the value of (c) 52.78 pproximate value of $\int_{2}^{6} \frac{1}{x^{2} - x}$ (c) 0.5222	[MP PET 1998] (d) $a = \frac{1}{1.5625}, b = \frac{1}{1.25}$ of $\int_{0}^{4} e^{x} dx$ is [MP PET 1994, 95, 2001, 02] (d) 53.17 (d) 53.17 [EAMCET 2002] (d) 0.2555

* * *

Numerical Methods Assignment (Basic and Advance Le													ce Lev	vel)					
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
с	с	b	а	b	с	d	b	a	с	b	с	b	d	а	d	с	с	b	a
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
с	a	d	a	с	a	с	b	a	d	d	b	a	d	с	d	b	b	a	a
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
b	с	b	b	с	a	с	b	d	b	a	b	с	d	a	d	b	a	с	a
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
с	b	a	b	d	b	a	b	b	b	b	a	с	a	b	с	с	с	с	a
81	82	83	84	85															
b	b	b	с	a															