Chapter-5

SETS

Exercise 5.1

Question 1:

Find the value of each of the following :

(i) $(-3)^3 \times 5^2$ (ii) $(-1)^{501} \times [(27)^4 \div (9)^5]$ (iii) $\left(-3\frac{1}{2}\right)^3$

Solution:

(i) $(-3)^3 \times 5^2$ = $(-3) \times (-3) \times (-3) \times 5 \times 5$ = -27×25 = -675

(ii)
$$(-1)^{501} \times [(27)^4 \div (9)^5]$$

= $-1 \times [(3^3)^4 \div (3^2)^5]$
{: 501 is an odd numbers}
= $-1 \times [3^{12} \div 3^{10}]$
= $-1 \times [3^{12-10}]$
= $-1(3^2)$
= $-1 \times 3 \times 3$

$$= -9$$
(iii) $\left(-3\frac{1}{2}\right)^3 = \left(\frac{-7}{2}\right)^3$

$$= \frac{-7}{2} \times \frac{-7}{2} \times \frac{-7}{2}$$

$$= \frac{-343}{8}$$

$$= -42\frac{7}{8}$$

Question 2:

Simplify the following:

(i) (i)
$$\frac{7^3 \times 11^4 \times 13^0}{7^2 \times 11^2}$$

(ii) $\frac{(-2)^3 \times (3x)^2 \times (-xy^3)}{3x^2 y}$
(iii) $\frac{[(-5)^3]^4 \times 8^2}{4^3 \times (25)^5}$

Solution:

(i)
$$\frac{7^3 \times 11^4 \times 13^0}{7^2 \times 11^2}$$

= $7^{3-2} \times 11^{4-2} \times 13^0$
= $7^1 \times 11^2 \times 1$
= $7 \times 11 \times 11$
= 847

(ii)

$$\frac{(-2)^{3} \times (3x)^{2} \times (-xy^{3})}{3x^{2}y}$$

$$= \frac{(-2) \times (-2) \times (-2) \times 3^{2} \times x^{2} \times (-x) \times y^{3}}{3 \times x^{2} \times y}$$

$$= \frac{-8 \times 9x^{2} \times (-1)x \times y^{3}}{3x^{2} \times y}$$

$$= \frac{72}{3}xy^{3} - 1$$

$$= 24xy^{2}$$

(iii)

$$\frac{\left[(-5)^{3}\right]^{4} \times 8^{2}}{4^{3} \times (25)^{5}}$$

$$= \frac{(-5)^{3 \times 4} \times (2^{3})^{2}}{(2^{2})^{3} \times (5^{2})^{5}}$$

$$= \frac{(-5)^{12} \times 2^{6}}{2^{6} \times 5^{10}}$$

$$= \frac{(-1)^{12} (5)^{12} \times 2^{6}}{2^{6} \times 5^{10}}$$

$$= 1 \times 5^{12-10} \times 2^{6-6}$$

$$= 5^{2} \times 2^{0}$$

$$= 25 \times 1$$

$$= 25$$

Question 3:

Simplify and write the following in exponential form:

(ii)
$$\frac{9^8 \times (x^2)^5}{(27)^4 \times (x^3)^2}$$
$$= \frac{(3^2)^8 \times x^{2 \times 5}}{(3^3)^4 \times x^{3 \times 2}}$$
$$= \frac{3^{16} \times x^{10}}{3^{12} \times x^6}$$
$$= 3^{16-12} \times x^{10-6}$$
$$= 3^4 \times x^4$$

(i)
$$\frac{(-3)^5 \times 8^3 \times 2^5}{3^2 \times 4^4}$$

=
$$\frac{(-1)^5 \times 3^5 \times (2^3)^3 \times 2^5}{3^2 \times (2^2)^4}$$

=
$$\frac{-1 \times 3^5 \times 2^9 \times 2^5}{3^2 \times 2^8}$$

=
$$-1[3^{5-2} \times 2^{9+5-8}]$$

=
$$-1[3^3 \times 2^6]$$

=
$$(-3)^3 \times 2^6$$

=
$$(-27 \times 64)$$

=
$$-1728$$

Solution :

(i)
$$\frac{(-3)^5 \times 8^3 \times 2^5}{3^2 \times 4^4}$$

(ii)
$$\frac{9^8 \times (x^2)^5}{(27)^4 \times (x^3)^2}$$

(iii)
$$\frac{3^2 \times 7^8 \times 13^6}{21^2 \times 91^3}$$

$$= (3x)^4$$

(iii)
$$\frac{3^2 \times 7^8 \times 13^6}{21^2 \times 91^3} = \frac{3^2 \times 7^8 \times 13^6}{(3 \times 7)^2 \times (7 \times 13)^3}$$
$$= \frac{3^2 \times 7^8 \times 13^6}{3^2 \times 7^2 \times 7^3 \times 13^2}$$
$$= 3^{2-2} \times 7^{8-2-3} \times 13^{6-3}$$
$$= 3^0 \times 7^3 \times 13^3 = 1 \times 7^3 \times 13^3$$
$$= (7 \times 13)^3 = (91)^3$$

Question4:

If $\left(-\frac{3}{5}\right)^{x} = -\frac{27}{125}$ then find the value of x.

Solution :

$$\left(-\frac{3}{5}\right)^{x} = -\frac{27}{125}$$
$$= \left(\frac{-3}{5}\right)^{n} = \left(\frac{-3}{5}\right)^{3}$$

Comparing, we get

x = 3

Question 5:

Write the prime factorisation of the following numbers in the exponential form:

- (i) 24000
- (ii) 12600
- (iii) 14157

Solution :

(i) 24000

 $= 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 5 \times 5 \times 5$ $= 2^{6} \times 3^{1} \times 5^{3}$

(ii2) 12600

2	12600
2	6300
2	3150
3	1575
3	525
5	175
5	35

$$= 2 \times 2 \times 2 \times 3 \times 3 \times 5 \times 5 \times 7$$
$$= 2^3 \times 3^2 \times 5^2 \times 7^1$$

(iii) 14157

3	14157
3	4789
11	1573
11	143
13	13
	1

 $= 3 \times 3 \times 11 \times 11 \times 13$ $= 3^2 \times 11^2 \times 13^1$

Question 6:

Express the numbers appearing in the following statements in scientific notation:

(i) The earth has 1,353,000,000 cubic km of water.

(ii) The population of India was about 1,027,000,000 in march, 2001.

(iii) 60,230,000,000,000,000 molecules are contained in a drop of water.

Solution :

- (i) The earth has 1,353,000,000 cubic km of water.
- $= 1.353 \times 10^9$ cubic km

(ii) The population of India was about 1,027,000,000 in march, 2001.

 $= 1.027 \times 10^9$

(iii) 60,230,000,000,000,000 molecules are contained in a drop of water.

 6.023×10^{22} molecules

Question 7:

Compare the following numbers:

(i) 5.976×10^{24} ; 8.689×10^{23}

(ii) 3.7662×10^{17} ; 3.7671×10^{17}

Solution:

(i) 5.976×10^{24} ; 8.689×10^{23} Here in 5.976×10^{24} , 10^2 is greater than in 8.689×10^{23} $5.976 \times 10^{24} > 8.689 \times 10^{23}$

(ii) 3.7662×10^{17} ; 3.7671×10^{17} Here 10^{17} is multiplied in both and 76671 > 7662 $3.76671 \times 10^{17} > 3.7662 \times 10^{17}$

Exercise 5.2

Question 1:

Classify the following sets into empty set, finite set and infinite set. In case of (non-empty) finite sets, mention the cardinal number.

- (i) { all colours of a rainbow}
- (ii) { $x \times x$ is a prime number between 7 and 11 }
- (iii) { multiples of 5 }
- (iv) { all straight lines drawn in a plane}
- (v) { $x \ge a \text{ digit in the numeral } 550131527$ }
- (vi) { $x \ge a$ letter in word SUFFICIENT}

(vii) { $x \ge 4n$, $n \in I$ and x < 10}

- (viii) { $x \in N$, x is a prime factor of 180 }
- (ix) { x:x is a vowel in the word WHY}
- (x) { $x:x = 5n , n \in w \text{ and } x < 60$ }

Solution :

- (i) It is a finite set having 7 elements.
- (ii) it is an empty set.
- (iii) It is an infinite set having unlimited elements
- (iv) It is an infinite set having unlimited number of elements.
- (v) It is a finite set having 6 elements i.e 0, 1, 2, 3, 5, 7,
- (vi) It is a finite set having 6 elements i.e S, U, F, I, E, N, T.

(vii) It is an infinite set having the set of integers i.e unlimited number of elements.

(viii) It is a finite set having 3 elements.

(ix) { x:x is a vowel in the word WHY}

It is an empty set as there is no vowel in the word why

(x) { $x:x = 5n n \in W \text{ and } x < 60$ }

 $= \{ 5,10,15,20,25,30,35,40,45,50,55 \}$

It is finite set and it has 12 elements.

Question 2:

which of the following describe the same sets:

(i) {vowels of English alphabet } and { e,a,u,i,o}

(ii) $\{a,b,d\}$ and $\{d,a,b,b\}$

(iii) { letters of PUPPET } and {E,T,P,U}

(iv) {1,2,3 } and {2,3,4,)

(v) $\{1,2,3,4,5\}$ and $\{x \mid x \in N, x \le 5\}$

Solution:

- (i) the given sets are the same sets.
- (ii) These are the same sets.
- (iii) the given sets are the same sets.
- (iv) These are not the same sets.
- (v) The given sets are the same sets.

Question 3:

Find pairs \groups of equal sets from the following sets:

 $A = \{ 0, 1, 2, 3 \}$ $B = \{ x: x^{2} < 10, x \in w \}$ $C = \{ \text{letters of word FOLLOW} \}$ $D = \{ \text{days of a week } \}$ $E = \{ x \setminus x \in W, x < 4 \}$ $F = \{ \text{Letters of word FLOW } \}$ $G = \{ \text{Monday, Tuesday,, Sunday } \}$

H = { letters of word WOLF }

Solution :

A = B = E because if we write B and E in tabular form, we get the same elements.

C = F = H because the elements in a set can be rearranged as each set can be written as { F,O,L,W} form.

D = G because if we write D in tabular we get the same elements.

Question 4:

Find pairs \groups of equivalent sets from the following sets.

$$A = \{ \text{ colours of a rainbow } \}$$

B = { letters of word GOOD }

C = {letters of word TOM }

 $E = \{ x:x \in I, x^2 < 10 \}$ $F = \{ months of a year \}$ $G = \{ days of a week \}$ $H = \{ x \mid x = 3n ,$ $I = \{ all even numbers between 1 and 53 \}$ $J = \{ all letters of English alphabets \}$

Solution :

A,C,E and G are equivalent sets as these all have same number of elements i.e 7 elements.

$$B \Leftrightarrow as n (B) = 3 = n (D)$$
$$F \Leftrightarrow H as n (F) = 12 = n (H)$$
$$I \Leftrightarrow J as n (I) = 26 = n (j)$$

Question 5:

In the following, find whether $A \subset B$ or $B \subset A$ or none of these:

(i)
$$A = \{1,2,3\} B = \{2,3,3,3,1,3\}$$

(ii) $A = \{2,4,6,....\} B = \{ all natural numbers \}$
(iii) $A = \{x \setminus x \in I, x^2 < 20 \}, B = \{0,1,2,3,4\}$
(iv) $A = \{ letters of king \}$
 $B = \{ letters of Queen \}$

Solution :

In the following find whether $A \subset B$ or $B \subset A$ or none of these

(i)
$$A = \{1,2,3\} B = \{2,3,3,3,1,3\} = \{2,3,1\}$$

 $A \subset B \text{ and } B \subset A : i,e A = B$
(ii) $A = \{2,4,6,\} B = \{ \text{ all natural numbers } \}$
 $= \{1,2,3,4,5,6,7.....\}$
 $A \subset B \text{ but } B \not\subset A$
(iii) $A = \{x \setminus x \in I, x^2 < 20\}, B = \{0,1,2,3,4\}$
 $= \{0,1,4,9,16\}$
 $= \{(0)^2, (1)^2, (2)^2, (3)^2, (4)^2\}$
 $B = \{0,1,2,3,4\}$
 $B \subset A \text{ but } A \not\subset B$

(iv) $A = \{ \text{ letters of king } \} = \{ K,I,N,G \}$ B = { letters of QUEEN } = { Q,U,E,N } Here , A $\not\subset$ B and B $\not\subset$ C Neither A \subset B nor B \subset A

Question 6:

State whether each of the following statement is true or false for the sets A and B where

A = { letters of CLOUD} and B = { letters of KOLKATA}

- (i) A ⊂ B
- (ii) B ⊂A

(iii) $A \leftrightarrow B$

Solution :

 $A = \{ \text{letters of CLOUD} \} = \{ C, L, O, U, D \}$

 $B = \{ \text{letters of Kolkata} \} = \{ K, O, L, A, T \}$

(i) $A \subset B$: It is false because some elements of A are not the element of B.

(ii) $B \subset A$: It is false because some element of B is not a member

(iii) $A \leftrightarrow B$. It is true as n(A) = 5 n(B).

Question. 7:

Write all the subsets of the following sets:

(i) Φ

(ii) {3,5}

(iii) {2,4,6}

Solution:

(i) Subset of Φ is Φ

(ii) Empty set is a subset of every set so, the subsets are Φ {3} , {5} {3 , 5}

(iii) Empty set is a subset of every set. So the subsets are Φ {2},{4},{6},{2,4},{4,6},(2,6),(2,4,6)

Question 8:

If $A = \{ x: x = 2n, n < 5 \}$ then find A when

(i) $\xi = N$ (ii) $\xi = W$ (iii) $\xi = I$ Solution : (i) Natural numbers less than 5 are 1,2,3,4 Given x = 2n, putting n = 1,2,3,4 we get, $X = 2 \times 1, 2 \times 2, 2 \times 3, 2 \times 4$ = 2,4,6,8 The given set can be written as $\{2,4,6,8\}$ (Every set is a subset of universal set i.e. $A \subset \xi$) (ii) whole numbers less than 5 are 0, 1, 2, 3, 4, Given 2n i.e. 2×0 , 2×1 , 2×2 , 2×3 , 2×4 , i.e. 0,2,4,6,8 The given set i.e A can be written as (0,2,4,6,8)(every set is a subset of universal set i.e $A \subset \xi$) (iii) Integers less than 5 are, -4,-3,-2,-1,0,1,2,3,4 Given 2n i.e 2×-2 , 2×-1 , 2×0 , 2×1 , 2×2 , 2×3 , 2×4 , i.e -4 ,-2 0 2,4, 6,8 The given set i.e A can be written as {, -4, -2, 0 , 2, 4, 6, 8 }

(Every set is a subset of universal set i. $e A \subset \xi$)

Objective type Questions

Question 1: Fill in the blanks:

(i) If x is not a member of the set A , then symbolically we write it as ...

(ii) Each element of a set is listed once and only ... repetitions are removed.

(iii) A set that contains a limited number of different elements is called a set.

(iv) Two finite sets are called equivalent if and only if they have ... a number of elements.

Solution:

(i) If x is not a member of the set, A then symbolically we write it as $x \notin A$

(ii) Each element of a set is listed once and only once repetitions are removed.

(iii) A set that contains a limited number of different elements is called a finite set.

(iv) Two finite sets are called equivalent if and only if they have equal number of elements.

Question 2:

State whether the following statements are true (T) or false (F)

(i) A collection of books is a set.

(ii) If $x = \{$ letters of the word PRINCIPAL $\}$ then the cardinal number of set X is 9.

(iii) if $P = \{$ letters of the word AHMEDABAD $\}$, then n(p) = 6

(iv) If A is any set, then $A \subset A$.

(v) An empty set is a subset of every set.

(vi) If set $A = \{0\}$, then $n\{A\} = 0$.

(vii) If A and B are two sets such that $A \Leftrightarrow B$, then A = B.

Solution:

(i) A collection of books is a set. (False)

Correct:

A collection of different books is a set.

(ii) If X = {letters of the word PRINCIPAL}, then the cardinal number of set X is 9 (false)

Correct:

N(x) = P, R, I, N, C, A, L = 7 not 9

(iii) If P = { letters of the word AHMEDABAD },then n(P) = 6, (true) {A, H, M, E, D, B}

(iv) If A is any set, then $A \subset A$. (True)

(v) An empty set is a subset of every set. (True)

(vi) If A and B are two sets such that $A \Leftrightarrow B$, then A = B. (False)

Correct: A = B is $A \Leftrightarrow B$ but is $A \Leftrightarrow B$ is not always A = B

Multiple Choice Questions

Choose the correct answer from the given four options (3to9) :

Question: 3

Which of the following collection forms a set?

- (a) Collection of 5 odd prime numbers
- (b) Collection of 3 most intelligent students of your class

(c) Collection of 4 vowels of the English alphabet

(d) Collection of first 6 months of a year.

Solution :

Collection of 5 odd prime number, collection of 4 vowels of English alphabet and collection of first 6 months of a year, all are sets but a

Collection of 3 most intelligent students of your class in not a set, because intelligence is not well defined (b)

Question 4:

The tabular form for the statement ' Days of the week starting with the letter T' will be

- (a) { days of week starting with letter T }
- (b) { Tuesday, Thursday}
- (c) { $x \ge a$ day of the week starting with letter T }
- (d) none of these

Solution :

Days of the week starting with the letter T in tabular form is { Tuesday, Thursday} (b) Question 5: A set with a limited number of distinct elements is called

(a) a finite set

(b) an infinite set

(c) both finite as well as an infinite set

(d) none of these

Solution:

Set with a limited number of distinct elements is called a finite set.

(a)

Question 6: The symbol \leftrightarrow stands for

(a) belongs to

(b) is a subset of

(c) is equivalent to

(d) none of these

Solution:

The symbol \leftrightarrow stands for is equivalent to . (c)

Question 7: The empty set is denoted as

- (a) $\{\Phi\}$
- (b) { }
- (c) $\{0\}$
- (d) 0

Solution:

Empty set is denoted as { }. (b)

Question 8:

The cardinal number n(A) =for $A = \{ x:x is an odd prime number less than 20 \} is$

- (a) 8
- (b) 7
- (c) 9
- (d) 10

Solution :

The cardinal number $n(A) = \{x:x \text{ is an odd prime number less than } 20\} = \{3, 5, 7, 11, 13, 17, 19\}$ n(A) = 7 (b)

Question 9: if $A = \{x \mid x \text{ is a positive multiple of 3 less than 20} \}$ and B = $\{x \mid x \text{ is a prime number less than 20}\}$, then n(A) + n(B) is

- (a) 6
- (b) 8
- (c) 13
- (d) 14

Solution :

A = { x\x is a positive multiple of 3 less than 20 } = { 3,6,12,15,18} = n(A) = 6 B = {x\x is a prime number less than 20 } = {2,3,5,11,13,17,19 } = n(B) = 8 N(A) + n(B) = 6+8 = 14 (d)

Check your Progress

Question 1: Write the following sets in tabular form and also in set builder form :

- (i) The set of even integers which lie between -6 and 10.
- (ii) The set of two digit numbers which are perfect square.

(iii) { factors of 42}

Solution :

(i) Given set = $\{-4, -2, 0, 2, 4, 6, 8\}$ (tabular form)

Or { $x:x = 2n, n \in I$ and -3 < n < 5 } (set builder form)

(ii) The set can be written as { 16,25,36,49,64,81} (tabular form

Or { $x:x = n^2$, $n \in N$ and $4 \le n \le 9$)

(iii) the set can be written as $\{1,2,3,6,7,14,21,42\}$ (tabular form)

Or { x:x is a factor of 42) (set builder form)

Question 2: Write the following sets in roster form:

(i) {
$$x:x = 5n, n \in I \text{ and } -3 < n \le 13$$
 }

(ii) { $x:x = n^2$, $n \in W$ and n < 5 }

(iii) { $x:x = n^2 - 2$, $n \in w$ and n < 4 }

Solution :

The set can be written as

(i) Integers lie between -2 and 3 are -2, -1, 01, 2, 3

Given x = 5n, putting n = -2, -1, 0, 1, 2, 3 we get

 $X = 5 \times -2, 5 \times -1, 5 \times 1, 5 \times 2, 5 \times 3,$ = -10, -5, 0, 5, 10, 15 Set = { -10, -5, 0, 5, 10, 15 } (ii) whole numbers less than 5 are 0, 1,2,3,4 Given x = n², putting n 0, 1,2,3,4 we get $X = 0^{2}, 1^{2}, 2^{2}, 3^{2}, 4^{2} = 0, 1, 4, 9, 16$ Given set = { 0, 1, 4, 9, 16 } (roster form) Whole numbers less than 4 are 0, 1, 2, 3, Given x = n²-2 putting n = 0, 1, 2, 3, we get $X = 0^{2} - 2, 1^{2} - 2, 2^{2} - 2, 3^{2} - 2$ = -2, -1, 2, 7 Given set = { -2, -1, 2, 7} (roster form)

Question 3:

Write the following sets in set builder form:

(i) { -14, -7, 0, 7, 14, 21, 28}

(ii) { 1,2,3,6,9,18}

Solution :

(i) $\{x \mid x = 7n \ n \in I \text{ and } -2 \le n \le 4\}$ (set builder form)

(ii) given set = { $x \setminus x \in N$, is a factor of 18}

(set builder form)

Question 4: Classify the following sets into the finite set, infinite set the empty set. In the case of a (non_- empty) finite set, mention the cardinal number.

(i) The set of even prime numbers.

(ii) {multiples of 9}

(iii) { x:x is a month of a year having less than 30 days }

(vi) {x\x is a month of a leap year having 28 days }

Solution:

```
(i) It is a finite set having 1 element. So, cardinal number = 1
```

(ii) It is an infinite set as it has unlimited number of different elements.

Because, if we write it in roster form, the given set = $\{9, 18, 27, 36...\}$

(iii) Prime factors of 84 = 2,3,7.

The set can be written as = $\{2,3,7\}$

It is a finite set having 3 elements.

- (iv) 2x + 5 = 1
- = 2x = 1-5
- = 2x = -4

$$= x = -2$$

But $x \in N$ and Natural numbers are $\{1,2,3....\}$

It is an empty set.

(v) { x:x is a month of a year having less than 30 days = FebruaryIt is a finite set as it is one element.

(vi) {x\x is a month of a leap year having 28 days } = Φ it is an empty set as there is no month in the leap year which has 28 days.

Question 5: In the following, determine whether A and B are equivalent sets and if so, whether A = B.

(i) $A = \{ 1,3,5 \} B = \{ Red, Blue, Green \}$

(ii) $A = \{ Prime factors of 70 \}, B = \{ Prime factors of 60 \}$

(iii) A = { even natural numbers less than 10 }, B = { odd natural numbers less than 10 }

Solution :

(i) $A \leftrightarrow B$ as n(A) = 3 = n(B)

But $A \neq B$ because , they have different elements.

(ii) Prime factors of 70 = 2,5,7

A = (2,5,7)

Prime factors of 60 = 2,3,5

B = (2,3,5)

 $A \leftrightarrow B \text{ as } n(A) = n(B)$

But $A \neq B$

They have not the same elements.

(iii) if we write A and B in tabular form, we get

A = { 2,4,6,8}
B = { 1,3,5,7,9}
So , n (A)
$$\neq$$
 n(B)

A is not equivalent to B.

Question 6:

Let $p = \{$ letters of SCHOOL $\}$ and $Q = \{$ letters of FALSE $\}$, then state whether each of the following statement is true or false for the above sets:

- (i) $P \subset Q$
- (ii) $Q \subset P$
- (iii) $P \leftrightarrow Q$

Solution :

If P = { letters of SCHOOL }

Q = { letters of FALSE }

 $P = \{ S, C, H, O, L \}$ and $Q = \{ F, A, L, S, E \}$

(i) $P \subset Q$ False.

(ii) $Q \subset P$ False.

(iii) $P \leftrightarrow Q$ True

{Both have equal number of elements}

Question 7: State whether each of the following statements is true or false for the sets, A,B and C where

 $A = \{x \mid x \in N, x < 40 \text{ and } x \text{ is a multiple of } 6\}$

 $B = \{ x \mid x \in W, x \leq 40, and x is a multiple of 8 \}$

 $C = \{ x \ is a factor of 28 \}.$

(i) $A \leftrightarrow B$

- (ii) $B \leftrightarrow C$
- (iii) $A \leftrightarrow C$
- Solution :

If we write A,B and C in tabular form, we get 32,

 $A = \{ 6, 12, 18, 24, 30, 36 \}$

 $B = \{ 0, 8, 16, 24, 40 \}$ and $C = \{ 1, 2, 4, 7, 14, 18 \}$

- (i) A \leftrightarrow B True, because n (A) = 6 = n(B)
- (ii) $B \leftrightarrow C$ True, because n(B) = 6 = n(C)
- (iii) $A \leftrightarrow C$ True, because n(A) = 6 = n(C)