7. पहचान सूक्ष्मजीव विज्ञान की

- 🕨 व्यावहारिक सूक्ष्मजीव विज्ञान
- 🗲 औद्योगिक सूक्ष्मजीव विज्ञान
- 🕨 उत्पाद

थोड़ा याद कीजिए

- 1. कौन-कौन से सूक्ष्मजीव हमें उपयोगी हैं ?
- 2. सूक्ष्मजीवों का उपयोग कर कौन-कौन से पदार्थ बनाए जाते है ?

व्यावहारिक सूक्ष्मजीव विज्ञान (Applied microbiology)

कुछ आदिकेंद्रकी और दृश्य केंद्रकी सूक्ष्मजीवों से संबंधित प्रकिण्व, प्रथिन, व्यावहारिक आनुवंशिक विज्ञान, आण्विक जैवप्रौद्योगिकी इनका अध्ययन जिस शाखा में किया जाता है, उस शाखा को व्यावहारिक सूक्ष्मजीव विज्ञान कहते है।

इस अध्ययन का उपयोग समाज के लिए किया जाता है और सूक्ष्मजीवों की सहायता से खाद्यपदार्थ, दवाईयाँ जैसे उत्पाद बड़ी मात्रा में निर्माण की जाती है।

औद्योगिक सूक्ष्मजीव विज्ञान (Industrial microbiology)

यह सूक्ष्मजीवों के व्यवसायिक उपयोगों से संबंधित विज्ञान की वह शाखा है जिसमें आर्थिक, सामाजिक और पर्यावरण की दृष्टि से महत्त्वपूर्ण प्रक्रियाएँ एवं उत्पादों का समावेश होता हैं। इसके लिए उपयुक्त साबित होने वाली सूक्ष्मजैविक प्रक्रियाएँ बड़ी मात्रा में संपन्न की जाती है।

औद्योगिक सूक्ष्मजीव विज्ञान के मुख्य पहलू

- अ. किण्वन क्रिया की सहायता से विभिन्न उत्पादों का निर्माण करना । उदाहरण : पाव, चीज, वाईन, रसायनों के लिए लगनेवाला कच्चा माल, प्रकिण्व, खाद्य घटक, दवाईयाँ आदि
- ब. कचरा व्यवस्थापन और प्रदूषण नियंत्रण के लिए सूक्ष्मजीवों का उपयोग करना ।

दूध से दही बनाते समय हम किण्वन प्रक्रिया का उपयोग करते है। इस प्रक्रिया के लिए कौन से जीवाणू मदत करते है ?

उत्पाद (Products)

अ. दृग्ध जन्य उत्पाद (Dairy products)

पूराने समय से दूध को टीकाए रखने के लिए उसका विभिन्न पदार्थों में रूपांतरण किया जाता है। जैसे चीज, मक्खन, क्रीम, केफिर (बकरी के दूध से बना दही जैसा पदार्थ), योगर्ट (दही जैसा पदार्थ) आदि ये पदार्थ बनाते समय दूध में पानी की मात्रा और अम्लीयता में परिवर्तन होता है और बनावट (गठन), स्वाद, गंध में वृद्धि होती हैं।

अब यही प्रक्रियाएँ बड़े पैमाने पर और अधिक कुशलता पूर्वक करवाई जाती है। अधिकांश दूग्धजन्य उत्पादों के लिए दूध में स्थित जीवाणुओं का ही इस्तेमाल किया जाता है। केवल चीज के उत्पादन में तंतु – कवको का इस्तेमाल किया जाता है। योगर्ट, मक्खन, क्रीम आदि के लिए की जानेवाली मूलभूत प्रक्रिया समान है। सबसे पहले दूध का पाश्चरीकरण करके उसमें स्थित अन्य सूक्ष्मजीवों को नष्ट किया जाता है। बाद में लॅक्टोबॅसिलाय जीवाणूओं की सहायता से दूध का किण्वन किया जाता है। इस प्रक्रिया में दूध की लॅक्टोज शर्करा का रूपांतरण लॅक्टिक अम्ल में होता है। लॅक्टिक अम्ल के कारण दूध में स्थित प्रथिन का स्कंदन (Cogulation) होकर स्वाद और गंध वाले यौगिक बनते है। उदाहरण: ड़ाय ॲसेटिल में मक्खन का स्वाद होता है।

आ. योगर्ट का उत्पादन

योगर्टस यह खट्टे स्वादवाले उत्पाद हैं। उनका औद्योगिक उत्पादन करते समय दूध में प्रथिनों के लिए दूध पावड़र मिलाया जाता हैं। दूध को गर्म करके गूनगूना किया जाता है और उसमें स्ट्रेप्टोकॉकस थर्माफिलीस तथा लॅक्टोबॅसिलस ड़ेलब्रुकी इन जीवाणुओं को 1:1 अनुपात वाले मिश्रण में मिलाया जाता है। स्ट्रेप्टोकॉकस के कारण लॅक्टिक अम्ल बनकर प्रथिनों का जेल (Gel) बनता है और दही को गाढ़ापन प्राप्त होता है।

लॅक्टोबॅसिलस् के कारण एसीटल्डीहाइड जैसे यौगिक बनते है और दही को एक विशिष्ट स्वाद प्राप्त होता हैं। आजकल योगर्ट में फलों का रस आदि मिलाकर अलग-अलग स्वाद निर्माण किए जाते है। उदाहरण: स्ट्रॉबेरी योगर्ट, बनाना योगर्ट। योगर्ट का पाश्चरीकरण करके उसे लंबे समय तक टीका कर रख सकते है तथा उसका प्रोबायोटीक गुणधर्म भी बढाते है।

इ. मक्खन (Butter)

इससे स्वीट क्रीम और कल्चर्ड़ ऐसे दो प्रकार बड़ी मात्रा में प्राप्त किए जाते है। जिनमें से कल्चर्ड़ इस प्रकार के उत्पादन में सूक्ष्मजीवों का सहभाग होता है।

ई. पनीर का निर्माण (Cheese production)

दुनियाभर में बड़ी मात्रा में उपलब्ध गाय के दूध का इस्तेमाल कर पनीर बनाया जाता है। सबसे पहले दूध का रासायनिक और सूक्ष्मजैविक परीक्षण होता है। दूध में लॅक्टोबॅसिलस लॅक्टिस, लॅक्टोबॅसियस क्रिमॉरिस और स्ट्रेप्टोकॉकस थर्मोफिलीस ये सूक्ष्मजीव तथा रंग मिलाए जाते हैं। जिससे दूध में खट्टापन आता है। उसके बाद दही में स्थित पानी (Whey) निकालने के लिए उसे और गाढ़ा होना आवश्यक होता हैं।

इसके लिए जानवरों के अन्ननलिका से प्राप्त रेनेट प्रकिण्व पहले ही से उपयोग में लाया जाता था, पर आजकल कवकों से प्राप्त प्रोटीएज (protease) नामक प्रकिण्व का उपयोग कर शाकाहारी पनीर बनता है।

दही से पानी (Whey) अलग किया जाता है (जिसके और भी कुछ उपयोग है)। गाढ़े दही के टुकड़े को काटना, धोना, रगड़ना आदि क्रियाओं के बाद नमक मिलाना और उसमें आवश्यक सूक्ष्मजीव, रंग, स्वाद मिलाकर पनीर तैयार करने की प्रक्रिया शुरू की जाती है। बाद में दाब देकर पनीर के टुकड़े किए जाते है और उन्हे परिपक्व बनाने हेतु संग्रहीत करके रखा जाता है।

7.1 मख्खन और पनीर

- 1. पिझ्झा, बर्गर, सॅण्ड्विच और पाश्चिमात्य खाद्य पदार्थों में पनीर के कौन-कौन से विभिन्न प्रकार होते है ?
- 2. उसमें क्या अंतर होगा ?

क्या आप जानते हैं?

दुग्धजन्य पदार्थों के औद्योगिक उत्पादन में काफी स्वच्छता रखनी पड़ती है और निर्जंतुकीकरण भी करना पड़ता है। क्योंकि उपयोगी जीवाणुओं को विषाणुओ से खतरा होता है। इसलिए जीवाणुओं की विषाणुरोधक प्रजातियों को विकसित किया गया है। औद्योगिक सूक्ष्मजीव विज्ञान में आजकल सूक्ष्मजीवों के उत्परिवर्तित प्रजातियों का (Mutaed strains of microbes) उपयोग बढ़ा है। जो उत्पादन के लिए आवश्यक हो ऐसे ही बदलाव लाए तथा अनावश्यक प्रक्रिया/पदार्थों को टाला जा सके ऐसी प्रजातियों को कृत्रिम पद्धति से विकसित किया जाता है।

कॉटेज, क्रीम, मोझरेला ये पनीर के प्रकार नरम होते है तथा वे बिल्कुल ताजे और उसी समय बनाये हुए पनीर होते है। 3 से 12 महीनों तक रखकर थोड़ा कड़क चेड़ार पनीर बनता है, तो 12 से 18 महीनों तक रखकर एकदम कड़क पनीर अर्थात पार्मेंसान पनीर बनता है।

प्रोबायोटीक्स खाद्य पदार्थ किसलिए प्रसिद्ध है ?

प्रोबायोटिक्स (Probiotics)

ये पदार्थ भी दूग्धजन्य ही है। पर इसमें जो जीवाणु होते है वे क्रियाशील होते है। उदाहरणार्थ: लॅक्टोबॅसिलस, ऑसिड़ोफिलस, लॅक्टोबॅसिलस केसी, बायफिड़ोबॅक्टोरिअम बायफिड़म आदि। ये जीवाणू मनुष्य की आँतो में स्थित सूक्ष्मजीवों का संतुलन रखते है यानि पचनक्रिया में सहायता करनेवाले सूक्ष्मजीवों की वृद्धि करते है और उपद्रवी सूक्ष्मजीवों को (उदाहरण क्लॉस्ट्रिड़ीअम) नष्ट करते है। प्रोबायोटिक्स उत्पाद योगर्ट, केफिर, सोअर क्रुट (गोभी का अचार), ड़ार्क चॉकलेट, मिसो सूप, अचार, तेले, कॉर्न सिरप, कृत्रिम स्वीटनर्स (मिठास लानेवाले पदार्थ), सूक्ष्मशैवाल (स्पिरूलिना, क्लोरेल्ला और निलहरीत शैवालो का समावेश होनेवाले समुद्री खाद्यपदार्थ) ऐसे विभिन्न रूपों में उपलब्ध है।

वर्तमान समय में प्रोबायोटिक्स को इतना महत्त्व क्यों प्राप्त हुआ है ? इसका कारण यह है की ये उत्पाद हमारे आहारनाल में उपयोगी सूक्ष्मजीवों की वृद्धी करके अन्य सुक्ष्मजीवों और उनके चयापचय की क्रिया पर नियंत्रण रखते है, प्रतिक्षमता बढ़ाते है, चयापचय की क्रिया में निर्माण हुए घातक पदार्थों के दुष्परिणाम को कम करते है । प्रतिजैविकों के कारण आहारनाल में स्थित उपयोगी सूक्ष्मजीव भी अकार्यक्षम हो जाते है, उन्हे पुनः सक्रिय या क्रियाशिल करने का काम प्रोबायोटीक्स करते है ।

अतीसार के उपचार हेतु उसी प्रकार मुर्गीयों में उपचार हेतु आजकल प्रोबायोटिक्स का ही उपयोग होता है।

7.2 प्रोबायोटिक्स

थोड़ा सोचिए।

खमीर (थीस्ट / किण्व) का निरीक्षण करने के लिए पिछली कक्षा में आपने ड्राय यीस्ट से विलयन बनाया था । व्यावसायिक तौर पर उसका उपयोग कर कौन-सा पदार्थ बनाते है ?

पाव (Bread)

अनाजों के आटे सें पाव के विभिन्न प्रकार बनाए जाते हैं । आटे में बेकर्स यीस्ट – सॅकरोमायिसस सेरेव्हिसी (Sachharomyces cerevisiae), पानी, नमक और अन्य आवश्यक पदार्थ मिलाकर उसका गोला बनाया जाता है। यिस्ट के कारण आटे में स्थित कार्बोज का किण्वन होकर शर्करा का रूपांतरण कार्बन ड़ायआक्साइड़ (CO_2) और इथॅनॉल में होता है । CO_2 के कारण आटा फूलता है और भूनने के बाद पाव जालीदार (छिद्रमय) बनता है ।

व्यावसायिक तौर पर बेकरी उद्योग में संपिड़ीत (Compressed) यीस्ट का इस्तेमाल होता है। तो घरगुती इस्तेमाल के लिए सुखे, दानेदार स्वरूप में यीस्ट उपलब्ध होता है। व्यावसायिक उपयोग के लिए बनाए गए यीस्ट में ऊर्जा, कार्बोज, स्निग्ध, प्रथिन, विभिन्न जीवनसत्त्व और खनिज जैसे उपयोगी घटक होते है। इसलिए यीस्ट का उपयोग कर बनाए गए पाव और अन्य उत्पाद पौष्टीक होते है। आजकल लोकप्रिय हुए चायनीज खाद्यपदार्थों में इस्तेमाल किए जानेवाले व्हिनेगर (सिरका), सोयासॉस, मोनोसोड़िअम ग्लुटामेंट (अजिनोमोटो) ये तीन घटक सूक्ष्मजैविक किण्वन से प्राप्त होते है।

सिरका (Vinegar) उत्पादन

विश्व के अनेक प्रदेशो में खाद्य पदार्थों में खट्टापन आने के लिए उसी प्रकार अचार, सॉस, केचप, चटणीयाँ इन पदार्थों को टीकाऊ बनाने के लिए सिरके का उपयोग किया जाता है। रासायनिक दृष्टि से सिरका अर्थात4% असेटिक अम्ल (CH₂COOH)

फलोंका रस, मेपल सिरप, शक्कर के कारखानों का गन्ने का चोटा, जड़ों का स्टार्च इन कार्बनिक पदार्थों का सॅकरोमायसिस सेरेव्हिसी इस कवक की सहायता से किण्वन करके इथेनॉल यह अल्कोहोल प्राप्त किया जाता है।

7.3 सिरका

इथेनॉल में ओसटोबॅक्टर प्रजाति और ग्लुकॉनोबॅक्टर इन जीवाणुंओं का मिश्रण मिलाकर उसका सूक्ष्मजैविक विघटन किया जाता हैं। जिससे ओसिटिक अम्ल और अन्य उप उत्पाद प्राप्त होते है। मिश्रण का विरलन करके उससे ओसिटिक अम्ल को अलग करते है। पोटैशियम फेरोसायनाईड़ का उपयोग कर ओसिटिक अम्ल का विरंजन किया जाता है। उसके बाद पाश्चरीकरण होता है। अंत में अत्यल्प मात्रा में SO_2 गैस मिलाकर सिरका तैयार करते है।

7.4 एस्परजिलस ओरायझी

गेहूँ या धान का आटा और सोयाबीन इनके मिश्रण का एस्परजिलस ओरायझी (Aspegillus oryzae) इस कवक की सहायता से किण्वन करके सोया सॉस बनाते है।

पेय निर्मिती (Production of beverages)

अ. क्र	फल	सहभागी सूक्ष्मजीव	सूक्ष्मजीव का कार्य	पेय पदार्थ का नाम
1	कॅफिया अरॅबिका	लॅक्टोबॅसीलस ब्रुईस	फलों से बीज अलग करना।	कॉफी
2	थिओब्रोमा कॅको	कॅन्ड़ीड़ा, हॅन्सेन्युला, पिचिया,	फलों से बीज अलग करना।	कोको
		सॅकरोमायसिस		
3	अंगूर	सॅकरोमायसिस सेरेव्हिसी	रस का किण्वन करना।	वाईन
4	सेब	सॅकरोमायसिस सेरेव्हिसी	रस का किण्वन करना।	सिड़ार

कॉफी का फल और बीज

कोको के बीज

7.5 पेय निर्मिती के लिए कुछ घटक

- 1. मनुष्य के पाचन संस्थान में स्रवित होनेवाला प्रकिण्व क्या कार्य करता है?
- 2. ऐसे ही कुछ प्रकिण्वों के नाम बताओ।

सूक्ष्मजैविक प्रिकण्व (Microbial Enzymes): रसायन उद्योग में अब रासायनिक उत्प्रेरको के स्थान पर सूक्ष्मजीवो की सहायता से प्राप्त किए गए प्रिकण्व का उपयोग करते है। तापमान, pH और दाब इनका स्तर कम होनेपर भी यह प्रिकण्व कार्य करते है। जिससे ऊर्जा की बचत होती है और महंगे क्षरणरोधी उपकरणो की आवश्यकता नहीं पड़ती। प्रिकण्व विशिष्ट अभिक्रिया ही घटित करवाते है, अनावश्यक उप-उत्पाद नहीं बनते शुद्धीकरण का खर्च भी कम होता है।

सूक्ष्मजैविक प्रिकण्वों की अभिक्रिया से निरूपयोगी पदार्थों का उत्सर्जन तथा उनका विघटन टाला जाता है, उसी प्रकार प्रिकण्वो या पुर्नऊपयोग भी किया जा सकता हैं। इसलिए ऐसे प्रिकण्व पर्यावरण स्नेही होते हैं। आक्सिड़ोरिड़क्टेजीस (Oxidoreductases), ट्रान्स्फरेजीस (Transferases), हायड्रोलेजीस (Hydrolases), लायसेजीस (Lysases), आयसोमरेजीस (Isomerases), लायगेजीस (Ligases) ये सूक्ष्मजैविक प्रिकण्व के कुछ उदाहरण है।

अपमार्जक में प्रकीण्व मिलानेपर मैल निकालने की प्रक्रिया कम तापमान पर भी हो जाति है। भूट्टे में स्थित स्टार्च पर, बॅसिलस और स्ट्रेप्टोमायसिस से प्राप्त प्रकीण्व की क्रिया करने पर, ग्लुकोज और फ्रुक्टोज सिरप (तैयार शरबत का माध्यम) बनाते है। पनीर, वनस्पतियों का सार, वस्त्रोद्योग, चमड़ा, कागज, ऐसे कई उद्योगो में सूक्ष्मजैविक प्रकिण्वों का उपयोग किया जाता है।

शीतपेय, आइस्क्रीम, केक, शरबत ये खाद्यपदार्थ विविध रंगो और स्वाद में मिलते है। क्या सचमुच ये रंग, स्वाद और गंध फलों से ही प्राप्त किए जाते है?

शीतपेय, शरबत की बोतले, आइस्क्रीम का वेष्टन आदि पर छपे हुए घटकद्रव्य और उनकी मात्रा पढ़िए । उनमें से प्राकृतिक और कृत्रिम घटकद्रव्य कौन-से है ये निश्चित कीजीए ।

व्यावसायिक उत्पादन में इस्तेमाल किए जानेवाले अमिनो अम्ल और उसके लिए उपयोगी सूक्ष्मजीव

स्त्रोत	सूक्ष्मजीव	अमिनो अम्ल	उपयोग
गन्ना या चुकंदर का	ब्रेव्हीबॅक्टेरियम	L- ग्लुटामिक अम्ल	मोनोसोड़ियम ग्लुटामेंट
घोल, अमोनिया क्षार	कोरीनेबॅक्टेरियम		(अजिनोमोटो) उत्पादन
गन्ने का घोल और क्षार	एस्परजिलस नायगर	सायट्रीक अम्ल	पेय, गोलीयाँ, चॉकलेट उत्पादन.
ग्लुकोज और कॉर्न स्टीप	एस्परजिलस नायगर	ग्लुकॉनिक अम्ल	कैल्शीयम और लोह की कमी को
लिकर			पूरा करनेवाले लवणो का उत्पादन
घोल और कॉर्न स्टीप	लॅक्टोबॅसिलस ड़ेलब्रुकी	लॅक्टिक अम्ल	नायट्रोजन का स्त्रोत
लिकर			जीवनसत्त्व का उत्पादन
घोल और कॉर्न स्टीप	एस्परजिलस फेरियस	इटाकॉनिक अम्ल	कागज, कपड़ें, प्लॅस्टिक उद्योग.
लिकर	एस्परजिलस इटॅकॉनियस		गोंद उत्पादन.

7.6 एस्परजिलस नायगर

आपकी पसंद के आइस्क्रीम, पुड़िंग, चॉकलेट्स, मिल्कशेक, चॉकलेट पेय, इन्स्टंट सूप्स इन्हे गाढ़ापन लानेवाला झॅन्थॅन गोंद क्या होता है? स्टार्च और घोल की झॅन्थोमोनास प्रजातिद्वारा किण्वन क्रिया करवाने पर ये गोंद बनाते है। गर्म तथा ठंड़े पानी में घुलना, उच्च घनत्व इन विशेषताओं के कारण उसके कई उपयोग है। रंग, खाद, तृणनाशक, कपड़ो के रंग, टूथपेस्ट, ऊच्च दर्जे का कागज बनाने के लिए इसका उपयोग होता।

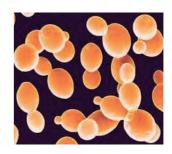
सूक्ष्मजैविक क्रिया द्वारा प्राप्त पदार्थ और उनके कार्य

सूक्ष्मजैविक क्रिया द्वारा प्राप्त पदार्थ	कार्य
सायट्रीक अम्ल, मॅलिक अम्ल, लॅक्टिक अम्ल	अम्लीयता प्रदान करना ।
ग्लुटामिक अम्ल, लायसिन,ट्रिप्टोफॅन	प्रथिन का गठन करना ।
नायसिन, नॅटामायसिन	सूक्ष्मजीव प्रतिबंधक
एस्कॉर्बिक अम्ल (Vitamin C), B_{12} , B_{2}	अेन्टीआक्सीड़ंट और जीवनसत्त्व
बीटा कॅरोटीन, लायकोपिन, झॅन्थीन्स, ल्युटिन्स	खाद्य रंग
पॉलीसॅक्राईड्स, ग्लायको लिपिड्स	इमल्सिफायर्स (विलयन को गाढा करनेवाला पदार्थ)
व्हॅनिलिन, इथाईल ब्युटिरेट (फलों का स्वाद),	इसेन्स (खानेयोग्य सुगंधी द्रव्य)
पेपरमिंट स्वाद, विभिन्न पुष्प और फलों की गंध	
झायलीटॉल (Xylitol), एस्परटेम	मिठास देना (उष्मांक कम होता है । मधुमें ह के रोगीयों को उपयुक्त)

- प्रतिजैविक किसे कहते है?
- 2. उनका सेवन करते समय कौनसी सावधानी बरतनी चाहिए ?

प्रतिजैविक (Antibiotic)

विभिन्न प्रकार के जीवाणु और कवकों से प्राप्त होनेवाले प्रतिजैविको के कारण मनुष्य और अन्य प्राणियों के अनेक रोग नियंत्रण में आ गए है । पेनिसिलिन, सिफॅलोस्पोरिन्स, मोनोबॅक्टम्स, बॅसिट्रॅसिन, एरिथ्रोमायसिन, जेन्टामायसिन, निओमायसिन, स्ट्रेप्टोमायसिन, ट्रेट्रासायक्लिन्स, व्हॅन्कोमायसिन, आदि प्रतिजैविक विभिन्न प्रजाति के ग्रॅम पॉझीटीव्ह और ग्रॅम निगेटीव्ह जीवाणुओं के खिलाफ इस्तेमाल की जाती है । क्षयरोग के खिलाफ रिफामरायसिन उपयुक्त है ।



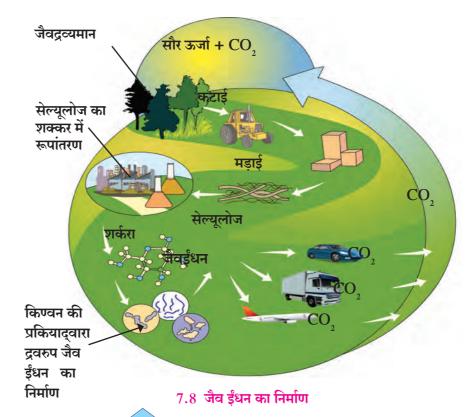
बताइए तो !

- 1. बायोगॅस संयत्र में कौन-कौन से पदार्थों को सडाया जाता है ?
- 2. उससे कौन-कौन से उपयुक्त पदार्थ प्राप्त होते है ? इनमें से कौनसा पदार्थ ईंधन होता है ?
- 3. सड़ाने की क्रिया किसके द्वारा होती है?

सूक्ष्मजीव और इंधन

- 1. बड़ी मात्रा में निर्माण होनेवाले शहर के, खेतों के औद्योगिक कचरे का सूक्ष्मजैविक अनाक्सि-विघटन करके मिथेन गैस यह इंधन प्राप्त होता है।
- 2. सॅकरोमायसिस किण्व जब गन्नेके चोटे का किण्वन करते है तब प्राप्त होनेवाला इथॅनॉल यह अल्कोहल एक स्वच्छ धूँआरहित इंधन है।
- 3. 'हायड्रोजन गैस' को भविष्य का इंधन माना जाता है। पानी का जैविक प्रकाश अपघटन (Bio-photolysis of water) इस अभिक्रिया में जीवाणू प्रकाशीय अपचयन (Photo reduction) करते है और हायड्रोजन गैस मुक्त होती है।

7.7 सॅकरोमायसिस किण्व


ईंधन की भाँती विभिन्न प्रकार के औद्योगिक रसायन भी सूक्ष्मजैविक प्रक्रियाओं द्वारा बनाए जाते है। उदाहरणार्थ रसायन उद्योगोमें कच्चा माल के रूप में उपयोगी अल्कोहल्स, अेसिटोन,कार्बनिक अम्ल, स्निग्ध घटक, पालीसॅकराईड्स, प्लॅस्टिक और खाद्यपदार्थों के निर्माण में इनमें से कुछ कच्चे मालों का उपयोग होता है।

निरीक्षण कीजिए

आकृति 7.7 का निरीक्षण कीजिए। जैव ईंधन के संदर्भ में चर्चा कीजिए।

जैव ईंधन : नवीकरण करने योग्य ऊर्जा स्नोतो में जैव ईंधन यह महत्व का साधन है । यह ईंधन ठोस (पत्थर कोयला, गोबर, फसलों के अवशेष), द्रव (वनस्पतिक तेल, अल्कोहल) गैस (गोबरगैस, कोलगॅस) इन रूपों में उपलब्ध होते है । ये ईंधन प्रचूर मात्रा में और आसानी से प्राप्त हो सकते है । भविष्य के लिए यह विश्वसनीय ईंधन है ।

सूक्ष्मजैवीक प्रदृषण नियंत्रण (Microbial pollution control)

बढ़ती हुई जनसंख्या के साथ-साथ ठोस कचरा, निष्कासित जल, विभिन्न प्रदूषक ये घटक भी बढ़ते जाते हैं । इनके साथ साथ फैलनेवाले रोग और पर्यावरण का होनेवाला क्षय ये सभी वैश्विक समस्याएँ है । विशेषकर जनसंख्या के उच्च घनत्ववाले भारत जैसे देश के शहर इन समस्याओं से ग्रासित है । इन समस्याओं का उचित समय पर और उचित मात्रा में हल ना निकाला गया तो सभी प्रकार के सजीवों की आनेवाली पिढीयों का जीवन खतरे में पड़ जाएगा । सूक्ष्मजीवों के पर्यावरणीय योगदान के बारे में अब देखेंगे।

बायोगॅस संयंत्र, कंपोस्ट निर्माण के माध्यम से ठोस कचरे का निपटारा करने के लिए भूक्ष्मजीवों की सहायता ली जाती है। यह आपको पता है। तो फिर बड़ी मात्रा में रोजाना जमा होनेवाले कुछ टन शहरी कचरे का उचित पद्धतिद्वारा निपटारा कैसे किया जाता होगा?

- 1. हर घरमें गिला और सूखा कचरा अलग-अलग रखने के लिए क्यों कहा जाता है?
- 2. वर्गीकृत किए गए कचरे का बाद में क्या किया जाता है।
- 3. सूखे कचरे का निपटाए करने की सबसे उचित पद्धति बताइए ?

7.9 आधुनिक भूमिभरण स्थल

भूमिभरण स्थल (Landfilling)

शहरों में इकट्ठा हुए विघटनशील कचरे को इस पद्धित के लिए उपयोग में लाया जाता है। शहरी बस्तीयों से दूर, खुली जगह पर गड्ढा करके उसमें प्लास्टिक का अस्तर डाला जाता है। कचरे से अशुद्ध और विषैला द्रव झर कर मिट्टी का प्रूदषण ना हो इसलिए ये सावधानी बरती जाति है।

दाब देकर संपिड़ीत किया हुआ कचरा (Compressed Waste) तैयार किए हुए गड्ढ़े में डाला जाता है। उसपर मिट्टी/लकड़ीका भूसा/ हरा कचरा / विशिष्ट जैव रसायन इनकी पर्त चढ़ाते है। कुछ जगहों पर उसमें बायोरिओक्टर्स मिलाए जाते है। कचरा और मिट्टी (या पर्त के लिए इस्तेमाल किए गए विशेष पदार्थ) के सूक्ष्मजीव कचरे का विघटन करते है। गड्ढ़ा पूरा भरने के बाद मिट्टी से लिपकर बंद कर दिया जाता है। कुछ हफ्तों के बाद उस जगह पर उत्कृष्ट खाद बनती है। खाद निकालने के बाद खाली हुआ भूमीभरण स्थल पुनः उपयोग में लाया जाता हैं।

ग्रामपंचायत, नगर निगम, विशेषतः महानगर निगम, कचरा उठानेवाले वाहनो का निरीक्षण कीजिए। आजकल उन गाड़ीयों में ही कचरे को दबाकर उसका आयतन कम करने की सुविधा होती हैं। इस विधि को करने के लाभ बताइए ?

घरेलू गंदे पानी का व्यवस्थापन (Sewage Management)

गाँवों के प्रत्येक घर का गंदा पानी पासवाले जमीन में या तो बायोगॅस संयंत्र में छोड़ा जाता है। पर बडे शहरों का इकट्ठा होनेवाला गंदा जल प्रक्रिया केंद्र में ले जाकर उसपर सूक्ष्मजैविक प्रक्रियाएँ करनी पड़ती है।

गंदे जल के किसी भी यौगिक का विघटन करनेवाले, उसी प्रकार कॉलरा, दस्त, विषमज्वर के जिवाणुओं को नष्ट करनेवाले सूक्ष्मजीव उसमें मिलाए जाते हैं । वे उस गंदे जल में स्थित कार्बनीक पदार्थों का विघटन करके मिथेन, CO_2 मुक्त करते हैं । फिनॉल आक्सीड़ायझींग जीवाणु ये गंदे जल में स्थित मानवनिर्मित रसायनों का (Xenobiotic) विघटन करते हैं ।

इस प्रक्रियामें नीचे तल में जमा हुआ अविशष्ट (Sludge) ये खाद के रूप में पुनः उपयोग में लाया जाता है । ऐसी सूक्ष्मजैविक क्रियाए होने के बाद बाहर निकलनेवाला पानी का प्रवाह पर्यावरण की दृष्टि से सुरक्षित होता है । गंदे जल से प्रदृषित हुए पर्यावरण का जैव उपचार करने हेतू सूक्ष्मजीवों का उपयोग किया जाता है ।

जानकारी हासिल कीजिए

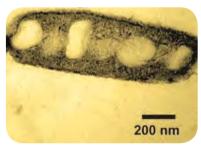
- 1. कचरे का सूक्ष्मजैविक विघटन ठीक से होने के लिए उस कचरे में कौन-कौनसी चिजे नहीं होनी चाहिए ?
- 2. आपके घर या इमारत में निर्माण होनेवाले गंदे जल की व्यवस्था किस प्रकार की गई है।

स्वच्छ तकनिकी (Clean Technology):

मनुष्य ने तकनिकी क्षेत्र में तीव्र गति से प्रगति की है। पर उसके साथ साथ पर्यावरण में प्रदूषण की मात्रा भी उतनी ही तेजी से बढ़ रही है। सूक्ष्मजीवों का इस्तेमाल कर वायु, भू और जल प्रदूषण इन पर कैसे नियंत्रण रखते है, चलिए देखते है।

मनुष्यद्वारा निर्मित रसायनों का नाश करने की क्षमता सूक्ष्मजीवो में प्राकृतिक तौर पर ही पाई जाती है। इसी क्षमता का उपयोग कर हायड्रोकार्बन्स और अन्य रसायनों का रूपांतरण किया जाता है।

- 1. कुछ सूक्ष्मजीव ईंधन में स्थित गंधक को निकाल देते है।
- 2. निम्न दर्जे के अयस्को से ताँबा, लोहा, युरेनियम और जस्ता जैसे धातुओं का पर्यावरण में समावेश होता है । थायोबॅसिलस और सल्फोलोबस जीवाणुओं की सहायता से इन धातुओं का पर्यावरण में समावेश होने से पहले ही यौगिको में रूपांतरण किया जाता है।



बताइए तो !

समुद्र किनारे पर तैलीय जल और हजारो मृत मछलियाँ आने की खबरें आपने पढ़ी या देखी होंगी । ऐसा क्यो होता है ?

समुद्र में विभिन्न कारणों से पेट्रोलियम तेल का रिसाव होता है। ये तेल जलचरों के लिए घातक, विषैला साबित हो सकता है। पानी पर फैली तेल की पर्त को यांत्रिक पद्धित से दूर करना आसान नहीं होता। लेकिन अल्कॅनिव्होरॅक्स बॉरक्युमेन्सिस और स्युड़ोमोनास जीवाणु में पिरिड़िन्स तथा अन्य रसायनों को नष्ट करने की क्षमता पाई जाती है। इसलिए तेल की पर्त को नष्ट करने के लिए इन जीवाणुंओं के समूहों का उपयोग किया जाता है। उन्हें हायड्रो कार्बनोक्लास्टिक बॅक्टेरिआ (HCB) कहते हैं। HCB हायड्रोकार्बनका अपघटन करके उसमें स्थित कार्बन का आक्सीजन से संयोग करवाते है। इस अभिक्रिया में CO2 और पानी बनता है।

प्लॅस्टिक की बोतलें PET (Polyethelene terephthalate Polyster) इन रासायनिक पदार्थों से बनी होती हैं। आजकल नगरी कचरे का बहुत बड़ा हिस्सा इस प्लास्टिक ने घेर रखा हैं। आयड़ोनेला साकीएन्सिस, व्हिब्रिओ प्रजाति PET का विघटन करते है ऐसा पाया गया हैं। उसी प्रकार कचरे में स्थित रबर का विघटन करने की क्षमता एक्टीनोमायसेटिस, स्ट्रेप्टोमायसिस, नॉर्कार्ड़ीया, एक्टिनोप्लेन्स इन जीवाणु की प्रजातियों में पाई जाती है।

7.10अल्कॅनिव्होरॅक्स बॉरक्युमेंन्सिस

7.11 स्युड़ोमोनास

7.12 एसिडोबॅसिलस

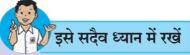
कारखानों से निकलनेवाले पदार्थ तथा अम्लीय वर्षा में सल्फ्युरिक अम्ल होता है। जिससे प्रतिमाओं, पूलों तथा इमारतों में स्थित धातुओं का क्षरण होता है। ये आप जानते ही हो। एसिड़ोबॅसिलस फेरोआक्सिड़न्स और एसिड़ीफिलीयम प्रजाति के जीवाणुओं के लिए सल्फ्युरिक अम्ल यह ऊर्जा का स्रोत है। इसलिए अम्लीय वर्षा से होनेवाले भू-प्रदूषण को ये जीवाणु नियंत्रित करते है।

विभिन्न उपयोगी सूक्ष्मजीवों के छायाचित्र प्राप्त कीजिए। उनकी जानकारी का चार्ट कक्षा में लगाईये।

7.13 जिओबॅक्टर

परमाणु ऊर्जा के प्रकल्पो सें पर्यावरण में छोड़े जानेवाले उत्सर्जित पदार्थों (किरणोत्सर्जन) में और विद्युत विलेपन प्रक्रिया के निरुपयोगी पदार्थों में युरेनियम के जल में घुलनशील लवण पाए जाते है। जिओबॅक्टर जीवाणु युरेनियम के इन घुलनशील लवणों को अघुलनशील लवणों में रुपांतरीत करके भू-जल स्त्रोतों में मिलने से रोकते है।

सक्ष्मजीव और खेती


फलीदार वनस्पतियों की जड़ो की गाठो में और मिट्टी में पाए जानेवाले जीवाणू किस प्रकार उपयोगी सिदध होते है ?

सूक्ष्मजैविक टीके (Microbial Inoculants)

किण्वन प्रक्रियाद्वारा सूक्ष्मजीवों से युक्त कुछ टीके बनवाए जाते हैं । बीजों के बोआई से पूर्व बीजों में इन पोषक टीकों को फुहारा जाता है, तो कुछ टिकों को वनस्पित में लसीकृत किया जाता है । टीकों में स्थित सूक्ष्मजीव उन वनस्पितयों को पोषक द्रव्यों की आपूर्ती करके उनकी वृद्धि में सहायता करते हैं । वनस्पित जन्य अन्नघटकों को उच्च प्रति का बनाते हैं । जैव खेती करते समय कृत्रिम नायट्रोजिनेज, अझॅटोबॅक्टर से युक्त द्रव्यों का उपयोग किया जाता है ।

रासायनिक खादों से होनेवाला भू-प्रदूषण इन द्रव्यों द्वारा रोका जाता है । खेती उद्योग के रासायनिक जंतूनाशक तथा किटनाशकों के माध्यम से फ्लुरासिटामाईड़ जैसे रासायनिक द्रव्य मिट्टी में मिल जाते है । वे अन्य वनस्पती तथा जानवरों के लिए घातक होते है तथा मनुष्य के लिए त्वचारोगकारक सिद्ध होते है । ये मिट्टी में घुले किटनाशक सूक्ष्मजीवोंद्वारा नष्ट किए जा सकते हैं । जैव कीटनाशक (Bio insecticides)

जैव किटनाशक़ अर्थात जीवाणु, कवक आदि से प्राप्त की गई और फसलो पर स्थित जंतु, किट, रोगजंतु का नाश करनेवाले द्रव्य । जीवाणुओं से प्राप्त टॉक्झिन्स जैव तकनिकी से सीधे वनस्पतियों में ही अंतर्भूत किए जाते है; किटक के लिए ये विषैले होनेसे किटक इन वनस्पतियों को ही खाते । जीवाणुओं की भाँतीही कवक और विषाणु की कुछ प्रजातियों का उपयोग जैव किटनाशक के रूप होता है । किण्वन प्रक्रिया में प्राप्त होनेवाला उप-उत्पाद स्पायनोसँड़ यह जैव कीटनाशक है ।

कचरा भरने के लिए आजकल इस्तेमाल में लाए जानेवाले जैवविघटनशील (Biodegradable) प्लॅस्टिक अर्थात पॉलीलॅक्टीक ॲसिड़ है । आवश्यकता के अनुसार ही इन सामग्रीयों का उपयोग कीजिए। पर्यावरण बचाइए।

7.14 वनस्पतियों के पत्ते खानेवाली इल्ली

४६६६६६६६६६६६६६६६ ॥ स्वाध्याय **४**०००

1. दिए गए पर्यायो में से उचित पर्याय चूनकर कथनों को पुनः लिखिए और उनका स्पष्टीकरण लिखिए।

- अ. लॅक्टिक अम्ल के कारण दुध में स्थित प्रथिनो के होने की क्रिया होती है।
- आ. प्रोबायोटीक्स खाद्य पदार्थों के कारण आँतो में स्थित.... जैसे उपद्रवी जीवाणुओं का नाश होता है।
- इ. रासायनिक दृष्टि से व्हिनेगर अर्थात......है।
- ई. कॅल्शिअम और लोह की कमी को पूरा करनेवाला लवण...... अम्ल से बनाते है।

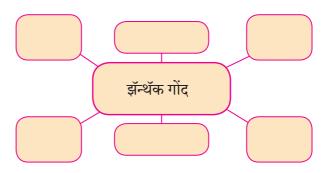
2. उचित जोड़ियाँ मिलाए।

'अ' समूह

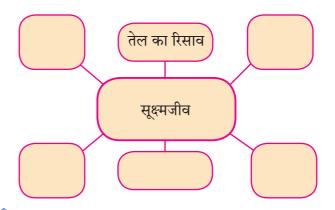
'ब' समूह

- अ. झायलीटॉल
- 1. रंग
- आ. सायट्रीक अम्ल 2. मिठास
- इ. लायकोपिन
- 3. सूक्ष्मजीव प्रतिबंधक
- ई. नायसिन
- 4.प्रथिन का गठन इमल्सिफायर
- 5. अम्लियता प्रदान करना

निम्नलिखित प्रश्नों के उत्तर लिखीए।


- अ. सूक्ष्मजैविक प्रक्रियाओं द्वारा कौन-कौन से ईंधन प्राप्त किए जा सकते है? इन इंधनो का उपयोग बढाना जरूरी क्यो है?
- आ. समुद्र या नदी के तेल की पर्त को कैसे नष्ट किया जाता है ?
- इ. अम्लीय वर्षा के कारण प्रद्षित हुई मिट्टी फिरसे किस प्रकार उपजाऊ बनाई जाति है ?
- ई. जैव खेती में जैव कीटनाशको का महत्व स्पष्ट
- उ. प्रोबायोटीक्स उत्पाद लोकप्रिय होने के क्या कारण है?
- ऊ. बेकर्स यीस्ट के उपयोग से बनाई गई पाव तथा अन्य उत्पाद पौष्टिक कैसे होते है?
- ए. घरो के कचरे का विघटन ठीक से होने के लिए कौन-सी सावधानी बरतनी आवश्यक है?
- ऐ. प्लॅस्टिक की थैलियों का उपयोग करने पर प्रतिबंध लगाना आवश्यक क्यों है?

4. नीचे दिए संकल्पना चित्र को पूरा कीजिए।



5. वैज्ञानिक कारण लिखिए।

- अ. औदुयोगिक सूक्ष्मजीव विज्ञान में उत्परिवर्तित प्रजातियों का उपयोग बढ़ गया है।
- आ. अपमार्जको में सूक्ष्मजैविक प्रक्रिया से प्राप्त प्रकिण्व मिलाए जाते है।
- इ. रसायन उद्योगो में रासायनिक उत्प्रेरकों के सूक्ष्मजैविक प्रकिण्वों का उपयोग बजाए किया जाता है।
- 6. उपयोगों के आधार पर निचे दिए संकल्पनाचित्र को पूर्ण कीजिए।

पर्यावरणीय व्यवस्थापन के संदर्भ में नीचे दिए संकल्पना चित्र पूर्ण कीजिए।

8. निम्नलिखित प्रश्नों के उत्तर लिखिए।

- अ. कंपोस्ट खाद के निर्माण में सूक्ष्मजीवों का योगदान क्या है ?
- आ. पेट्रोल और ड़िझेल में इथॅनॉल मिलाने के क्या लाभ है?
- इ. ईंधन प्राप्ती के लिए किन वनस्पतियों को उगाया जाता है ?
- ई. जैवद्रव्यमान से (Biomass) कौन-कौन से ईंधन प्राप्त किए जाते हैं?
- उ. पाव जालीदार कैसे बनता हैं?

उपक्रम:

- 1. घरगुती स्तरपर शून्य कचरा (Zero -garbage) प्रणाली को अमल में लाने के मार्ग खोजिए।
- 2. मिट्टी में स्थित रासायनिक कीटनाशक नष्ट करनेवाले सूक्ष्मजीव कौन से हैं?
- 3. रासायनिक कीटनाशक का उपयोग क्यो नहीं करना चाहिए ? इस बारे में अधिक जानकारी प्राप्त कीजिए।
