


## **Practical Geometry**

## **MATHEMATICAL REASONING**

**1.** In  $\triangle ABC$ , if  $AB = 7 \ cm$ ,  $\angle A = 40^{\circ}$  and  $\angle B = 70^{\circ}$ , which criterion can be used to construct this triangle?

| (a) ASA | (b) SSS |
|---------|---------|
| (c) SAS | (d) RHS |

**2.** Which one of the following is true for the given triangle?



- (d) Both (A) and (B)
- The \_\_\_\_\_ criterion is used to construct a triangle when the lengths of the three sides are given.
  (a) SAS
  (b) SSS
  (c) RHS
  (d) ASA
- **4.** A triangle can be constructed by taking its sides as
  - (a) 1.8 cm, 2.6 cm, 4.4 cm
  - (b) 2 cm, 3 cm, 4 cm
  - (c) 2.4 cm, 2.4 cm, 6.4 cm
  - (d) 3.2 *cm*, 2.3 *cm*, 5.5 *cm*
- **5.** A triangle can be constructed by taking two of its angles as

| (a) $110^{\circ}$ , $40^{\circ}$ | (b) $70^{\circ}, 115^{\circ}$ |
|----------------------------------|-------------------------------|
| (c) $135^{\circ}, 45^{\circ}$    | (d) $90^{\circ}, 90^{\circ}$  |

- **6.** Which of the following sets of triangles could be the lengths of the sides of a right-angled triangle?
  - (a) 3 *cm*, 4 *cm*, 6 *cm*
  - (b) 9 *cm*, 16 *cm*, 26 *cm*
  - (c) 1.5 cm, 3.6 cm, 3.9 cm
  - (d) 7 cm, 24 cm, 26 cm

- **7.** In which of the following cases, a unique triangle can be drawn?
  - (a)  $AB = 4 \ cm$ ,  $BC = 8 \ cm$  and  $CA = 2 \ cm$

(b)  $BC = 5.2 \ cm$ ,  $\angle S = 90^{\circ}$  and  $\angle C = 110^{\circ}$ 

(c)  $XY = 5 \ cm$ ,  $\angle X = 45^{\circ}$  and  $\angle Y = 60^{\circ}$ 

(d) An isosceles triangle with the length of each equal side 6.2 cm.

**8.** Which of the following statements is INCORRECT?

(a) If length of any two sides of a triangle are 7 cm and 10 cm, then length of its third side lies between 3 cm and 17 cm.

(b) It is possible to construct a unique triangle if all its three angles are given.

(c) An angle of 
$$\left(7\frac{1^{\circ}}{2}\right)$$
 can't be constructed

using compasses and ruler. (d) None of these

## **ACHIEVERS SECTIONS (HOTS)**

9. Which of the following steps is INCORRECT while constructing  $\Delta XYZ$  if it is given that XY = 6cm,  $\angle ZXy = 30^{\circ}$  and  $\angle XYZ = 100^{\circ}$ Step 1: Draw line XV of length 6 cm. Step 2: At X, draw a ray XP making an angle of  $30^{\circ}$  with XY. Step 3: At V, draw a ray YQ making an angle of  $100^{\circ}$  with YX. Step 4: The point of intersection of the two rays XY and YQ is Z. (b) Step 2 and Step 4 (a) Step 1 (c) Step 3 (d) Step 4 10. Arrange the given steps in CORRECT order, while constructing  $\Delta PQR$  where  $PM \perp QS$ 

and it is given that  $QR = 4.2 \ cm$ ,  $\angle Q = 120^{\circ}$ and  $PQ = 3.5 \ cm$ .

Step 1: Now, extend RQ to S and with P as centre and with a sufficient radius, draw an arc, cutting SO at A and 8.

Step 2. Along QX, set off  $QP = 3.5 \ cm$ .

Step 3. Draw a line segment  $QR = 4.2 \ cm$ and construct  $\angle RQX = 120^{\circ}$ . Step 4. Joint PR. Step 5. Joint PC, meeting RQ product at M. Then.  $PM \perp QS$ Step 6. With A as centre and radius more than half AB, draw an arc. Now with B as centre and with the same radius draw another arc, cutting the previous arc at C. (a)  $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6$ (b)  $4 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 5 \rightarrow 6$ (c)  $2 \rightarrow 4 \rightarrow 3 \rightarrow 1 \rightarrow 5 \rightarrow 6$ (d)  $3 \rightarrow 2 \rightarrow 4 \rightarrow 1 \rightarrow 6 \rightarrow 5$ 

 State T' for true and 'F' for false.
 (1) In a triangle, the measure of exterior angle is equal to the sum of the measure of interior opposite angles.

(2) The sum of the measures of the three angles of a triangle is  $90^{\circ}$ .

(3) A perpendicular is always at  $90^{\circ}$  to a given line or surface.

|     | (1) | (2) | (3) |
|-----|-----|-----|-----|
| (a) | Т   | Т   | F   |
| (b) | Т   | F   | F   |
| (c) | Т   | F   | Т   |
| (d) | F   | Т   | F   |

**12.** Which of the following steps is INCORRECT while constructing  $\Delta LMA$ , right angled at M,

given that LN = 5 cm and MN = 3 cm?

Step 1. Draw MN of length 3 cm.

Step 2. At M, draw MX1MN. (L should be some where on this perpendicular).

Step 3. With N as centre, draw an arc of radius 5 cm. (L must be on this arc, since it is at a distance of 5 cm from N).

Step 4. L has to be on the perpendicular line MX as well as on the arc drawn with centre N. Therefore, L is the meeting point of these two and ALMA/ is obtained.

- (a) Only Step 4
- (b) Both Step 2 and Step 3
- (c) Only Step 2
- (d) None of these

**13.** Arrange the steps marked (i) to (v) In CORRECT order while constructing a line parallel to a given line, through a point not on the line using ruler and compasses only. Step 1. Take a line 'I' and a point 'A' outside 'I'.

Step 2. Take any point Son I and join 8 to A (i) Now with A as centre and the same radius as in previous step, draw an arc EF cutting AB at G.

(ii) With the same opening as in previous step and with G as centre, draw an arc cutting the arc EF at H.

(iii) With B as centre and a convenient radius, draw an arc cutting I at C and BA at D,

(iv) Now, join AH to draw a line 'm'.

(a) (i)  $\rightarrow$  (ii)  $\rightarrow$  (iv)  $\rightarrow$  (iii) (b) (iii)  $\rightarrow$  (i)  $\rightarrow$  (ii)  $\rightarrow$  (iv) (c) (iii)  $\rightarrow$  (ii)  $\rightarrow$  (i)  $\rightarrow$  (iv) (d) (i)  $\rightarrow$  (ii)  $\rightarrow$  (iii)  $\rightarrow$  (iv)

| ANSWER KEY |              |              |             |              |  |  |
|------------|--------------|--------------|-------------|--------------|--|--|
| 1. A       | <b>2.</b> A  | <b>3.</b> B  | <b>4.</b> B | <b>5.</b> A  |  |  |
| 6. C       | <b>7.</b> C  | <b>8.</b> C  | <b>9.</b> D | <b>10.</b> D |  |  |
| 11.B       | <b>12.</b> D | <b>13.</b> B |             |              |  |  |

## SOLUTION

- **1.** (a)
- **2.** (a):  $\angle 3 = \angle 1 + \angle 2$  (exterior angle property)
- **3.** (b)
- **4.** (b): A triangle can be constructed if sum of its any two sides is greater than the third side.
- 5. (a): A triangle can be constructed by taking sum of two of its angles less than  $180^{\circ}$ .
- 6. (c): If the sides of a triangle obey Pythagoras rule then triangle is right angled triangle. Here,  $(1.5)^2 + (3.6)^2 = 2.25 + 12.96 = 15.21 cm$ and  $(3.9)^2 = 15.21 cm$  $\therefore (1.5)^2 + (3.6)^2 = (3.9)^2$

**7.** (c): A triangle is possible if

(i) Sum of any two sides must be greater than the third side.

(ii) Sum of all angles must be equal to  $180^{\circ}$ . So, in options (A) and (B) triangle are not possible. In option (D) we can draw more than one isosceles triangle with side length 6.2 cm.

So, triangle is not unique.

- **8.** (c)
- **9.** (d): The correct step is the point of intersection of the two rays XP and XQ is Z.
- **10.** (d)
- **11.** (b)
- **12.** (d)
- **13.** (b)