CHAPTER -01

RELATIONS AND FUNCTIONS

One Mark questions.

1.	Define a reflexive relation	[K]
2.	Define a symmetric relation .	[K]
3.	Define a transitive relation	[K]
4.	Define an equivalence relation	[K]
5.	A relation R on A = {1, 2, 3} defined by R = {(1, 1), (1, 2), (3, 3)} is not symmetric why ?	[U]
6.	Give an example of a relation which is symmetric but neither reflexive nor transitive.	[U]
7.	Give an example of a relation which is transitive but neither reflexive and nor symmetric.	[U]
8.	Give an example of a relation which is reflexive and symmetric but not transitive.	[U]
9.	Give an example of a relation which is symmetric and transitive but not reflexive .	[U]
10.	Define a one-one function.	[K]
	Define an onto function Define a bijective function.	[K]
13.	Prove that $f : R \rightarrow R$ defined by f(x) = x ² is many-one.	[U]
14.	Prove that $f: Z \rightarrow Z$ defined by f(x) =1+ x ² is not one one.	[U]
15.	Let A = {1, 2, 3} B = {4, 5, 6, 7} and f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. Show is one-one.	that f [U]
16.	Write the number of all one – one functions from the set A = {a, b, c} to itself.	[U]
17.	If A contains 3 elements and B contains 2 elements, then find the number of one-one fun	ctions
	from A to B.	[U]
		4

Question Bank: Department of Pre University Education

18.	Define a binary operation.	[K]
19.	Find the number of binary operations on the set {a,b}.	[K]
20.	On N, show that subtraction is not a binary operation.	[U]
21.	On Z^+ (The set of positive integers) define * by $a * b = a - b$. Determine whether	* is
	a binary operation or not.	
	[U]	
22.	On Z^+ , define * by $a^*b = ab$, (where Z^+ = The set of positive integers), Deter	mine
	whether * is a binary operation or not.	
	[U]	
23.	On Z^+ , define * by $a * b = ab^2$, (where Z^+ = The set of positive integers) Deter	mine
	whether * is a binary operation or not.	
	[U]	
24.	On Z^+ , define * by $a * b = a^b$, where Z^+ is the set of non negative integers, Deter	mine
	whether * is a binary operation or not.	[U]
25.	On Z ⁺ , define * by $a * b = a - b $, (where Z ⁺ = The set of positive integers)Deter	mine
	whether * is a binary operation or not.	[U]
26.	On Z^+ , define * by $a * b = a$, (where Z^+ = The set of positive integers), Determine wh	ether
	* is a binary operation or not.	[U]
27.	Let $*$ be a binary operation on N given by a $*$ b = H.C.F. write the value of 22 $*$ 4.	[U]
28.	Is * defined on the set A={1, 2, 3, 4, 5} by a * b = LC M of a and b, a binary operation ? J	ustify
	your answer.	[U]
29.	Let A = $\{1, 2, 3, 4, 5\}$ and * is a binary operation on A defined by a * b = H C F of a and b	
	Is * commutative?	[U]
30.	Let * be a b.o on N given by a * b = L.C.M.of a and b. find 5*7	[K]
31.	Let A = $\{1, 2, 3, 4, 5\}$ and * is a binary operation on A defined by a * b = H C F of a and b.	
	Compute (2 * 3) .	[U]
	Let * be a b.o on N given by a * b = L.C.M.of a and b. find 20*16.	[U]
33.	On Z^+ , define * by $a * b = a - b $ where Z^+ is the set of non negative integers, deter	mine
	whether * is a binary operation or not.	[U]
34.	On Z^+ , define * by $a * b = a^b$ where Z^+ is the set of non negative integers, deter	mine
	whether * is a binary operation or not.	
	[U]	

Question Bank: Department of Pre University Education

35. On Z^+ (the set of nonnegative integers) define * by $a * b = a - b \forall a, b \in Z^+$				
Is $*$ is a binary operation on Z^+ .	[U]			
36. On Z ⁺ (the set of nonnegative integers) define * by $a * b = a-b \forall a, b \in Z^+$.				
Is $*$ a binary operation on Z ⁺ .	[U]			
37. Show that '0' is the identity for addition in R.	[K]			
38. Show that 1 is the identity for multiplication in R.	[K]			
39. Show that there is no identity element for subtraction (division) in R.	[U]			
40. On Q * is defined as , a * b = a – b .Find the identity if it exists.	[U]			
41. On Q * is defined as $a * b = a + ab$. Find the identity if it exists.	[U]			
42. On Q * is defined as $a * b = \frac{ab}{4} \forall a, b \in Q$, find identity.	[K]			
43. On Q * is defined as $a * b = a + b$ $\forall a, b \in N$, find identity if it exists.	[U]			
44. On N, a * b = L.C.M of a and b. Find the identity of * in N.	[K]			
45. Show that –a is the inverse of a under addition in R.	[K]			
46. Show that $\frac{1}{a}$ is the inverse of a $(a \neq 0)$ under multiplication in R.	[K]			
47. Given a non-empty set X, consider the binary operation $*: P(X) imes P(X) o P(X)$ given by				
$A*B = A \cap B \ \forall A, B \in P(X)$, where P(X) is the power set of X. Show that X	is the			
identity element.				
[U]				
48. Given a non-empty set X, let $*: P(X) \times P(X) \rightarrow P(X)$ define	d by			
$\mathbf{A} \times \mathbf{B} = (\mathbf{A} - \mathbf{B}) \cup (\mathbf{B} - \mathbf{A})$				
Show that the empty set ϕ is the identity and all the elements of $D(Y)$	[11]			

Show that the empty set ϕ is the identity and all the elements of P(X). [U]

Two Mark Questions.

 2. Define a symmetric relation and give an example of it. [K] 3. Define a transitive relation and give an example of it. [K] 4. Define an equivalence relation and give an example of it. [K] 5. If f: R→R is defined by f(x) = 3x - 2. Show that f is one-one. [A] 6. If f: N→N given by f(x) = x² check whether f is one-one and onto. Justify your answer.[U] 7. If f: Z→Z given by f(x) = x² check whether f is one-one and onto. Justify your answer. [U] 7. If f: R→R given by f(x) = x² check whether f is one-one and onto. Justify your answer. [U] 9. If f: R→R given by f(x) = x³ check whether f is one-one and onto. Justify your answer. [U] 9. If f: Z→Z given by f(x) = x³ check whether f is one-one and onto. Justify your answer. [U] 10. If f: Z→Z given by f(x) = x³ check whether f is one-one and onto. Justify your answer. [U] 11. Show that the function f: N→N, given by f(x) = 2x is one-one but not onto. [U] 12. Show that the function given by f(1) = f(2) = 1 and f(x) = x - 1, for every x > 2, is onto but no one-one. [U] 13. Prove that the graetest integer function f: R→R given by f(x) = [x] is neither one-one no onto [U] 14. Show that the modulus function f: R→R given by f(x) = [x] is neither one-one no onto.[U] 15. Show that the Signum function f: R→R defined by f(x) = [x] is neither one-one no onto.[U] 16. Let f: N→N defined by f(n) = { n+1/2 if n is odd 0, x = 0 is neither one onto [U] 16. Let f: N→N defined by f(n) = { n+1/2 if n is odd 1 / 2 if n is even 	1.	Define a reflexive relation and give an example of it.	[K]
 4. Define an equivalence relation and give an example of it. [K] 5. If f: R→R is defined by f(x) = 3x - 2. Show that f is one-one. [A] 6. If f: N→N given by f(x) = x² check whether f is one-one and onto. Justify you answer.[U] 7. If f: Z→Z given by f(x) = x² check whether f is one-one and onto. Justify your answer. [U] 8. If f: R→R given by f(x) = x² check whether f is one-one and onto. Justify your answer. [U] 9. If f: N→N given by f(x) = x³ check whether f is one-one and onto. Justify your answer [U] 10. If f: Z→Z given by f(x) = x³ check whether f is one-one and onto. Justify your answer [U] 11. Show that the function f: N→N, given by f(x) = 2x is one-one but not onto. [U] 12. Show that the function given by f(1) = f(2) = 1 and f(x) = x-1, for every x > 2, is onto but no one-one. [U] 13. Prove that the greatest integer function f: R→R given by f(x) = [x] is neither one-one no onto [U] 14. Show that the modulus function f: R→R given by f(x) = [x] is neither one-one no onto.[U] 15. Show that the Signum function f: R→R defined by f(x) = [x] is neither one-one no onto.[U] 	2.	Define a symmetric relation and give an example of it.	[K]
 5. If f: R→R is defined by f(x) = 3x - 2. Show that f is one-one. [A] 6. If f: N→N given by f(x) = x² check whether f is one-one and onto. Justify you answer.[U] 7. If f: Z→Z given by f(x) = x² check whether f is one-one and onto. Justify your answer. [U] 8. If f: R→R given by f(x) = x² check whether f is one-one and onto. Justify your answer. [U] 9. If f: N→N given by f(x) = x³ check whether f is one-one and onto. Justify your answer [U] 10. If f: Z→Z given by f(x) = x³ check whether f is one-one and onto. Justify your answer [U] 11. Show that the function f: N→N, given by f(x) = 2x is one-one but not onto. [U] 12. Show that the function given by f(1) = f(2) = 1 and f(x) = x - 1, for every x > 2, is onto but no one-one. [U] 13. Prove that the greatest integer function f: R→R given by f(x) = [x] is neither one-one no onto [U] 14. Show that the modulus function f: R→R given by f(x) = [x] is neither one-one no onto.[U] 15. Show that the Signum function f: R→R defined by f(x) = [x] is neither one-one no onto.[U] 	3.	Define a transitive relation and give an example of it.	[K]
 6. If f: N→N given by f(x)=x² check whether f is one-one and onto. Justify you answer.[U] 7. If f: Z→Z given by f(x)=x² check whether f is one-one and onto. Justify your answer. [U] 8. If f: R→R given by f(x)=x² check whether f is one-one and onto. Justify your answer. [U] 9. If f: N→N given by f(x)=x³ check whether f is one-one and onto. Justify your answer. [U] 10. If f: Z→Z given by f(x)=x³ check whether f is one-one and onto. Justify your answer. [U] 11. Show that the function f: N→N, given by f(x) = 2x is one-one but not onto. [U] 12. Show that the function given by f(1) = f(2) = 1 and f(x) = x-1, for every x > 2, is onto but no one-one. [U] 13. Prove that the greatest integer function f: R→R given by f(x) = [x] is neither one-one no onto [U] 14. Show that the modulus function f: R→R given by f(x) = [x] is neither one-one no onto [U] 15. Show that the Signum function f: R→R defined by f(x) = { x /x, x≠0 one one onto [U] 	4.	Define an equivalence relation and give an example of it.	[K]
 answer.[U] 7. If f: Z→Z given by f (x) = x² check whether f is one-one and onto. Justify your answer. [U] 8. If f: R→R given by f (x) = x² check whether f is one-one and onto. Justify your answer. [U] 9. If f: N→N given by f (x) = x³ check whether f is one-one and onto. Justify your answer [U] 10. If f: Z→Z given by f (x) = x³ check whether f is one-one and onto. Justify your answer [U] 11. Show that the function f: N→N, given by f(x) = 2x is one-one but not onto. [U] 12. Show that the function given by f(1) = f(2) = 1 and f(x) = x - 1, for every x > 2, is onto but no one-one. [U] 13. Prove that the greatest integer function f: R→R given by f(x) = [x] is neither one-one no onto [U] 14. Show that the modulus function f : R→R given by f(x) = [x] is neither one-one no onto [U] 15. Show that the Signum function f : R→R defined by f (x) = { x /x, x≠0 is neither one-one on onto.[U] 	5.	If $f: R \rightarrow R$ is defined by f(x) = 3x – 2. Show that f is one-one.	[A]
 7. If f: Z→Z given by f (x) = x² check whether f is one-one and onto. Justify your answer. [U] 8. If f: R→R given by f (x) = x² check whether f is one-one and onto. Justify your answer. [U] 9. If f: N→N given by f (x) = x³ check whether f is one-one and onto. Justify your answer [U] 10. If f: Z→Z given by f (x) = x³ check whether f is one-one and onto. Justify your answer [U] 11. Show that the function f: N→N, given by f(x) = 2x is one-one but not onto. [U] 12. Show that the function given by f(1) = f(2) = 1 and f(x) = x-1, for every x > 2, is onto but not one-one. [U] 13. Prove that the greatest integer function f: R→R given by f(x) = [x] is neither one-one no onto [U] 14. Show that the modulus function f: R→R given by f(x) = x is neither one-one no onto.[U] 15. Show that the Signum function f : R→R defined by f(x) = { x / x + 0	6.	If $f:N \to N$ given by $f\left(x\right) = x^2$ check whether f is one-one and onto. Justify	your
 8. If f: R→R given by f(x) = x² check whether f is one-one and onto. Justify your answer. [U] 9. If f: N→N given by f(x) = x³ check whether f is one-one and onto. Justify your answer [U] 10. If f: Z→Z given by f(x) = x³ check whether f is one-one and onto. Justify your answer [U] 11. Show that the function f: N→N, given by f(x) = 2x is one-one but not onto. [U] 12. Show that the function given by f(1) = f(2) = 1 and f(x) = x - 1, for every x > 2, is onto but not one-one. [U] 13. Prove that the greatest integer function f : R→R given by f(x) = [x] is neither one-one no onto [U] 14. Show that the modulus function f : R→R given by f(x) = x is neither one-one no onto.[U] 15. Show that the Signum function f : R→R defined by f(x) = [x] is neither one-one no onto.[U] 		answer.[U]	
 your answer. [U] 9. If f : N→N given by f (x) = x³ check whether f is one-one and onto. Justify your answer [U] 10. If f : Z→Z given by f (x) = x³ check whether f is one-one and onto. Justify your answer [U] 11. Show that the function f : N→N, given by f(x) = 2x is one-one but not onto. [U] 12. Show that the function given by f(1) = f(2) = 1 and f(x) = x - 1, for every x > 2, is onto but not one-one. [U] 13. Prove that the greatest integer function f : R→R given by f(x) = [x] is neither one-one no onto [U] 14. Show that the modulus function f : R → R given by f(x) = x is neither one-one no onto.[U] 15. Show that the Signum function f : R → R defined by f (x) = { x / x , x ≠ 0 / 0 , x = 0 one nor onto [U] 	7.	If $f: Z \to Z$ given by $f(x) = x^2$ check whether f is one-one and onto. Justify your answe	r. [U]
 9. If f: N→N given by f(x) = x³ check whether f is one-one and onto. Justify your answer [U] 10. If f: Z→Z given by f(x) = x³ check whether f is one-one and onto. Justify your answer [U] 11. Show that the function f: N→N, given by f(x) = 2x is one-one but not onto. [U] 12. Show that the function given by f(1) = f(2) = 1 and f(x) = x - 1, for every x > 2, is onto but no one-one. [U] 13. Prove that the greatest integer function f: R→R given by f(x) = [x] is neither one-one no onto [U] 14. Show that the modulus function f: R→R given by f(x) = x is neither one-one no onto.[U] 15. Show that the Signum function f: R→R defined by f(x) = { x /x, x ≠ 0 one nor onto [U] 	8.	If $f: R \rightarrow R$ given by $f(x) = x^2$ check whether f is one-one and onto. J	ustify
 [U] 10. If f: Z→Z given by f(x) = x³ check whether f is one-one and onto. Justify your answer [U] 11. Show that the function f: N→N, given by f(x) = 2x is one-one but not onto. [U] 12. Show that the function given by f(1) = f(2) = 1 and f(x) = x - 1, for every x > 2, is onto but not one-one. [U] 13. Prove that the greatest integer function f : R → R given by f(x) = [x] is neither one-one not onto [U] 14. Show that the modulus function f : R → R given by f(x) = x is neither one-one not onto.[U] 15. Show that the Signum function f : R → R defined by f(x) =		your answer. [U]	
 10. If f: Z→Z given by f(x) = x³ check whether f is one-one and onto. Justify your answer [U] 11. Show that the function f: N→N, given by f(x) = 2x is one-one but not onto. [U] 12. Show that the function given by f(1) = f(2) = 1 and f(x) = x - 1, for every x > 2, is onto but not one-one. [U] 13. Prove that the greatest integer function f: R→R given by f(x) = [x] is neither one-one no onto [U] 14. Show that the modulus function f: R→R given by f(x) = x is neither one-one no onto [U] 15. Show that the Signum function f : R→R defined by f(x) = { x / x + 0 / x = 0 / x	9.	If $f: N \rightarrow N$ given by $f(x) = x^3$ check whether f is one-one and onto. Justify your and	swer.
 [U] 11. Show that the function f: N → N, given by f(x) = 2x is one-one but not onto. [U] 12. Show that the function given by f(1) = f(2) = 1 and f(x) = x - 1, for every x > 2, is onto but not one-one. [U] 13. Prove that the greatest integer function f : R → R given by f(x) = [x] is neither one-one not onto [U] 14. Show that the modulus function f : R → R given by f(x) = x is neither one-one not onto.[U] 15. Show that the Signum function f : R → R defined by f(x) = { x / x / x ≠ 0 / (x = 0) /		[U]	
 [U] 11. Show that the function f: N → N, given by f(x) = 2x is one-one but not onto. [U] 12. Show that the function given by f(1) = f(2) = 1 and f(x) = x - 1, for every x > 2, is onto but not one-one. [U] 13. Prove that the greatest integer function f : R → R given by f(x) = [x] is neither one-one not onto [U] 14. Show that the modulus function f : R → R given by f(x) = x is neither one-one not onto.[U] 15. Show that the Signum function f : R → R defined by f(x) = { x / x / x ≠ 0 / (x = 0) /	10.	If $f: Z \rightarrow Z$ given by $f(x) = x^3$ check whether f is one-one and onto. Justify your an	swer.
 11. Show that the function f: N → N, given by f(x) = 2x is one-one but not onto. [U] 12. Show that the function given by f(1) = f(2) = 1 and f(x) = x - 1, for every x > 2, is onto but not one-one. [U] 13. Prove that the greatest integer function f : R → R given by f(x) = [x] is neither one-one not onto [U] 14. Show that the modulus function f : R → R given by f(x) = x is neither one-one not onto.[U] 15. Show that the Signum function f : R → R defined by f(x) = { x / x / x ≠ 0 / (x = 0) / (x			
 12. Show that the function given by f(1) = f(2) = 1 and f(x) = x - 1, for every x > 2, is onto but not one-one. [U] 13. Prove that the greatest integer function f : R → R given by f(x) = [x] is neither one-one not onto [U] 14. Show that the modulus function f : R → R given by f(x) = x is neither one-one not onto.[U] 15. Show that the Signum function f : R → R defined by f(x) = { x /x, x ≠ 0 one not onto [U] 16. Show that the Signum function f : R → R defined by f(x) = { x /x, x ≠ 0 one not onto [U] 	11.		
 13. Prove that the greatest integer function f: R → R given by f(x) = [x] is neither one-one no onto [U] 14. Show that the modulus function f: R → R given by f(x) = x is neither one-one no onto.[U] 15. Show that the Signum function f: R → R defined by f(x) = { x / x / x ≠ 0 / x = 0 / x = 0 / x		Show that the function given by $f(1) = f(2) = 1$ and $f(x) = x - 1$, for every $x > 2$, is onto but	t not
onto [U] 14. Show that the modulus function $f : R \to R$ given by $f(x) = x $ is neither one-one no onto.[U] 15. Show that the Signum function $f : R \to R$ defined by $f(x) = \begin{cases} \frac{ x }{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ is neither one one nor onto [U]			
 14. Show that the modulus function f : R → R given by f(x) = x is neither one-one no onto.[U] 15. Show that the Signum function f : R → R defined by f(x) = { x /x , x ≠ 0 / 0 , x = 0 one nor onto [U] 	13.		e nor
onto.[U] 15. Show that the Signum function $f : R \to R$ defined by $f(x) = \begin{cases} \frac{ x }{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ is neither one one nor onto [U]	17		nor
15. Show that the Signum function $f : R \to R$ defined by $f(x) = \begin{cases} \frac{ x }{x}, & x \neq 0\\ 0, & x = 0 \end{cases}$ is neither one one nor onto [U]	14.		
one nor onto [U]			
one nor onto [U]	15.	Show that the Signum function $f: R \to R$ defined by $f(x) = \begin{cases} \frac{ x }{x} & x \neq 0 \\ x & x \neq 0 \end{cases}$ is neither	one-
		$\begin{bmatrix} 0 & , x = 0 \end{bmatrix}$	
16. Let $f: N \to N$ defined by $f(n) = \begin{cases} \frac{n+1}{2} & \text{if } n \text{ is odd} \\ \frac{n}{2} & \text{if } n \text{ is even} \end{cases}$ State whether f is bijective. Justify		one nor onto [U]	
	16.	Let $f: N \rightarrow N$ defined by $f(n) = \begin{cases} \frac{n+1}{2} & \text{if } n \text{ is odd} \\ \frac{n}{2} & \text{if } n \text{ is even} \end{cases}$ State whether f is bijective. Just	ustify

your answer. [U]

Question Bank: Department of Pre University Education

- **17.** Let A and B are two sets. Show that $f : A \times B \rightarrow B \times A$ such that f(a, b) = (b, a) is a bijective function. [U]
- **18.** If $f : R \to R$ is defined by $f(x) = 1 + x^2$, then show that f is neither 1-1 nor onto. [U]
- **19.** Prove that $f : R \rightarrow R$ given by $f(x) = x^3$ is onto. [U]
- **20.** Let $f : \{2, 3, 4, 5\} \rightarrow \{3, 4, 5, 9\}$ and $g : \{3, 4, 5, 9\} \rightarrow \{7, 11, 15\}$ be functions defined f(2) = 3, f(3) = 4, f(4) = f(5) = 5 and g(3) = g(4) = 7 and g(5) = g(9) = 11. Find gof. [U]
- **21.** Let $f : \{1, 3, 4\} \rightarrow \{1, 2, 5\}$ and $g : \{1, 2, 5\} \rightarrow \{1, 3\}$ given by $f = \{1, 2\}, (3, 5), (4, 1)\}$ and $g = \{(1, 3), (2, 3), (5, 1)\}$ write down gof..**[U]**
- **22.** If $f : A \rightarrow B$ and $g : B \rightarrow C$ are one-one then show that $gof : A \rightarrow C$ is also one-one.[K]
- **23.** If $f : A \rightarrow B$ and $g : B \rightarrow C$ are onto then show that $gof : A \rightarrow C$ is also onto.[K]
- 24. State with reason

whether $f : \{1, 2, 3, 4\} \rightarrow \{10\}$ with $f = \{(1, 10), (2, 10), (3, 10), (4, 10)\}$ has inverse.[K]

25. State with reason whether

 $g = \{5, 6, 7, 8\} \rightarrow \{1, 2, 3, 4\} \qquad \text{with } g = \{(5, 4), (6, 3), (7, 4), (8, 2)\} \text{ has}$

inverse.[K]

26. State with reason whether

h:
$$\{2, 3, 4, 5\} \rightarrow \{7, 9, 11, 13\}$$
 with $h = \{(2, 7), (3, 9), (4, 11), (5, 13)\}$

has inverse.[K]

- 27. Consider the binary operation V on the set {1, 2, 3, 4, 5} defined by a v b = min {a, b}. Write the operation table of the operation V. [K]
- **28.** On Z, defined by a * b = a b Determine whether * is commutative. [U]
- 29. On Q, defined by a * b = ab + 1. Determine whether * is commutative [U]
- **30.** On Q, * defined by $a * b = \frac{ab}{2}$ Determine whether * is associative. [U]
- **31.** On Z⁺, * defined by $a * b = 2^{ab}$. Determine whether * associative. [U]
- **32.** On R {–1}, * defined by $a * b = \frac{a}{b+1}$ Determine whether * is commutative [U]
- **33.** Verify whether the operation * defined on Q by $a * b = \frac{ab}{2}$ is associative or not . **[U]**

Three Mark Questions.

- A relation R on the set A = {1, 2, 3.....14} is defined as R = {(x, y) : 3x y = 0}. Determine whether R is reflexive, symmetric and transitive. [U]
- A relation R in the set N of natural number defined as R = {(x, y) : y = x + 5 and x < 4}. Determine whether R is reflexive, symmetric and transitive.
- A relation 'R' is defined on the set A = {1, 2, 3, 4, 5} as R = {(x, y) : y is divisible by x}. Determine whether R is reflexive, symmetric, transitive.
- 4) Relation R in the set Z of all integers is defined as $R = \{(x, y) : x y \text{ is an integer}\}$. Determine whether R is reflexive, symmetric and transitive,
- 5) Determine whether R, in the set A of human beings in a town at a particular time is given byR = {(x, y) : x and y work at the same place}
- 6) Show that the relation R in R, the set of reals defined as R = {(a, b) : a ≤ b} is reflexive and transitive but not symmetric.
- 7) Show that the relation R on the set of real numbers R is defined by $R = \{(a, b) : a \le b^2\}$ is neither reflexive nor symmetric nor transitive.
- 8) Check whether the relation R in R the set of real numbers defined as $R = \{(a, b) : a \le b^3\}$ is reflexive, symmetric and transitive.
- 9) Show the relation R in the set Z of integers give by R = {(a, b) : 2 divides (a b)} is an equivalence relation.
- 10) Show the relation R in the set Z of integers give by R = {(a, b) : (a b) is divisible by 2} is an equivalence relation.
- 11) Show that the relation R in the set A = {1, 2, 3, 4, 5} given by R = {(a, b) : |a-b| is even} is an equivalence relation.
- 12) Show that the relation R on the set A of point on cordinate plane given by R = {(P, Q) distance OP = OQ, where O is origin is an equivalence relation.
- **13)** Show that the relation R on the set $A = \{x \in Z : 0 \le x \le 12\}$ given by

 $R = \{(a,b) | a-b | : is a multiple of 4 \}$ is an equivalence relation.

- **14)** Show that the relation R on the set $A = \{x \in Z : 0 \le x \le 12\}$ given by $R = \{(a,b) : a=b\}$ is an equivalence relation.
- **15)** Show that the relation R on the set $A = \{x \in Z : 0 \le x \le 12\}$ given by

 $R = \{(a,b) | a-b | : is a multiple of 4 \}$ is an equivalence relation.

- **16)** Let T be the set of triangles with R a relation in T given by $R = \{(T_1, T_2) : T_1 \text{ is congruent to } T_2\}$ Show that R is an equivalence relation.
- **17)** Let L be the set of all lines in a plane and R be the relation in L defined as $R = \{(L_1, L_2) : L_1 \text{ is perpendicular to } L_2\}$. Show that R is symmetric but neither reflexive nor transitive.
- **18)** Let L be the set of all lines in the XY plane and R is the relation on L by $R = \{(l_1, l_2) : l_1 \text{ is parallel to } l_2\}$. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.
- **19)** Show that the relation R defined in the set A of polygons as $R = \{(P_1, P_2) : P_1 \text{ and } P_2 \text{ have same number of side } \}$ is an equivalence relation.
- **20)** If R_1 and R_2 are two equivalence relations on a set, is $R_1 \cup R_2$ also an equivalence relation.? Justify your answer. [A]
- **21)** If R_1 and R_2 are two equivalence relations on a set, then prove that $R_1 \cap R_2$ is also an equivalence relation.[A]
- **22)** Find gof and fog if $f : R \rightarrow R$ and $g : R \rightarrow R$ are given by $f(x) = \cos x$ and $g(x) = 3x^2$. Show that gof \neq fog. **[U]**

23) If f & g are functions from $R \rightarrow R$ defined by $f(x) = \sin x$ and $g(x) = x^2$ Show that gof \neq fog. **[U]**

- **24)** Find gof and fog, if f(x) = |x| and g(x) = |5x-2| [U]
- **25)** Find gof and fog, if $f(x) = 8x^3$ and $g(x) = x^{1/3}$ [U]
- **26)** If $f: R \rightarrow R$ defined by $f(x) = (3 x^3)^{1/3}$ then find fof(x). [U]
- **27)** Consider $f : N \rightarrow N$, $g : N \rightarrow N$ and $h : N \rightarrow R$ defined as f(x) = 2x, g(y) = 3y + 4,

h(z) = sin z $\forall x, y, z \in N$. Show that $f \circ (g \circ h) = (f \circ g) \circ h$ [U]

- 28) Give examples of two functions f and g such that gof is one -one but g is not one-one.[S]
- 29) Give examples of two functions f and g such that gof is onto but f is not onto.[S]

Five Mark Questions

1) Let
$$A = R - \left\{\frac{7}{5}\right\}$$
, $B = R - \left\{\frac{3}{5}\right\}$ define $f : A \to B$ by $f(x) = \frac{3x+4}{5x-7}$ and
 $g : B \to A$ by $g(x) = \frac{7x+4}{5x-3}$. Show that fog = I_B and gof = I_A. [U]

2) Consider $f : R \to R$ given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f. [U]

3) Consider $f : R \to R$ given by f(x) = 10x + 7. Show tht f is invertible. Find the inverse of f. [U]

4) If
$$f(x) = \frac{4x+3}{6x-4}$$
, $x \neq \frac{2}{3}$, show that f o f(x) = x for all $x \neq \frac{2}{3}$. What is the inverse of f
[U]

5) Consider $f: R_+ \rightarrow [4, \infty)$ given by $f(x) = x^2 + 4$. Show that f is invertible with the inverse [U]

f⁻¹ of f given by $f^{-1}(y) = \sqrt{y-4}$, where R₊ is the set of all non-negative real numbers. [U]

6) Consider
$$f: \mathbb{R}_+ \to [-5, \infty)$$
 given $f(x) = 9x^2 + 6x - 5$. Show that f is invertible with

$$\mathbf{f}^{-1}(\mathbf{y}) = \left(\frac{\sqrt{\mathbf{y}+\mathbf{6}-1}}{3}\right).$$

7) Let $f : N \rightarrow R$. be a function defined as $f(x) = 4x^2 + 12x + 15$. Show that $f : N \rightarrow S$. Where S is the range of f, is invertible. Find the inverse of f

- 8) Let $Y = \{n^2 : n \in N\} \subset N$. Consider $f : N \to Y$ as $f(n) = n^2$. Show that f is invertible. Find the inverse of f. [U]
- 9) Show that $f: [-1, 1] \rightarrow R$, given by $f(x) = \frac{x}{x+2}$ is one-one.

Find the inverse of the function $f : [-1, 1] \rightarrow \text{Range of } f$.

[U]

10) Let
$$f: \mathbb{R} - \left\{-\frac{4}{3}\right\} \to \mathbb{R}$$
 be a function defined by define $f(x) = \frac{4x}{3x+4}$. Find the inverse of the function $f: \mathbb{R} - \left\{-\frac{4}{3}\right\} \to \mathbb{R}$ ange of f.
[U]