13. Chemical Change and Chemical Bond

- Changes can broadly be classified into two types physical and chemical.
 - The characteristics of physical and chemical changes

Physical Change	Chemical Change
1. The chemical composition of a	1. The chemical composition of a
substance does not change.	substance changes.
2. Most changes are reversible.	2. Most changes are irreversible.
3. No new substances are formed. For	3. New substances are formed. For
example,	example,
$Ice \rightarrow Water \rightarrow Steam$	Paper → Ashes

- Burning a candle is a combination of physical and chemical change.
- Metals + Non-metals

1)

o 2)

$$Mg \longrightarrow Mg^{2+} + 2e^{-} Cl + e^{-} \bigcirc Cl^{-}$$

2, 8, 2 2, 8 2, 8 2, 8, 7

$$Mg + (Mg^{2+})[Cl^{-}]_{2}$$

- Physical Properties of Ionic compounds
- 1. Solid
- 2. Hard [because of strong attraction force]
- 3. Brittle
- 4. High melting and boiling points

- 5. Soluble in H₂O; insoluble in kerosene, petrol
- 6. Conduct electricity in H₂O solution
- Metals + Non-metals1)

$$\begin{array}{ccccc}
Na & \longrightarrow & Na^{+} + e^{-} & CI + e^{-} & \longrightarrow & CI^{-} \\
2, 8, 1 & 2, 8 & 2, 8, 7 & 2, 8, 8
\end{array}$$

$$\begin{array}{ccccc}
Na & \longrightarrow & CI^{-} & \longrightarrow & CI^{-} \\
Na & + & & CI & \longrightarrow & (Na^{+})[CI^{-}]
\end{array}$$

o 2) $Mg \longrightarrow Mg^{2+} + 2e^{-} Cl + e^{-} Cl^{-}$ 2, 8, 2 2, 8, 8

$$Mg$$
 $(Mg^{2+})[Cl^{-}]_{2}$

- Physical Properties of Ionic compounds
- 1. Solid
- 2. Hard [because of strong attraction force]
- 3. Brittle
- 4. High melting and boiling points
- 5. Soluble in H₂O; insoluble in kerosene, petrol
- 6. Conduct electricity in H₂O solution

Chemical bond:

Chemical bond is the attractive force, which holds various constituents (such as atoms, ions) together in different chemical species.

Octet rule:

Atoms tend to gain, lose, or share electrons so as to have eight electrons in their valence shells.

Lewis dot Structure:

Representation of molecules and ions in terms of the shared pairs of electrons and the octet rule

$$NO_2 \rightarrow \left[\stackrel{\circ}{\Omega} = \stackrel{\circ}{N} - \stackrel{\circ}{\Omega} \stackrel{\circ}{\Omega} \right]^{-} O_2 \left[\stackrel{\circ}{\Omega} - \stackrel{\circ}{N} = \stackrel{\circ}{\Omega} \right]^{-}$$

Formal charge:

Lewis structure of
$$O_3 \rightarrow 0$$

$$\begin{bmatrix} \text{Formal charge (F.C)} \\ \text{on an atom in a} \\ \text{Lewis structure} \end{bmatrix} = \begin{bmatrix} \text{Total number of} \\ \text{valence electrons} \\ \text{in the free atom} \end{bmatrix} - \begin{bmatrix} \text{Total number of} \\ \text{nonbonding (lone} \\ \text{pair electrons)} \end{bmatrix} - \frac{1}{2} \begin{bmatrix} \text{Total number of} \\ \text{bonding (shared} \\ \text{electrons)} \end{bmatrix}$$

F.C. on the O⁻¹ =
$$6 - 2 - \frac{1}{2}(6) = +1$$

F.C. on the O⁻² =
$$6 - 4 - \frac{1}{2}(4) = 0$$

F.C. on the
$$O^{-3} = 6 - 6 - \frac{1}{2}(2) = -1$$

Limitations of the octet rule:

Incomplete octet of the central atom

E.g. BeH₂, LiCl, BCl₃

• Odd electron molecules

$$\ddot{N} = 0$$
 $\ddot{Q} = \ddot{N} - \dot{Q}^{\dagger}$

• Expanded octet

E.g. PF₅, SF₆, H₂SO₄

- Some other drawbacks:
- 1. It is based upon chemical inertness of noble gases. However, some noble gases can combine to form compounds such as XeF₂, KrF₂, XeOF₂, etc.
- 2. Does not account for the shape of molecules
- 3. Does not explain the relative stability of molecules

Conditions for Formation of Covalent Bond

- Presence of four or more electrons in the outermost shell of an atom (exception H, Be, B and Al)
- High electronegativity of both the atoms
- High electron affinity for both the atoms
- High ionisation energy of both the atoms
- Electronegativity difference between combining atoms should be zero or very low